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S. Supplementary Text to “Contextuality in Canonical Systems
of Random Variables” by Ehtibar N. Dzhafarov, Víctor H.
Cervantes, and Janne V. Kujala (Phil. Trans. Roy. Soc. A xxx,
10.1098/rsta.xxxx.xxxx)

Theorem S.1 (Section 4, Remark 4.2). The rank of the system of linear equations (4.4)-(4.6)-(4.7) is
2k − 1 +

(k
2

)
.

Proof of Theorem S.1. This system of linear equations can be written as

M×X=P,

where

PT =



k︷ ︸︸ ︷
p1, . . . , pk,

k︷ ︸︸ ︷
q1, . . . , qk,

k︷ ︸︸ ︷
min (p1, q1) , . . . ,min (pk, qk),

(k2)︷ ︸︸ ︷
min (p1 + p2, q1 + q2) , . . . ,min (pk−1 + pk, qk−1 + qk)


,

XT =
{
xij : i, j ∈ {1, . . . , k}

}
,

and M is a Boolean matrix. The
(
k + k + k +

(k
2

))
rows of matrix M correspond to the elements

of P and can be labeled as k︷ ︸︸ ︷
r1·, . . . , rk·,

k︷ ︸︸ ︷
r·1, . . . , r·k,

k︷ ︸︸ ︷
r11, . . . , rkk,

(k2)︷ ︸︸ ︷
r12, . . . , rk−1,k

 ,

whereas the k2 columns of M correspond to the elements of X and can be labeled as{
cij : i, j ∈ {1, . . . , k}

}
.

Thus, if k= 4, the matrix M is

c

r
11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

1· 1 1 1 1

2· 1 1 1 1

3· 1 1 1 1

4· 1 1 1 1

·1 1 1 1 1

·2 1 1 1 1

·3 1 1 1 1

·4 1 1 1 1

11 1

22 1

33 1

44 1

12 1 1 1 1

13 1 1 1 1

14 1 1 1 1

23 1 1 1 1

24 1 1 1 1

34 1 1 1 1
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We will continue to illustrate the steps of the proof using this matrix. We begin by adding to M

the row rall with all cells equal to 1, and denote the new matrix M′.

c

r
11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

1· 1 1 1 1

2· 1 1 1 1

3· 1 1 1 1

4· 1 1 1 1

·1 1 1 1 1

·2 1 1 1 1

·3 1 1 1 1

·4 1 1 1 1

11 1

22 1

33 1

44 1

12 1 1 1 1

13 1 1 1 1

14 1 1 1 1

23 1 1 1 1

24 1 1 1 1

34 1 1 1 1

all 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

This does not change the rank of the matrix since rall is the sum of all r·i. Then we observe that the
rows rk·, r·k, and all rik with i < k can be deleted as they are linear combinations of the remaining
rows of M′. Indeed, it can be checked directly that

rk· = rall −
k−1∑
i=1

ri·,

r·k = rall −
k−1∑
i=1

r·i,

(rik − rii − rkk) = (ri· − rii) + (r·i − rii)−
∑
l<i

(rli − rll − rii)−
l<k∑
l>i

(ril − rii − rll) ,

for all i < k. Moreover, one can also delete rkk, because

∑
i<j<k

(
rij − rii − rjj

)
+
∑
i<k

(rik − rii − rkk) +
∑
i<k

rii + rkk = rall.
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Let the resulting matrix be M′′:

c

r
11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

1· 1 1 1 1

2· 1 1 1 1

3· 1 1 1 1

·1 1 1 1 1

·2 1 1 1 1

·3 1 1 1 1

11 1

22 1

33 1

12 1 1 1 1

13 1 1 1 1

23 1 1 1 1

all 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

This matrix contains

initial

3k +

(
k

2

)
− 3︸︷︷︸

rk·,r·k,rkk

−

all rik,i<k︷ ︸︸ ︷
(k − 1) + 1︸︷︷︸

rall

= 2k − 1 +

(
k

2

)

rows. We prove that this matrix is of full row rank. Consider equation

∑
all r in M′′

αrr= 0.

We use the following principle: if a row r intersects a columns whose only nonzero entry is in the
row r, then αr = 0, and we can delete the row r from the matrix, decreasing the row rank of the
matrix by 1. The following statements can be directly verified.

rall can be deleted because column ckk has its only 1 in rall.

c

r
11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

1· 1 1 1 1

2· 1 1 1 1

3· 1 1 1 1

·1 1 1 1 1

·2 1 1 1 1

·3 1 1 1 1

11 1

22 1

33 1

12 1 1 1 1

13 1 1 1 1

23 1 1 1 1
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Then each of r·ican be deleted because the column cki has its only 1 in r·i (i= 1, . . . , k − 1).

c

r
11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

1· 1 1 1 1

2· 1 1 1 1

3· 1 1 1 1

11 1

22 1

33 1

12 1 1 1 1

13 1 1 1 1

23 1 1 1 1

Then each of ri· can be deleted because the column cik has its only 1 in ri· (i= 1, . . . , k − 1).

c

r
11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

11 1

22 1

33 1

12 1 1 1 1

13 1 1 1 1

23 1 1 1 1

Then each of rij can be deleted because the column cji has its only 1 in rij (i, j ∈
{1, . . . , k − 1} , i < j).

c

r
11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

11 1

22 1

33 1

This leaves only r11, . . . , r(k−1)(k−1) that are obviously linearly independent.

Theorem (Section 4, Theorem 4.3). In a maximally-connected coupling S of D with k > 5, the
distributions of the 1-splits and 2-splits uniquely determine the probabilities of all higher-order splits.
Specifically, for any 2<m≤ k/2, and any W = {i1, . . . , im} ⊂ {1, . . . , k}, the probability that the
corresponding m-split equals 1 is

min (pi1 + pi2 + . . .+ pim , qi1 + qi2 + . . .+ qim) =
∑m

j=1 min
(
pij , qij

)
+
∑m−1

j=1

∑m
j′=j+1

[
min

(
pij + pij′ , qij + qij′

)
−min

(
pij , qij

)
−min

(
pij′ , qij′

)]
.

(S.1)

Proof of Theorem 4.3. From (4.6) and (4.7),

r12 + r21 = min (p1 + p2, q1 + q2)−min (p1, q1)−min (p2, q2)
...

...
...

rij + rji = min
(
pi + pj , qi + qj

)
−min (pi, qi)−min

(
pj , qj

)
(i < j).

...
...

...
r(k−1)k + rk(k−1) = min (pk−1 + pk, qk−1 + qk)−min (pk−1, qk−1)−min (pk, qk)
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Consider anm-split with 2<m≤ k/2, and assume without loss of generality thatW = (1, . . . ,m).
We have

m∑
i=1

m∑
j=1

rij =min (p1 + . . .+ pm, q1 + . . .+ qm) . (S.2)

The left-hand-side sum can be presented as

∑m
i=1 rii +

∑m−1
i=1

∑m
j=i+1

(
rij + rji

)
=
∑m

i=1 min (pi, qi) +
∑m−1

i=1

∑m
j=i+1

[
min

(
pi + pj , qi + qj

)
−min (pi, qi)−min

(
pj , qj

)]
,

whence we get (4.8).

Example S.2 (showing that the relation (4.8) may be violated, see Section 4.). If

R1
1= 1 2 3 4 0 0

prob. mass p= .6 .1 .1 .2 0 0
,

R2
1= 1 2 3 4 0 0

prob. mass q= .2 .3 .4 .1 0 0
,

then

.8︷ ︸︸ ︷
min (p1 + p2 + p3, q1 + q2 + q3)

6=

min (p1, q1) .2

+min (p2, q2) .1

+min (p3, q3) .1

+min (p1 + p2, q1 + q2)−min (p1, q1)−min (p2, q2) .5− .2− .1
+min (p1 + p3, q1 + q3)−min (p1, q1)−min (p3, q3) .6− .2− .1
+min (p2 + p3, q2 + q3)−min (p2, q2)−min (p3, q3) .2− .1− .1


= .5

�

Theorem (Section 4, Theorem 4.4). A maximally-connected coupling for a 1-2 system is unique if it
exists. In this coupling, the only pairs of ij in (4.3) that may have nonzero probabilities assigned to them
are the diagonal states {11, 22, . . . , kk} and either the states {i1, i2, . . . , ik} for a single fixed i or the
states {1j, 2j, . . . , kj} for a single fixed j (i, j = 1, . . . , k).

Proof of Theorem 4.4. (The matrices illustrating the proof are shown for k > 6 but the theorem is
valid for all k > 1.) If the only nonzero entries in the matrix are in the main diagonal, the theorem
is trivially true. Assume therefore that rij > 0 for some i 6= j. Without loss of generality, we can
assume that r12 > 0 and p1 + p2 ≤ q1 + q2. Indeed, if some rij > 0, we can always rename the
values so that i= 1 and j = 2; and if p1 + p2 > q1 + q2, then we can simply rename all ps into
qs and vice versa. In the following we will use the expression “rij is p-minimized” if pi + pj ≤
qi + qj , and “rij is q-minimized” if pi + pj ≥ qi + qj (in both cases, i 6= j).

We have (the empty cells are those whose value is to be determined later)
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1 2 3 4 5 6 . . .

1 r11 r12 > 0 p1
2 r21 r22 p2
3 r33
4 r44
5 r55
6 r66
...

...
...
...

...
q1 q2 . . .

..

From (4.6)-(4.7), r11 + r12 + r21 + r22 =min {p1 + p2q1 + q2}, and since r12 is p-minimized,
r11 + r12 + r21 + r22 = p1 + p2. This means

1 2 3 4 5 6 . . .

1 r11 r12 > 0 0 0 0 0 0 p1 = r11 + r12
2 r21 r22 0 0 0 0 0 p2 = r21 + r22
3 r33
4 r44
5 r55
6 r66
...

...
...
...

...
q1 ≥ r11 + r21 q2 ≥ r12 + r22 . . .

.

We also should have

1 2 3 4 5 6 . . .

1 r11 r12 > 0 0 0 0 0 0 p1 = r11 + r12
2 0 r22 0 0 0 0 0 p2 = r22
3 0 r33
4 0 r44
5 0 r55
6 0 r66
... 0

...
...
...

...
q1 = r11 q2 ≥ r12 + r22 . . .

because r11 =min {p1, q1} and r11 < p1.
Generalizing, we have established the following rules:
(R1) If rij > 0 and it is p-minimized, then all non-diagonal elements in the rows i and j are

zero except for rij , and all non-diagonal elements in the column i are zero.
(R2) (By symmetry, on exchanging ps and qs) If rij > 0 and it is q-minimized, then all non-

diagonal elements in the columns i and j are zero except for rij , and all non-diagonal elements in
the row j are zero.

Returning to our special arrangement of the rows and columns, let us prove now that all r1j
with j > 2 are q-minimized. Assume the contrary, and with no loss of generality, let r15 = 0 be
p-minimized. This would mean that

r15 + r51 = p1 + p5 − r11 − r55 = r12 + p5 − r55 = 0,

which could only be true if r12 = 0, which it is not.
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1 2 3 4 5 6 . . .

1 r11 r12 > 0 0
q−min

0
q−min

0
q−min

0
q−min

0
q−min

p1 = r11 + r12

2 0 r22 0 0 0 0 0 p2 = r22
3 0 r33
4 0 r44
5 0 r55 p5
6 0 r66
... 0

...
...
...

...
q1 = r11 q2 ≥ r12 + r22 . . .

Generalizing, we have established two additional rules:
(R3) If rij and rij′ are both p-minimized (for pairwise distinct i, j, j′), then they are both zero
(because if one of them is not, say rij > 0, then rij′ = 0 and it must be q-minimized).

(R4) (By symmetry, on exchanging ps and qs) If rij and ri′j are both q-minimized (for pairwise
distinct i, i′, j), then they are both zero.

Returning to our special arrangement of the rows and columns, it follows that nowhere in the
matrix can we have rij > 0 (i > 2) which is q-minimized. Indeed, if j > 2, then this would have
contradicted R4 (because the zeros in the first row are all q-minimized), and if j = 2, it would have
contradicted R2 (because r12 > 0).

Let us prove now that if j > 2 and i > 2 and i 6= j, then there is no rij > 0 that is p-minimized.
Assume the contrary: rij > 0 and q-minimized, and consider r2i, ri2. With no loss of generality,
let (i, j)=(4, 6). In accordance with R1, we fill in the 4th and the 6th rows with zeros, and we fill
in the 4th column with zeros too:

1 2 3 4 5 6 . . .

1 r11 r12 > 0 0 0 0 0 0 p1 = r11 + r12
2 0 r22 0 0 0 0 0 p2 = r22
3 0 r33 0

4 0 0 0 r44 0 r46 > 0 0 p4 = r44 + r46
5 0 0 r55
6 0 0 0 r64 = 0 0 r66 0 p6 = r66
... 0 0

...
...
...

...
q1 = r11 q2 ≥ r12 + r22 q4 = r44 q6 ≥ r46 + r66 . . .

Then r24, r42 are both zero, whence min (p2 + p4, q2 + q4) must equal r22 + r44 to be a maximal
coupling. But

min (p2 + p4, q2 + q4) =min (r22 + r44 + r46, r12 + r22 + r44 + x)> r22 + r44,

since both r12 and r46 are positive, a contradiction.
We come to the conclusion that the only positive non-diagonal elements in the matrix can be

in the column 2 (and they are all p-minimized).
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1 2 3 4 5 6 . . .

1 r11 r12 > 0 0 0 0 0 0 p1 = r11 + r12
2 0 r22 0 0 0 0 0 p2 = r22
3 0 r32 ≥ 0 r33 0 0 0 0 p3 = r32 + r33
4 0 r42 ≥ 0 0 r44 0 0 0 p4 = r42 + r44
5 0 r52 ≥ 0 0 0 r55 0 0 p5 = r52 + r55
6 0 r62 ≥ 0 0 0 0 r66 0 p6 = r62 + r66
... 0

... 0 0 0 0
...
...
...

...
q1 = r11 q2 ≥ r12 + r22 q3 = r33 q4 = r44 q5 = r55 q6 = r66 . . .

Generalizing, let rij > 0 and i 6= j. Then, if rij is p-minimized, all non-diagonal elements of
the matrix outside column j are zero (and the non-diagonal elements in the jth column are p-
minimized); if rij is q-minimized, then all non-diagonal elements of the matrix outside row i are
zero (and the non-diagonal elements in the ith row are q-minimized).

It is easy to check that such a construction is always internally consistent.

Corollary (Section 4, Corollary 4.5). The 1-2 system for the original rvs R1
1, R

2
1 has a maximally-

connected coupling if and only if either pi > qi for no more than one i (this single possible i being the single
fixed i in the formulation of the theorem), or pj < qj for no more than one j (this single possible j being the
single fixed j in the formulation of the theorem), i, j ∈ {1, . . . , k}.

Proof of Corollary 4.5. The “only if” part is obvious. To demonstrate the “if” part, consider (without
loss of generality) the arrangement

1 2 3 4 5 6 . . .

1 . . . p1 ≥ q1
2 . . . p2
3 . . . p3 ≥ q3
4 . . . p4 ≥ q4
5 . . . p5 ≥ q5
6 . . . p6 ≥ q6
...

...
...

...
...

...
...

...
...
...

...
q1 q2 ≥ p2 q3 q4 q5 q6 . . .

and fill it in as

1 2 3 4 5 6 . . .

1 q1 p1 − q1 0 0 0 0 0 p1 ≥ q1
2 0 p2 0 0 0 0 0 p2
3 0 p3 − q3 q3 0 0 0 0 p3 ≥ q3
4 0 p4 − q4 0 q4 0 0 0 p4 ≥ q4
5 0 p5 − q5 0 0 q5 0 0 p5 ≥ q5
6 0 p6 − q6 0 0 0 q6 0 p6 ≥ q6
... 0

... 0 0 0 0
...
...
...

...
q1 q2 ≥ p2 q3 q4 q5 q6 . . .
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with the empty cells filled in with zeros. Check that (a) all rows sum to the marginals; (b) the
second column sums to

k∑
i=1

pi −

(
k∑

i=1

qi − q2

)
= q2;

(c) the rest of the columns sum to the marginals; (d) all rii are min (pi, qi); and (e) for all pairs
rij (i 6= j) the sums rii + rij + rji + rjj equal min

(
pi + pj , qi + qj

)
. The latter is proved by

considering first all j 6= 2, where it is obvious, and then j = 2 where the computation is, for i 6= 2,

rii + ri2 + r2i + r22 = qi + (pi − qi) + 0 + p2 = pi + p2,

as it should be because the values in the second column are to be p-minimized.

Theorem (Section 4, Theorem 4.6). The system D is noncontextual if and only if its 1-2 subsystem is
noncontextual, i.e., if and only if one of the R1

1 and R2
1 nominally dominates the other.

Proof of Theorem 4.6. The “only if” part is Theorem 4.1. All we need to proof the “if “ part is
to check that the relation (4.8) holds. Assume the arrangement is as in the previous corollary.
Consider first any set i1, . . . , im that does not include 2:

min (pi1 + pi2 + . . .+ pim , qi1 + qi2 + . . .+ qim) = qi1 + qi2 + . . .+ qim ,

m∑
j=1

min
(
pij , qij

)
= qi1 + qi2 + . . .+ qim ,

min
(
pij + pij′ , qij + qij′

)
−min

(
pij , qij

)
−min

(
pij′ , qij′

)
= 0.

So, (4.8) holds. If one of the indices (let it be i1) is 2, then

q2 + qi2 + . . .+ qim =

p2 +
∑
x 6=2

(px − qx)

+ qi2 + . . .+ qim > p2 + pi2 + . . .+ pim ,

so
min (p2 + pi2 + . . .+ pim , q2 + qi2 + . . .+ qim) = p2 + pi2 + . . .+ pim .

We also have

m∑
j=1

min
(
pij , qij

)
= p2 + qi2 + . . .+ qim ,

and for any j 6= 2, j′ 6= 2,

min
(
pij + pij′ , qij + qij′

)
−min

(
pij , qij

)
−min

(
pij′ , qij′

)
= 0,

min
(
p2 + pij , q2 + qij

)
−min (p2, q2)−min

(
pij , qij

)
= pij − qij .

Since index i1 = 2 is paired with each of i2, . . . , im only once, the right-hand side in (4.8) is

p2 + qi2 + (pi2 − qi2) + . . .+ qim + (pim − qim) = p2 + pi2 + . . .+ pim .
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