The Royal Society
Browse
rsbl20180687_si_003.doc (1.67 MB)

effects of strong winds on thermal soaring behaviour from Migrating ospreys use thermal uplift over the open sea

Download (1.67 MB)
journal contribution
posted on 2018-11-30, 01:09 authored by Olivier Duriez, Guillaume PERON, David Gremillet, Andrea Sforzi, Flavio Monti
Most large raptors on migration avoid crossing the sea because of the lack of atmospheric convection over temperate seas. The osprey Pandion haliaetus is an exception among raptors, since it can fly over several hundred km of open water. We equipped five juvenile ospreys with GPS-Accelerometer-Magnetometer loggers. All birds were able to find and use thermal uplift while crossing the Mediterranean Sea, on average 7.5 times per 100 km, and could reach altitudes of 900 m above the sea surface. Their climb rate was 1.6 time slower than over land, and birds kept flapping most of the time while circling in the thermals, indicating that convections cells were weaker than over land. The frequency of thermal soaring was correlated with the difference between the sea surface and air temperature, indicating that atmospheric convection occurred when surface waters were warmer than the overlaying air. These observations help explaining the transoceanic cosmopolitan distribution of osprey, and question the widely held assumption that water bodies represent strict barriers for large raptors.

History

Usage metrics

    Biology Letters

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC