Appendix A Phase transition test models

This appendix presents details on the test models used for validation. Python implementations of both models are available on the author's Github: https://github.com/dylewsky/phase_transition_EWS

Water-vegetation model

This model, presented in [1], describes a two-dimensional lattice on which each site has nonnegative values for water quantity w_{ij} and biomass B_{ij} . Stochastic dynamics are defined as follows:

$$\frac{dw_{i,j}}{dt} = R - w_{i,j} - \lambda w_{i,j} B_{i,j}
+ D (w_{i+1,j} + w_{i,j+1} + w_{i-1,j} + w_{i,j-1} - 4w_{i,j}) + \sigma_w dW_{i,j}
\frac{dB_{i,j}}{dt} = \rho B_{i,j} \left(w_{i,j} - \frac{B_{i,j}}{B_c} \right) - \mu \frac{B_{i,j}}{B_{i,j} + B_O}
+ D (B_{i+1,j} + B_{i,j+1} + B_{i-1,j} + B_{i,j-1} - 4B_{i,j}) + \sigma_B dW_{i,j}$$
(A1)

 $dW_{i,j}$ represents stochastic white noise of unit variance. Values for constants are set to:

$$D = 0.05
\lambda = 0.12
\rho = 1
B_c = 1
\mu = 2
B_O = 1
\sigma_w = 0.025
\sigma_B = 0.0625$$
(A2)

Global rainfall R is varied during the simulations. When it falls below $R = R_c \approx 1.936$, a phase transition is observed in which the system rapidly loses biomass and shifts to a stable desert equilibrium. Simulations are carried out on a 200×200 square lattice with periodic boundary conditions and randomized starting and ending values between which R is linearly interpolated (passing through R_c in transition runs, held far from R_c in null runs).

Sea ice percolation model

This is a dynamical model constructed to serve as a toy example of a percolation phase transition in sea ice. Water diffuses through a cubic lattice of cells, the boundaries between which are either closed or open. The percolation transition occurs when the fraction of open boundaries exceeds some threshold, so we define a tunable temperature parameter which mediates the melting (opening) and refreezing (closing) rates of the boundaries in order to vary this ratio. At the theoretically-established critical threshold (boundary closure fraction $p_c \approx 0.25$ in 3D), the permeation of water through the lattice undergoes an abrupt regime change. Simulations are carried out on a $256 \times 256 \times 64$ cubic lattice with periodic boundary conditions.

References

 Dakos, V., Kéfi, S., Rietkerk, M., van Nes, E.H., Scheffer, M.: Slowing down in spatially patterned ecosystems at the brink of collapse vasilis. American Naturalist 177(6) (2011). https://doi.org/10.1086/659945