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1 Parameter estimation

In this section we provide the description of the MCMC algorithm used in the main document to sample from
the joint posterior distribution of the model parameters and the epidemic trajectories (Gibson and Renshaw, 1998;
O’Neill and Roberts, 1999; Streftaris and Gibson, 2004; Neri et al., 2014; Parry et al., 2014; Lau et al., 2015). In
summary, we construct a Markov chain with state vector (θ, x(T )) whose stationary distribution is π(θ, x(T )|y).

1.1 Complete data likelihood

We first define the likelihood in the ‘complete-data’ setting where the observations are x(T ) and comprise the precise
times of infection, and identify the infected individuals, for all infections occurring in the interval [t0, T ] for some
T ≥ tobs −∆. We assume t0 to be the time at which the primary source of infection becomes active. Let I denote
the set of infected hosts, Ĩ its complement and, for i ∈ I, let ti denote its infection time. Then a complete-data
likelihood can be constructed as:

π(x(T )|θ) =
∏
i∈I

λi(t
−
i ) exp

(
−
∫ ti

t0

λi(u)du

)
×
∏
s∈Ī

exp

(
−
∫ T

t0

λs(u)du

)

where λi(t) = λi(t, x(T ), θ) denotes the infectious challenge presented to i at time t, under the realisation x(T ), for
t ∈ [t0, T ].

For computational purposes it is helpful to write this likelihood using the approach of ? and ?. First assign
the ‘notional’ infection time for all j ∈ Ĩ to be tj = T . Then we can write

π(x(T )|θ) =
∏
i∈I

λi(s
−
i ) exp

−∑
i∈I

∑
j∈I∪Ĩ

Aij(tj − ti)1tj>ti + ε

N∑
j=1

tj

 (1)

where Aij = βK(dij , α) is the infectious pressure of host i on j and 1 the indicator function.

1.2 MCMC updating of θ

We update parameters using a single-component Metropolis algorithm, since the posterior conditional distribution
of each one of the parameters does not have a convenient form, by proposing and accepting or rejecting changes to
the current values (θ1, θ2, θ3) of α, β and ε, respectively. To update each parameter we propose a new value from a
normal distribution with mean the current value. More precisely, the new parameter θ′k, k = 1, 2, 3 is proposed as
follows:

θ′k = θk + u, where u ∼ N(0, σ2
k). (2)
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If θ′k lies in the range of its uniform prior, it is then accepted with probability

ρ = min

{
1,
π(θ′, x(T )|y)

π(θ, x(T )|y)

}
= min

{
1,
π(θ′)π(x(T )|θ′)
π(θ)π(x(T )|θ)

}
(3)

where θ′ is the vector parameter θ with θk replaced by θ′k. Note that σk is a positive parameter which is tuned for
each parameter separately to ensure the chain mixes well. Otherwise θk is left unchanged by the update.

1.3 Updating x(T)

To update x(T ) we need to take account of the fact that when T > tobs, the number of infection events in x(T ) is
not specified by y. This is overcome using a standard reversible-jump algorithm.
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Figure 1: State diagram for the infection times to show the state transitions.

Given the current state of an individual, we propose changes to the infection times (that would leave the
observation y unchanged) by adding, moving or deleting its infection time (see Figure 1). This is done as follows:

Updating x(T ) using Reversible-Jump MCMC (T > tobs −∆)

i) Choose an individual j in the population.

ii) If j is symptomatic at tobs so that tj < tobs −∆, propose a new infection time

t′ ∼ U
(
τf(j)−1 −∆, τf(j) −∆

)
(4)

where f(i) indexes the assessment time at which j was first symptomatic. Accept t′ with probability

ρ = min

{
1,
π(θ, x′(T )|y)

π(θ, x(T )|y)

}
= min

{
1,
π(x′(T )|θ)

π(x(T )|θ)

}
(5)

where x′(T ) denotes the trajectory with tj replaced by t′.

iii) If j is infected at T (but not symptomatic at tobs):

(a) with probability p = 1/2 move its infection time t′ ∼ U [tobs −∆, T ] and t′ with probability given by
Equation 5,

(b) with probability p = 1/2 delete its infection time . The acceptance probability is then given by

ρ = min

{
1,

2

(T − tobs + ∆)

π(x′(T )|θ)

π(x(T )|θ)

}
. (6)

iv) If j is not infected at T , propose an infection time t′ ∼ U [tobs −∆, T ]. Accept t′ with probability

ρ = min

{
1,

(T − tobs + ∆)

2

π(x′(T )|θ)

π(x(T )|θ)

}
. (7)
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2 Evaluation of the function h(θ,Q, d, T )

Here, we describe the algorithm that evaluates the trajectory x introduced in Section 2.4 in the main document
using Sellke thresholds (Sellke, 1983). In reality, to embed a control strategy (or testing regime in this case) into an
epidemic process generated through the Sellke construction, we first generate realisations of the Sellke thresholds
for each host and the model parameter from π(θ, Q|y). Then, starting from t = 0, we compute a potential infection
times for each host based on its Sellke threshold and the infectious challenge it currently experiences. The next
event is then chosen to be either a test or an infection, of the individual with the smallest potential infection time,
depending on which event type occurs first. The disease status is then changed according to the event, infectious
challenges and Sellke thresholds are updated, and the process continues until no further event can occur or until a
defined stopping criterion is reached.

Calculation of x = h(θ, Q,d, T ) for spatio-temporal SI model with primary and secondary infection.

Notation

• Let d denote the control which involves considering a specified subset Γ of hosts at time tC and removing
them if infected. Note that Γ is determined by the choice of prioritisation measure and events occurring
up to tobs < tC .

• Q = (Q1, ..., QN ), the Sellke thresholds for the individuals.

• θ = (ε, β, α), the primary and secondary infection rates.

Calculation

• Set t = 0, set of infections I(t) = ∅, infectious challenge to individual i, λi(t) =
(
β
∑
j∈I(t)K(dji, α) + ε

)
.

Set the initial state of each individual, si = 0, i = 1, ..., N , and time till next transition (for current
infectious challenge) ri = Qi/λi(t). Set the final time T . Set initial waiting time till implementation of
control to be tC .

• While t < T do the following {
Identify next event: Let t∗ = min{r1, ..., rN , tC}.
If t∗ = rj (event is an infection), implement event.

– set sj = 1, I(t) = I(t) ∪ {j}.

If t∗ = tC , remove any infected members of the control set C.

Finally update current time, remaining Sellke thresholds, infectious challenges, and time till control in
response to the event that has been implemented.

– t = t+ t∗,

– R′i = λi(t) =
(
β
∑
j∈I(t)K(dji, α) + ε

)
.

– If si = 0, Qi = Qi −R′it∗, ri = Qi/λi(t).

– Update time remaining till implementation of control tC = tC − t∗ (if not already implemented). }

3 Example of uniformly distributed host population

3.1 Model assumptions

We consider epidemics governed by SI models in a population of N = 1000 uniformly distributed hosts in a
0.75 × 0.75km2 square region using an exponential kernel K(d, α) = 1

2πdα exp(−d/α). We set α = 0.08km, β =

7.10−6days−1km2 and ε = 5.10−5days−1 for the simulation. Snapshots are taken over a period of 360 days at 30-day
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intervals as shown in Figure (2). As discussed in the main text, the data y specify the location of each host and a
period of time where each symptomatic host is infected. By the end of the observation, there are 128 symptomatic
hosts detected while 153 infections are undetected (cryptic).

(a) (b)

(c) (d)

Figure 2: Sample of the disease progress maps made at 30–day intervals from t0 = 130 up to tobs = 460, on a
population of size N = 1000 from simulated data. Symptomatic hosts, cryptic infections and susceptible hosts at
the time of the snapshot are denoted by red, blue and white dots respectively.

3.2 Parameter estimation

We implement the MCMC algorithm of Section 1 to sample from the posterior distribution π(θ, x(T )|y) for various
values of T , namely, T = tobs −∆, T = tobs and T = tA where tobs = 460, tA = 500 and ∆ = 100. These are used
to estimate the three measures (risk, hazard and thread) at tM = tobs and tM = tA.

We run the algorithms for 280000 iterations for the case T = 360 and 106 iterations for T = 460 and T = 500
discarding the first 10000 iterations to ensure that convergence to stationary distribution is reached. The trace plots
in Figure 4 show that the chains are mixing well and exhibit no sign of non-convergence. The posterior distributions
of the parameters along with the epidemic size at T = 460 and T = 500 are shown in Figure 3. We can observe from
this figure that the true parameter values (dashed lines) are consistent with their respective posterior distributions.
The posterior distributions for different T shown on Figure 3 suggest that estimated π0(θ|y) is the same regardless
of which algorithm is used and how far beyond tobs we impute infection times. This provides evidence for the
validity of the implementation of the MCMC algorithms.

We use 100000 samples from the joint posterior distribution of the model parameters and hosts infection times to
construct the risk, hazard and the threat map as described in the main text at two different times, tM = tobs = 460
and at tM = tA = 500 (see figure5).
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Figure 3: The posterior distributions for Bayesian MCMC estimation of the model parameters and the posterior
distribution of the epidemic size at T for T = 460, 500 days. Dashed lines correspond to the parameter values used
for the simulation((a)-(c)) and the simulated epidemic size at T = 460, 500 ((d)).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Sample trace plots for α, β and ε after a burn-in of 10000 iterations with no augmentation period (T = 360)
(a), (d) and (g) and with different augmentation periods: T = 460 (b), (e) and (h) and T = 500 (c), (f) and (i).
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Figure 5: Posterior predictive maps of the threat, risk and threat measures calculated at both tM = 460 ((a) -
(c))and tM = 500 ((d) - (f))for the simulated epidemic on the uniformly distributed host population (Section 3.1).
Each point represents an individual host with colour varying from white to blue to red with increasing values of
the respective measure for that host. The 128 symptomatic hosts detected during the survey are indicated by the
black circles. Note that the hosts with high hazard values ((a) and (d)) are located in regions of low infection
while the the risk measure is greatest for symptomatic individuals. The dependence of the threat measure on the
positions of likely susceptible individuals in relation to an infected host can be discerned. For example, the cluster
of infected hosts (circled) in the top left corner of the population naturally exhibit high values of the risk while
the corresponding threat measure is comparatively lower, as a high proportion of their immediate neighbours are
already infected.

4 Example of clustered hosts population using a short range dispersal
kernel

4.1 Model specification

SI models on a population of N = 1111 citrus trees from Broward county in Florida labelled B2 (see figure 6.
An epidemic of citrus canker on this population was analysed by Neri et al. (2014). Two different epidemics are
generated using a short-range dispersal kernel K(d, α) = 1

2πd
1
α exp(−d/α): with primary infection (Case (I)) and

without primary infection (Case (II)). Parameters used for the simulation are summarized in Table 1.

Case α β ε tobs Infections observed Cryptic T
(I) 0.08 7.10−6 0.00005 460 169 133 500
(II) 0.08 8.10−6 0 460 111 124 500

Table 1: Summary of the parameters used and outcomes obtained for the simulations in the three cases.
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Figure 6: Citrus locations from Broward county.

4.2 Parameter estimation

For the parameter estimation, we adopt the MCMC algorithm described in Section 1. The estimation is done as
for the uniformly distributed host population varying T depending on the case considered (see Figures 7, 8). In all
cases, the algorithm is run for 520000 steps with a burn-in period corresponding to the initial 20000 iterations.

In Figures 9, 10 we show the sample trace plots of the parameters in all cases. The convergence issues are of no
concern as shown on the figures. Nevertheless, it is clearly apparent that the chain mixing depends on how far we
augment the imputation period. For instance, the sample trace plot for parameters α in Figures 9a and 9b, and β
in 9d and 9e suggest that complete knowledge on the number of infections (T = tobs −∆) leads to a chain which
mixes better than when precise times of future infections are imputed explicitly.
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Figure 7: Case (I). Marginal posterior distributions of the model parameters, estimated from MCMC sampling
of π(θ, x(T )|y), including the dispersal rate α (a), the secondary infection rate β (b), and the primary infection
rate ε (c), for T = 360 (black), T = 460 (red) and T = 500 (blue). Dashed lines correspond to the parameter
values used for the simulation. (d) 95% posterior credible band of the distribution of the disease progress during
the period [360, 500] (shaded region) compared to the actual disease progress (open circles represent the trajectory
up to tobs −∆, gray dots represent the trajectory at from tobs −∆ to tobs and red dots represent the subsequent
trajectory up to tA = 500).

The posterior distribution of the model parameters α, β and ε for various T for Cases (I) and (II), shown
respectively in Figures 7 and 8, match regardless of how far we impute infection times beyond tobs. This gives
evidence that the algorithm gives an accurate picture of the posterior distribution. In addition, it can be seen
that the model parameters used for the simulation (dashed lines) are consistent with their respective posterior
distributions highlighting the fact that the estimation is good. We estimate the epidemic size considering two
different augmentation periods including T = tobs and T = tA as shown in Table 1. Figure 7d shows the 95%
credible band of the epidemic trajectory for Case (I). It can be seen that the actual trajectory of the epidemic
is contained in the 95% credible regions. Also, the posterior distribution of the predicted epidemic size is shown
in Figure 8c for case (II). Again, this suggests that the actual epidemic size lies within the range of the values
supported by the predicted distribution.
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To prioritise hosts for control, a range of maps are constructed at tobs = 460, tC = 470, tA = 500 shown on
figures 11-12, using 100000 samples from the joint posterior distribution of the model parameters and hosts infection
times. Control results are reported in table 2.
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Figure 8: Case (II) The posterior distributions of the model parameters, estimated by sampling from π(θ, x(T )|y)
using MCMC, including the dispersal rate α (a), the secondary infection rate β (b) using T = 460 (red) and
T = 500 (blue). Vertical lines correspond to the actual parameter value used for the simulation. (c) The posterior
distributions of the epidemic size at these times. The simulated values are shown as vertical lines
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9: Case (I): Sample trace plots for the posterior distribution of parameters α β and ε after a burn-in period
of 10000 iterations using the MCMC algorithms described in Section 1.
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(a) (b)

(c) (d)

Figure 10: Case (II): Sample trace plots for the posterior distribution of parameters α β after a burn-in period of
10000 iterations using the MCMC algorithms described in Section 1.
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Figure 11: Posterior predictive maps of the risk and threat measures at tM = 460, tM = 470 and tM = 500 for
Case (I). The colour of points exhibits a gradation from from white to red with increasing values of the respective
measure. The 169 symptomatic hosts detected during the survey are indicated by the black circles.
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Figure 12: Posterior predictive maps of the risk and threat measures for tM = 460, tM = 470 and tM = 500 for
Case (II). The colour of points exhibits a gradation from from white to blue to red with increasing values of the
respective measure. The 111 symptomatic hosts detected during the survey are indicated by the black circles.



SI Text

Expected number removed Expected reduction in number infected
N ′ H∗ R∗ T ∗ H∗ R∗ T ∗

t C
=

4
60

tM = 460
Citrus location: Exponential kernel with primary and secondary infection

169 28.011 (0.293) 169 (0) 117.132 (0.31) 17.726 (0.236) 24.034 (0.164) 34.618 (0.217)
200 33.538 (0.32) 187.475 (0.106) 139.854 (0.333) 20.16 (0.249) 27.886 (0.18) 38.711 (0.234)
300 52.211 (0.41) 233.067 (0.342) 190.622 (0.424) 28.746 (0.293) 42.312 (0.226) 48.98 (0.29)
400 72.644 (0.471) 264.845 (0.479) 234.586 (0.503) 36.088 (0.324) 51.91 (0.261) 56.187 (0.318)
500 89.028 (0.532) 287.201 (0.579) 266.840 (0.567) 40.867 (0.348) 58.308 (0.29) 61.957 (0.356)

Citrus location: Exponential kernel with no primary infection
111 8.419 (0.255) 111 (0) 66.454 (0.366) 9.37 (0.242) 12.82 (0.125) 23.423 (0.271)
200 16.173 (0.345) 165.325 (0.201) 120.113 (0.473) 15.022 (0.293) 22.232 (0.167) 34.925 (0.314)
300 21.416 (0.429) 198.759 (0.478) 165.351 (0.571) 18.936 (0.324) 37.89 (0.277) 44.047 (0.367)
400 26.268 (0.479) 214.429 (0.664) 210.897 (0.662) 21.288 (0.342) 48.77 (0.374) 49.678 (0.39)
500 31.819 (0.529) 218.612 (0.706) 218.660 (0.707) 23.966 (0.359) 51.931 (0.403) 52.132 (0.407)

tM = 500
Citrus location: Exponential kernel with primary and secondary infection

169 21.077 (0.253) 169 (0) 95.159 (0.344) 14.249 (0.229) 24.034 (0.164) 33.602 (0.237)
200 27.022 (0.288) 187.238 (0.136) 115.930 (0.361) 17.470 (0.245) 29.432 (0.186) 37.883 (0.259)
300 47.402 (0.388) 232.587 (0.354) 166.497 (0.434) 26.876 (0.289) 43.183 (0.231) 48.406 (0.306)
400 67.656 (0.454) 264.341 (0.481) 202.066 (0.5) 34.486 (0.32) 52.609 (0.266) 55.618 (0.342)
500 81.683 (0.51) 287.285 (0.579) 237.492 (0.566) 38.775 (0.343) 58.634 (0.29) 61.469 (0.371)

Citrus location: Exponential kernel with no primary infection
111 6.555 (0.231) 111 (0) 47.421 (0.428) 7.753 (0.231) 12.82 (0.125) 23.442 (0.298)
200 10.692 (0.297) 165.402 (0.204) 95.946 (0.507) 11.833 (0.279) 22.963 (0.171) 34.583 (0.34)
300 17.098 (0.371) 199.067 (0.481) 145.832 (0.597) 16.458 (0.309) 37.661 (0.266) 43.926 (0.372)
400 23.827 (0.462) 214.453 (0.666) 192.642 (0.669) 20.444 (0.335) 48.565 (0.373) 49.539 (0.394)
500 27.758 (0.499) 219.120 (0.709) 218.636 (0.708) 22.126 (0.351) 52.053 (0.405) 52.194 (0.408)

t C
=

47
0

tM = 470
Citrus location: Exponential kernel with primary and secondary infection

169 30.643 (0.312) 169 (0) 116.688 (0.332) 14.162 (0.197) 17.616 (0.14) 26.455 (0.187)
200 35.587 (0.341) 188.849 (0.115) 138.736 (0.351) 15.853 (0.209) 21.238 (0.152) 29.643 (0.205)
300 57.377 (0.44) 238.692 (0.351) 190.458 (0.45) 22.774 (0.242) 32.188 (0.192) 37.642 (0.245)
400 78.507 (0.512) 273.329 (0.491) 235.038 (0.529) 28.18 (0.268) 39.277 (0.219) 43.150 (0.27)
500 96.699 (0.575) 298.318 (0.605) 270.113 (0.606) 32.148 (0.285) 44.292 (0.24) 47.714 (0.3)

Citrus location: Exponential kernel with no primary infection
111 9.348 (0.281) 111 (0) 66.392 (0.425) 7.552 (0.2) 9.328 (0.106) 18.886 (0.22)
200 17.356 (0.382) 168.756 (0.195) 118.735 (0.533) 12.556 (0.24) 16.383 (0.137 27.524 (0.267)
300 24.825 (0.47) 205.676 (0.505) 168.998 (0.628) 15.749 (0.267) 29.332 (0.2366) 34.294 (0.295)
400 31.065 (0.537) 224.098 (0.714 215.777 (0.721) 18.002 (0.281) 37.738 (0.305) 38.815 (0.316)
500 36.038 (0.585) 229.6 (0.767) 229.664 (0.77) 19.725 (0.293) 40.448 (0.324) 40.826 (0.33)

tM = 500
Citrus location: Exponential kernel with primary and secondary infection

169 24.512 (0.284) 169 (0) 100.071 (0.358) 11.901 (0.19) 17.616 (0.14) 25.84 (0.197)
200 31.120 (0.321) 188.691 (0.134) 121.277 (0.377) 14.461 (0.203) 21.838 (0.155) 29.194 (0.21)
300 53.554 (0.427) 238.316 (0.356) 173.924 (0.458) 21.743 (0.242) 32.507 (0.193) 37.308 (0.252)
400 75.237 (0.4981) 273.415 (0.496) 211.419 (0.538) 27.39 (0.265) 39.801 (0.222) 42.983 (0.288)
500 90.647 (0.561) 298.987 (0.605) 248.874 (0.608) 30.918 (0.285) 44.694 (0.241) 47.449 (0.309)

Citrus location: Exponential kernel with no primary infection
111 8.27 (0.267) 111 (0) 51.55 (0.47) 6.911 (0.194) 9.328 (0.106) 18.965 (0.247)
200 13.198 (0.342) 168.664 (0.198) 102.101 (0.557) 10.337 (0.235) 16.89 (0.142) 27.351 (0.274)
300 20.599 (0.421) 206.42 (0.502) 154.165 (0.65) 14.137 (0.26) 28.849 (0.221) 34.448 (0.302)
400 28.387 (0.52) 224.545 (0.718) 202.693 (0.726) 17.366 (0.278) 37.769 (0.304) 38.832 (0.319)
500 32.799 (0.56) 230.169 (0.772) 229.645 (0.772) 18.693 (0.288) 40.759 (0.328) 40.858 (0.33)

Table 2: Estimates of expected number removed and expected reduction in number infected by tA = 500 with the
standard error obtained using various values of N ′ where the controls are applied at tC = 460 and tC = 470.
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5 Sensitivity to dispersal kernel parameter

We tested the effect of varying the dispersal scale around the default value (case I- see table 1). We repeat the same
analysis considering four values of the dispersal scale (see table 3). In all cases, we simulate the epidemics (using
Sellke algorithm) with the assumption that the first infection occurs at the same location as in the previous cases.

Here, we only consider the estimation at tM = tA = 500 and the MCMC is run for 100000 iterations. Figure
13 shows that the true values of the parameters lie in a 95% credible interval of their posterior distributions. Also,
the trace plots (not shown here) do not show evidence of non convergence - evidence that the estimation performs
well.

Case α β ε tobs Infections observed Cryptic tA
Simulation 1 0.015 7.10−6 0.00005 460 148 100 500
Simulation 2 0.04 7.10−6 0.00005 460 169 84 500
Simulation 3 0.16 7.10−6 0.00005 460 121 146 500
Simulation 4 0.2 7.10−6 0.00005 460 100 106 500

Table 3: Summary of the parameters used and outcomes obtained for the simulations in the three cases.

Similarly, we implement the control strategy described in the main text and show the effect of varying N ′,
the number of hosts consider for removal, on the estimated values of the expected infections, expected reduction
(with respect to the no-control) and the expected number of removals (see figures 14-17). Results show that as the
number of hosts to remove increases, control based on the risk map becomes as effective as the one based on the
threat map. However, results of Simulation 3 and 4 (see figure 16 and 17) show that removal based on the threat
and the risk maps are qualitatively similar. This may be due to the fact that for larger values of the dispersal scale
parameter, long-distance host-to-host infection occurs. Therefore, the imputed values of the hazard do not exhibit
as much variation over hosts, leading to the threat measure being dominated by the risk measure.
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Figure 13: Posterior distribution of the model parameters estimated at tA = 500. The red line indicate the true
values.
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Figure 14: Simulation 1: Marginal confidence intervals for the exected number of infections by tA = 500, the
estimated expected reduction in infection with respect to the no-control case, and the expected number of removals
using a exopnential kernel (for α = 0.015).



SI Text

t A
=

4
60

,
t M

=
t A

(a) (b) (c)
t C

=
4
60

,
t M

=
t A

(d) (e) (f)

t C
=

47
0,
t M

=
t C

(g) (h) (i)

t C
=

47
0,
t M

=
t A

(j) (k) (l)

Figure 15: Simulation 2: Marginal confidence intervals for the exected number of infections by tA = 500, the
estimated expected reduction in infection with respect to the no-control case, and the expected number of removals
using a exopnential kernel (for α = 0.04).



SI Text

t C
=

46
0,
t M

=
t C

(a) (b) (c)
t C

=
4
60

,
t M

=
t A

(d) (e) (f)

t C
=

47
0,
t M

=
t C

(g) (h) (i)

t C
=

47
0,
t M

=
t A

(j) (k) (l)

Figure 16: Simulation 3: Marginal confidence intervals for the exected number of infections by tA = 500, the
estimated expected reduction in infection with respect to the no-control case, and the expected number of removals
using a exopnential kernel (for α = 0.16).
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Figure 17: Simulation 4: Marginal confidence intervals for the exected number of infections by tA = 500, the
estimated expected reduction in infection with respect to the no-control case, and the expected number of removals
using a exopnential kernel (for α = 0.2).
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