Appendix A

1 This appendix provides further details of the derivation of the analytical ${ }_{2}$ solution for the diffusion equation in the inner domain Ω_{1}, that is given in 3 equation (16).

It is convenient to first introduce the nondimensionalization,

$$
\begin{equation*}
\hat{u}=1-\frac{c}{c_{s}} \quad \hat{r}=r \frac{h}{D} \quad \hat{s}=s \frac{D}{R_{1}^{2}} \quad \hat{\beta}=h \frac{R_{1}}{D} \tag{A-1}
\end{equation*}
$$

Using the definitions in (A-1), the equation for radial diffusion (11), the boundary condition on Γ_{1} (14), and the initial condition (13) can be written as,

$$
\begin{cases}\frac{\partial \hat{u}}{\partial \hat{s}}=\hat{\beta}^{2} \frac{1}{\hat{r}} \frac{\partial}{\partial \hat{r}}\left(\hat{r} \frac{\partial \hat{u}}{\partial \hat{r}}\right) & \hat{r} \in[0, \hat{\beta}] \text { and } \hat{s}>0 \tag{A-2}\\ \frac{\partial \hat{u}}{\partial \hat{r}}=-\hat{u} & \text { at } \hat{r}=\hat{\beta}, \\ \hat{u}(\hat{s}, 0)=1, & \hat{r} \in[0, \hat{\beta}], \\ \hat{s}=0\end{cases}
$$

Using standard methods of separation of variables (see, for example, Carlslaw and Jaeger [46]), we look for a factorized solution $\hat{u}=\hat{T}(\hat{s}) \hat{R}(\hat{r})$ for (A-2), from which it follows, that $\hat{T}(\hat{s})$ and $\hat{R}(\hat{r})$ must satisfy

$$
\begin{equation*}
\hat{T}^{\prime}+\alpha^{2} \hat{\beta}^{2} \hat{T}=0, \quad \hat{R}^{\prime \prime}+\frac{1}{\hat{r}} \hat{R}^{\prime}+\alpha^{2} \hat{R}=0 \tag{A-3}
\end{equation*}
$$

for $\hat{s}>0$ and $\hat{r} \in[0, \hat{\beta}]$, where α^{2} is a positive, real constant and we have used the """ notation to denote differentiation with respect to the independent variable. The well known solutions to (A-3) are

$$
\begin{equation*}
\hat{T}=A e^{-\alpha^{2} \hat{\beta}^{2} \hat{s}}, \quad \hat{R}=B J_{0}(\alpha \hat{r}) \tag{A-4}
\end{equation*}
$$

where we have imposed the boundedness of the solution at $\hat{r}=0$. The equation for $\hat{R}(\hat{r})$ in (A-3) is a (singular), Sturm-Liouville problem, where

$$
\begin{equation*}
L[\hat{R}] \equiv\left(\hat{r} \hat{R}^{\prime}\right)^{\prime} \tag{A-5}
\end{equation*}
$$ Boyce and DiPrima) [47], and we therefore have the completeness of the set

19 of eigenfunctions $\hat{R}(\hat{r})$ in the appropriate function space, so the solution \hat{u}

$$
\begin{equation*}
\hat{u}=\sum_{n=1}^{\infty} A_{n} e^{-\alpha_{n}^{2} \hat{\beta}^{2} \hat{s}} J_{0}\left(\alpha_{n} \hat{r}\right) . \tag{A-7}
\end{equation*}
$$

${ }_{21}$ Applying the boundary condition given in (A-2) on surface $\Gamma_{1}(\hat{r}=\hat{\beta})$, we obtain,

$$
\begin{equation*}
\sum_{n=1}^{\infty} A_{n} e^{-\alpha_{n}^{2} \hat{\beta}^{2} \hat{s}}\left[J_{0}\left(\alpha_{n} \hat{\beta}\right)-\alpha_{n} J_{1}\left(\alpha_{n} \hat{\beta}\right)\right]=0 \tag{A-8}
\end{equation*}
$$

${ }_{23}$ and therefore, α_{n} are the the roots of

$$
\begin{equation*}
J_{0}\left(\alpha_{n} \hat{\beta}\right)-\alpha_{n} J_{1}\left(\alpha_{n} \hat{\beta}\right)=0 \quad n=1,2,3 \cdots \tag{A-9}
\end{equation*}
$$

${ }_{24}$ Using the initial condition $\hat{u}=1$ at $\hat{s}=0$ in (A-7), it follows that,

$$
\begin{equation*}
\sum_{n=1}^{\infty} A_{n} J_{0}\left(\alpha_{n} \hat{r}\right)=1 \tag{A-10}
\end{equation*}
$$

25 and therefore,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \int_{0}^{\hat{\beta}} A_{n} J_{0}\left(\alpha_{n} \hat{r}\right) J_{0}\left(\alpha_{m} \hat{r}\right) \hat{r} d \hat{r}=\int_{0}^{\hat{\beta}} J_{0}\left(\alpha_{m} \hat{r}\right) \hat{r} d \hat{r}, \quad m=1,2,3, \cdots \tag{A-11}
\end{equation*}
$$

26 Using well known orthogonality properties of the solution with (A-9),

$$
\int_{0}^{\hat{\beta}} J_{0}\left(\alpha_{n} \hat{r}\right) J_{0}\left(\alpha_{m} \hat{r}\right) \hat{r} d \hat{r}= \begin{cases}0 & m \neq n \tag{A-12}\\ \frac{\hat{\beta}^{2}\left(1+\alpha_{n}^{2}\right)}{2 \alpha_{n}^{2}} J_{0}^{2}\left(\alpha_{m} \hat{\beta}\right) & m=n\end{cases}
$$

${ }_{27}$ and hence,

$$
\begin{equation*}
A_{n}=\int_{0}^{\hat{\beta}} J_{0}\left(\alpha_{n} \hat{r}\right) \hat{r} d \hat{r} / \int_{0}^{\hat{\beta}} J_{0}^{2}\left(\alpha_{n} \hat{r}\right) \hat{r} d \hat{r} \tag{A-13}
\end{equation*}
$$

28 It follows from standard integral results for Bessels functions and (A-9) that

$$
\begin{equation*}
\int_{0}^{\hat{\beta}} J_{0}\left(\alpha_{n} \hat{r}\right) \hat{r} d \hat{r}=\frac{\hat{\beta}}{\alpha_{n}} J_{1}\left(\alpha_{n} \hat{\beta}\right)=\frac{\hat{\beta}}{\alpha_{n}^{2}} J_{0}\left(\alpha_{n} \hat{\beta}\right) \tag{A-14}
\end{equation*}
$$

29 Using this last result with (A-12) in (A-13), we obtain the solution for \hat{u} in ${ }_{30} \Omega_{1}$ (see, e.g. page 201 of Carslaw and Jaeger) [46],

$$
\begin{equation*}
\hat{u}=\sum_{n=1}^{\infty} \frac{2 J_{0}\left(\alpha_{n} \hat{r}\right)}{\hat{\beta}\left(1+\alpha_{n}^{2}\right) J_{0}\left(\alpha_{n} \hat{\beta}\right)} e^{-\alpha_{n}^{2} \hat{\beta}^{2} \hat{s}} \quad \hat{r} \in[0, \hat{\beta}] \text { and } \hat{s}>0 \tag{A-15}
\end{equation*}
$$

${ }_{31}$ Using the definitions in (A-1), the solution for the concentration given in ${ }_{32}$ equation (16) is obtained.

${ }_{3}$ Appendix B

${ }_{34}$ This appendix provides further details of the derivation of the analytical ${ }_{35}$ solution given in equation (25) for radial diffusion in the outer domain Ω_{2}. ${ }_{36}$ It is useful to first write the equations in dimensionless form. Using the 37 following non-dimensionalization

$$
\begin{equation*}
\hat{u}=1-\frac{c}{c_{s}} \quad \hat{r}=r \frac{h}{D} \quad \hat{s}=s \frac{D}{R_{2}^{2}} \quad \hat{\beta}=h \frac{R_{2}}{D} \quad \gamma=\frac{R_{2}}{R_{3}} \tag{B-16}
\end{equation*}
$$

the system of equations for the outer domain can be written as,

$$
\left\{\begin{array}{lrl}
\frac{\partial \hat{u}}{\partial \hat{s}}=\hat{\beta}^{2} \frac{1}{\hat{r}} \frac{\partial}{\partial \hat{r}}\left(\hat{r} \frac{\partial \hat{u}}{\partial \hat{r}}\right) & \hat{r} \in[\hat{\beta}, \hat{\beta} / \gamma] & \hat{s}>0 \tag{B-17}\\
\frac{\partial \hat{u}}{\partial \hat{r}}=\hat{u} & \text { at } \hat{r}=\hat{\beta}, & \hat{s}>0 \\
\frac{\partial \hat{u}}{\partial \hat{r}}=0 & \text { at } \hat{r}=\hat{\beta} / \gamma, & \hat{s}>0 \\
\hat{u}(\hat{r}, 0)=1, & \hat{r} \in[0, \hat{\beta}] . &
\end{array}\right.
$$

As for the solution in the inner domain (Appendix A), the classical method of separation of variables is used and we look for a solution of the form $\hat{u}=\hat{T}(\hat{s}) \hat{R}(\hat{r})$. It follows from (B-17) that

$$
\begin{equation*}
\hat{T}(\hat{t})=A e^{-\alpha^{2} \hat{\beta}^{2} \hat{s}}, \quad \hat{R}(\hat{r})=A J_{0}(\alpha \hat{r})+B Y_{0}(\alpha \hat{r}) \tag{B-18}
\end{equation*}
$$

where α is once again a real, positive constant. Hence, the solution for \hat{u} in the outer domain Ω_{2} is

$$
\begin{equation*}
\hat{u}=\sum_{n=1}^{\infty}\left[A_{n} J_{0}\left(\alpha_{n} \hat{r}\right)+B_{n} Y_{0}(\alpha \hat{r})\right] e^{-\alpha_{n}^{2} \hat{\beta}^{2} \hat{s}} \tag{B-19}
\end{equation*}
$$

${ }_{44}$ Applying the boundary condition at the outer boundary, $\Gamma_{3}(\hat{r}=\hat{\beta} / \gamma)$ given ${ }_{45}$ in (B-17), it follows that,

$$
\begin{equation*}
A_{n} \alpha_{n} J_{1}\left(\alpha_{n} \frac{\hat{\beta}}{\gamma}\right)+B_{n} \alpha_{n} Y_{1}\left(\alpha_{n} \frac{\hat{\beta}}{\gamma}\right)=0, \quad n=1,2,3, \cdots \tag{B-20}
\end{equation*}
$$

${ }_{46}$ It is useful to define the function, $\phi_{0}\left(\alpha_{n} \hat{r}\right)$, as a linear combination of $J_{0}\left(\alpha_{n} \hat{r}\right)$ and $Y_{0}\left(\alpha_{n} \hat{r}\right)$

$$
\begin{equation*}
\phi_{0}\left(\alpha_{n} \hat{r}\right) \doteq J_{0}\left(\alpha_{n} \hat{r}\right) Y_{1}\left(\alpha_{n} \frac{\hat{\beta}}{\gamma}\right)-Y_{0}\left(\alpha_{n} \hat{r}\right) J_{1}\left(\alpha_{n} \frac{\hat{\beta}}{\gamma}\right) \tag{B-21}
\end{equation*}
$$

48 Using (B-20) to eliminate B_{n} in (B-19) and using the notation in (B-21), we 49 have

$$
\begin{equation*}
\hat{u}=\sum_{n=1}^{\infty} C_{n} \phi_{0}\left(\alpha_{n} \hat{r}\right) e^{-\alpha_{n}^{2} \hat{\beta}^{2} \hat{s}} \tag{B-22}
\end{equation*}
$$

It follows from (B-22) and (B-17) that $\phi_{0}\left(\alpha_{n} \hat{r}\right)$ are eigenfunctions that satisfy

$$
\begin{array}{lr}
\left(\hat{r} \phi_{0}^{\prime}\right)^{\prime}=-\alpha^{2} \hat{r} \phi_{0} & \hat{r} \in[\hat{\beta}, \hat{\beta} / \gamma] \\
\phi_{0}^{\prime}-\phi_{0}=0 & \text { at } \hat{r}=\hat{\beta} \tag{B-23}\\
\phi_{0}^{\prime}=0 & \text { at } \hat{r}=\hat{\beta} / \gamma .
\end{array}
$$

${ }_{51}$ Applying the boundary condition at $\Gamma_{2}(\hat{r}=\hat{\beta})$ given in (B-23) $)_{2}$ with (B-21), ${ }_{52}$ we obtain an equation for the eigenvalues α_{n} as the roots of,

$$
\begin{align*}
& \alpha_{n} J_{1}\left(\alpha_{n} \hat{\beta}\right) Y_{1}\left(\alpha_{n} \frac{\hat{\beta}}{\gamma}\right)-\alpha_{n} Y_{1}\left(\alpha_{n} \hat{\beta}\right) J_{1}\left(\alpha_{n} \frac{\hat{\beta}}{\gamma}\right) \\
& \quad=J_{0}\left(\alpha_{n} \hat{\beta}\right) Y_{1}\left(\alpha_{n} \frac{\hat{\beta}}{\gamma}\right)-Y_{0}\left(\alpha_{n} \hat{\beta}\right) J_{1}\left(\alpha_{n} \frac{\hat{\beta}}{\gamma}\right) . \tag{B-24}
\end{align*}
$$

${ }_{53}$ Applyting the initial condition $\hat{u}=1$ at $t=0$ to the solution (B-22)

$$
\begin{equation*}
\sum_{n=1}^{\infty} C_{n} \phi_{0}\left(\alpha_{n} \hat{r}\right)=1 \tag{B-25}
\end{equation*}
$$

${ }_{54}$ Therefore from (B-25)

$$
\begin{equation*}
\sum_{n=1}^{\infty} \int_{\hat{\beta}}^{\frac{\hat{\beta}}{\gamma}} C_{n} \phi_{0}\left(\alpha_{n} \hat{r}\right) \phi_{0}\left(\alpha_{m} \hat{r}\right) \hat{r} d \hat{r}=\int_{\hat{\beta}}^{\frac{\hat{\beta}}{\gamma}} \phi_{0}\left(\alpha_{m} \hat{r}\right) \hat{r} d \hat{r} . \tag{B-26}
\end{equation*}
$$

${ }_{55}$ The eigenfunctions $\phi_{0}\left(\alpha_{n} \hat{r}\right)$ are linear combinations of bessel functions $J_{0}\left(\alpha_{n} \hat{r}\right)$ and $Y_{0}\left(\alpha_{n} \hat{r}\right)$ and are orthogonal, so that from (B-26),

$$
\begin{equation*}
C_{n}=\int_{\hat{\beta}}^{\frac{\hat{\beta}}{\gamma}} \phi_{0}\left(\alpha_{n} \hat{r}\right) \hat{r} d \hat{r} / \int_{\hat{\beta}}^{\frac{\hat{\beta}}{\gamma}} \phi_{0}^{2}\left(\alpha_{n} \hat{r}\right) \hat{r} d \hat{r} . \tag{B-27}
\end{equation*}
$$

${ }_{57}$ Making use of (B-23), the following simplifications follow for the integral in ${ }_{58}$ (B-27)

$$
\begin{align*}
\int_{\hat{\beta}}^{\frac{\hat{\beta}}{\gamma}} \phi_{0}\left(\alpha_{n} \hat{r}\right) \hat{r} d \hat{r} & =-\frac{1}{\alpha_{n}^{2}} \int_{\hat{\beta}}^{\frac{\hat{\beta}}{\gamma}}\left(\hat{r} \phi_{0}^{\prime}\right)^{\prime} d \hat{r}=-\frac{1}{\alpha_{n}^{2}}\left[\frac{\hat{\beta}}{\gamma} \phi_{0}^{\prime}\left(\alpha_{n} \frac{\hat{\beta}}{\gamma}\right)-\hat{\beta} \phi_{0}^{\prime}\left(\alpha_{n} \hat{\beta}\right)\right] \\
& =\frac{\hat{\beta}}{\alpha_{n}^{2}} \phi_{0}\left(\alpha_{n} \hat{\beta}\right) \tag{B-28}
\end{align*}
$$

59
60 and integrating over the domain, we obtain,

$$
\begin{equation*}
\int_{\hat{\beta}}^{\frac{\hat{\beta}}{\gamma}} \phi_{0}^{2}\left(\alpha_{n} \hat{r}\right) \hat{r} d \hat{r}=\left[\frac{\hat{r}^{2}}{2 \alpha_{n}^{2}}\left(\left(\phi_{0}^{\prime}\left(\alpha_{n} \hat{r}\right)\right)^{2}+\alpha_{n}^{2} \phi_{0}^{2}\left(\alpha_{n} \hat{r}\right)\right)\right]_{\hat{\beta}}^{\frac{\hat{\beta}}{\gamma}} \tag{B-29}
\end{equation*}
$$

61

$$
\begin{equation*}
=\frac{\hat{\beta}^{2}}{2}\left[\frac{1}{\gamma^{2}} \phi_{0}^{2}\left(\alpha_{n} \frac{\hat{\beta}}{\gamma}\right)-\phi_{0}^{2}\left(\alpha_{n} \hat{\beta}\right)\left(1+\frac{1}{\alpha_{n}^{2}}\right)\right] \tag{B-30}
\end{equation*}
$$

62
Using these last two results with (B-27), it follows that the solution for \hat{u} in
63 the outer domain Ω_{2} is

$$
\begin{equation*}
\hat{u}=\sum_{n=1}^{\infty} C_{n} \phi_{0}\left(\alpha_{n} \hat{r}\right) e^{-\alpha_{n}^{2} \hat{\beta}^{2} \hat{s}} \tag{B-31}
\end{equation*}
$$

${ }_{64}$ with

$$
\begin{equation*}
C_{n}=\frac{2 \phi_{0}\left(\alpha_{n} \hat{\beta}\right)}{\hat{\beta}\left[\alpha_{n}^{2} \phi_{0}^{2}\left(\alpha_{n} \frac{\hat{\beta}}{\gamma}\right) / \gamma^{2}-\left(1+\alpha_{n}^{2}\right) \phi_{0}^{2}\left(\alpha_{n} \hat{\beta}\right)\right]} \tag{B-32}
\end{equation*}
$$

where it should be recalled that α_{n} can be determined through (B-24) and $\phi_{n}\left(\alpha_{n} \hat{r}\right)$ is defined in (B-21).

