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Method S1. Animal model and housing conditions  

Nine orphaned, emaciated, and/or weakened harbour seal pups (Phoca vitulina) comprise 

our study group. These wild-born seal pups were admitted to rehabilitation at Sealcentre 

Pieterburen (Pieterburen, the Netherlands) before being released back into their natural 

environment. The animals originated from different Wadden Sea islands (e.g., 

Schiermonnikoog, Ameland, Vlieland) and from the Dutch mainland coast. The study took 

place in the intensive care units of the Sealcentre, where the animals were housed in enclosures 

consisting of a swimming pool and a plateau on which the animals could rest (Figure S1). One 

seal (pup I) was housed alone and exposed to a playback experiment during the summer of 

2017 (1-way interaction). The remaining eight pups (A–H) were housed in pairs and vocalised 

spontaneously (i.e., in the absence of any playback stimulus) during the summer of 2020 (2-

way interaction). Prior to each recording, we marked one of the two pups in the pair with a 

non-toxic coloured marker to distinguish the individuals later on in the analysis (Figure S1A). 

The intensive care units received natural light.  

 

Method S2. Data collection and experimental procedure 

All audio recordings were collected without human presence in the intensive care units. 

The lone seal (pup I) was recorded in two behavioural contexts: alone and in interaction with 

a recorded/playback partner (1-way interaction). Both context datasets were the focus of past 

works [1,2] and have been re-analysed in the present study. This pup was estimated to be seven 

days old upon admission to the Sealcentre. During the alone context, the pup’s vocalisations 

were recorded between 9 and 27 days of age for twenty sessions of ten minutes each at a 

distance of 0.5–2 m from the pup (Table S1).  

mailto:marianna.anichini@mpi.nl


 

 

2 

Between 29 and 37 days of age, the pup was recorded for five days and exposed to five 

playback sessions (Table S1). Each playback session lasted approximately 15 minutes and 

consisted of 18 trials (concatenated in random order) separated by 12 seconds of silence. Each 

trial was a unique combination of three experimental variables, including tempo (corresponded 

to the average IOI of a sequence: slow = 2418 ms, medium = 1983 ms, and fast = 1548 ms), 

rhythmicity (isochrony, random), and playback caller identity (self, a pup from the same 

Wadden Sea region, a pup from a different Wadden Sea region). Each trial consisted of 21 

identical vocalisations. Playbacks were broadcasted from a JBL Flip 2 Bluetooth speaker 

(frequency response: 100 Hz–20 kHz; JBL, Los Angeles, CA), hidden from the seal’s sight, 

and connected to an iPhone 5S (Apple, Cupertino, CA). The calls of the pup alone, the playback 

calls, and the vocal responses of the pup were recorded as .wav files (48 kHz, 24 bits) using a 

unidirectional microphone Sennheiser ME-66 (frequency response: 40 Hz–20 kHz; Sennheiser 

electronic GmbH & Co. KG, Wedemark, Germany), connected to a Zoom H6 digital recorder 

(Zoom Corporation, Tokyo, Japan). 

The remaining eight pups (A–H), housed in four pairs, were recorded during the first two 

weeks of July 2020 in two behavioural contexts: when their partner was silent and when their 

partner was vocalising (i.e., the 2-way interaction). Recording sessions lasted approximately 

3–4 hours and were conducted over a variable number of consecutive days per pair (Table S1). 

The variation in the number of recording sessions between pairs of pups was due to the length 

of time the pups were housed in the same room (subjected to veterinary decisions). Three 

tripods, each holding two semi-directional microphones (Sennheiser ME 64, frequency 

response: 40 Hz–20 kHz; Sennheiser electronic GmbH & Co. KG, Wedemark, Germany), were 

placed at three corners of the pool (Figure S1B). After calibration, the microphones were fixed 

at a height of 150 cm and connected to a multitrack recording device (Zoom F8; Zoom 

Corporation, Tokyo, Japan), and the recordings were collected as .wav files (48 kHz, 16 bits). 

A video camera (Canon LEGRIA HF G30 HD, 1080p resolution, 50 frames per second; Canon 

Inc., Tokyo, Japan), positioned next to one of the tripods, was used to record the video 

sequences in MP4 format. The video camera was also connected to the multitrack recording 

device to facilitate audio/video synchronisation.  

 

Method S3. Data pre-processing and acoustic metric extraction 

For the alone and 1-way interaction contexts, audio recordings were manually annotated 

in the acoustic software Praat 6.1.42 (http://www.praat.org/, [3]) and the annotations were 

imported into Python using the TextGridTools package [4]. For the silent partner and 2-way 
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interaction contexts, the audio data were synchronised with the video data, allowing the identity 

of the calling pup to be determined for each interaction. A total of 373 vocalisations were 

attributed to a specific pup in the 2-way interactions. Prior to analysis, the audio files were 

resampled (from 48 kHz to 8 kHz) and filtered (with a high-frequency bandpass filter at 0.1 

kHz) using SOX Sound eXchange (http://sox.sourceforge.net). This pre-processing procedure 

had no impact on the quality of the pups’ calls which were subsequently manually annotated, 

creating labels at the start and end of each call, using Audacity software (v.2.3.3, [5]). All video 

recordings were annotated using BORIS software (v.7.9.19, [6]) in order to attribute the calls 

to the correct individual. A custom-written R script allowed us to extract the call parameters, 

onsets, and offsets (Figure 1) for each vocalisation and, from these, we calculated the rhythmic 

metrics used in subsequent analyses. 

 

Method S4. Circular statistics 

The circular statistics analyses were performed using R statistical software (v.3.6.3, [7]) 

and RStudio (v.2021.09.1, [8]), using the R package circular [9]. Following [2], we considered 

the values of the response phases as circular data falling between 0° and 360°. From the 

descriptive statistics, we obtained the circular mean (μ), median, and standard deviation (v) for 

all four behavioural contexts (Table S3). In addition, we calculated the ‘mean resultant length’ 

(ρ), which is a measure of the spread around a circle of the response phase data and ranges 

from 0 (large spread) to 1 (small spread) [10,11]. Using circular plots, we visualised the 

distribution of the response phases and corresponding circular means for all behavioural 

contexts (Figure 2, Figure S3). Afterwards, we tested for uniformity against a specified 

direction for the unimodal peak with a V-test or, in other words, tested the null hypothesis of a 

unimodal departure against two specified, alternative μ values: 0° (to test for synchrony) and 

90° (to test for asynchrony). We specifically chose to test 90° following results from past work 

[2]. Following Landler et al. [12], we did not compute the V-test with the exact value of the 

circular mean value (thus avoiding type I error), and used the confidence intervals (CI) of μ to 

interpret the results: a narrow CI that includes the tested value 90° would indicate support for 

our alternative hypothesis of asynchrony. We computed the CI following the function 

(ConfIntLS) given by Pewsey et al. [11]. Since the Rayleigh and the V-test are theoretically 

based on the von Mises distribution (i.e., assuming a von Mises deviation from uniformity 

[12]), we tested if the response phases in all four behavioural contexts followed a von Mises 

distribution using one-sample Watson tests (Table S5). Like a normal distribution, a von Mises 

distribution is symmetrical and unimodal with a concentration around the mean falling away 
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to give a bell shape [12]. With deviations from uniformity (null hypothesis von Mises 

distribution rejected), we used Kuiper’s test, Watson’s test, and Rao’s spacing test, to confirm 

the p-value obtained from the Rayleigh test (Table S6) as suggested by Landler et al. [12].  

 

Method S5. Categorical rhythm analysis  

In the alone and silent partner contexts, IOIs were calculated for each bout as the 

difference in adjacent call onsets made by the vocalising pup (Figure 1A/B). For the 1-way 

interaction context, we calculated IOIs in two ways: 1) as the difference in the pup’s adjacent 

call onsets disregarding the playback stimuli, and 2) as the difference between all adjacent call 

onsets (playback or pup) within interactions (Figure 1C). We used the latter approach to 

calculate IOIs in the 2-way interaction context as well (Figure 1D). 

The null ratio distributions were generated by randomly sampling two IOIs from the 

empirically observed range for each pup/condition (Table S8) and calculating the IOI ratio. 

This process was repeated 100,000 times. From the simulated null ratio distribution, we created 

1,000 resampled (without replacement) distributions that had the same number of ratios as the 

empirical distribution. We then compared the 1,000 resampled distributions with the empirical 

distribution using one-sample Kolmogorov-Smirnov (KS) tests and recorded the final range of 

the D statistic (across all 1,000 comparisons) and the average p-value (Table S9). For pups with 

at least 10 ratios in multiple contexts, we also used two-sample KS tests to determine whether 

the pup-specific ratio distributions differed in different behavioural contexts.  

For the categorical rhythm analyses, the on-integer ratio ranges were centred around 

seven small integers: 1:4 (0.2), 1:3 (0.25), 1:2 (0.333), 1:1 (0.5), 2:1 (0.667), 3:1 (0.75), and 

4:1 (0.8). The corresponding off-integer ratio ranges, as well as the bounds for each range, are 

described in Table S7. This resulted in 28 “bins” (denoted by the white and dashed black lines 

in all ratio distribution plots), and we counted the number of ratios that fell into each bin for 

each pup/context. Counts were normalised by bin size (i.e., the size of each bin’s range on the 

x-axis), and on- and off-integer counts were then compared for each small integer ratio using 

paired Wilcoxon signed-rank tests. All analyses were conducted using R statistical software 

(v.3.6.1, [7]) and significance was generally set at p<0.05. The sole exception was for pairwise 

comparisons of pup I’s empirical ratio distribution across three contexts (alone, 1-way 

interaction disregarding playback, 1-way interaction when pup I responds), in which case the 

p-value was Bonferonni corrected to p < 0.017 (Table S10). 
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Method S6. Time series analysis: Granger causality 

The causality between two variables X and Y can be tested by measuring the ability to 

forecast the values of a time series using the values of a second time series [13]. Granger’s 

postulate on causality is based on two assumptions: effects happen after causes, and a cause 

gives information about future values of the effect [13]. Time series X ‘Granger-causes’ time 

series Y if predictions of Y values based on its own past values and on X past values are better 

than predictions of Y based only on its own past values. To assess whether the timing of a 

calling pup can be predicted by an external stimulus (either a second calling pup or a playback 

call), we computed the Granger Causality Test using the R package lmtest [14]. In all cases, 

the test was conducted using the onset timing of the calls and lag measures from one to five. 

We chose this range of lag values for two reasons. First, selecting high lag values implies a loss 

of observations [14]; therefore, the lower the number of observations, the smaller the lag value 

that should be used. Secondly, given that most of our samples consisted of series of five to ten 

paired calls onsets, using the same lag values in all the analyses ensures comparability between 

the different datasets we considered. The test was run either in one direction, in cases where 

pup I was calling after a playback stimulus, or bidirectionally, for each pair of pups calling 

together. Before running the causality test, we used the augmented Dickey Fuller test for unit 

roots [15] to verify whether the time series involved in the study were stationary and we 

performed a first-order differencing when the stationarity assumption was not met. Bar plots 

were generated using the R package ggpubr 0.4.0 [16]. 

 

Method S7. Time series analysis: ADAM  

The ADaptation and Anticipation Model (ADAM; Figure S2) was used to estimate seal 

pups’ use of reactive error correction and predictive processes in a 2-way interactive scenario 

between pups A and B and 1-way interaction of pup I with recordings in five playback sessions. 

The model parameters of interest were phase correction (‘alpha’) and period correction (‘beta’) 

from ADAM’s adaptation module, temporal prediction/tracking (‘delta’) from the anticipation 

module, and anticipatory error correction (‘gamma’) from the joint module. Parameters were 

also estimated for two sources of noise, one that represents variability in a ‘timekeeper’ in the 

central nervous system and the other representing ‘motor’ noise in the peripheral nervous 

system. We do not report results for the timekeeper and motor noise estimates (but nevertheless 

included them to account for associated variance in the data). 
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ADAM parameters were estimated for each pup using MATLAB scripts adapted from 

[17]. The estimation procedure used the bounded Generalised Least Squares method [18, 19], 

which harnesses the analytic efficiency of matrix algebra applied to behavioural time series 

data [20].  

A series of steps were taken to screen and select seal pup vocalisation data for use with 

ADAM. The objective of these steps was to identify pup calling bouts that were long enough 

to yield reliable parameter estimates. Previous work suggests that time series with less than 20 

event pairs are insufficient for reliable parameter estimation with the statistical techniques 

implemented in ADAM [20].  

For the session featuring multiple pups, bouts were grouped by pup pairs. Pups in one 

pair (pups A & B) produced a relatively large number of interactive bouts, while another pair 

(pups E & F) was intermediate, and two pairs (pups C/D and pups G/H) displayed less vocal 

interaction. ADAM parameter estimation was therefore restricted to pups A and B for the 2-

way interaction context sessions. All five playback sessions featuring pup I were analysed.  

Interactive bouts were shorter than 20 events for all data sets, and we, therefore, 

concatenated these short bouts to produce longer sequences suitable for parameter estimation. 

Time intervals between the final call of one bout and the first call of the next bout varied 

considerably. To reduce the effect of this variation, inter-bout intervals longer than 60 seconds 

were filtered out (lowering the critical value would result in sequences that are too short for 

reliable parameter estimation). A total of 15 inter-bout intervals were removed from the full 

data set. This resulted in longer, final sequences ranging from 21 to 91 events (see Table S12).  

The effects of sequence length and the concatenation procedure on the reliability of 

parameter estimates were examined by simulating synchronisation with short and long 

sequences with the same combinations of parameter settings, and then testing how well these 

settings could be recovered by the parameter estimation procedure applied to these different 

simulated sequences (see Discussion S1). The results of this test indicated that the reliability 

of ADAM parameter estimates for present purposes is not seriously undermined by differing 

sequence lengths or by concatenation. 

Once the data of interest were extracted, they were transformed into a format appropriate 

for entry into ADAM. This format consists of three time series of equal length. The modelling 

procedure treats one series as reference time intervals associated with a pacing sequence (‘inter-

stimulus intervals’), another series as time intervals associated with movements produced by 

an individual synchronising with the pacing sequence (‘inter-response intervals’), and a final 

series consisting of the ‘asynchronies’ between the onsets of corresponding events in the pacing 
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sequence and the response sequence (stimulus onset times are subtracted from response onset 

times, yielding positive asynchronies if responses occur after stimuli).  

Parameter estimates were obtained using the adaptation-only and full ‘joint’ versions of 

ADAM. Anticipatory error correction (gamma) estimates are restricted to the range 0–1, as 

parameter range restriction generally allows for more reliable estimates [20,21] and values 

outside this range for this parameter, in particular, would complicate the interpretation of 

results. These estimates reached the upper bound of 1 for both the original and permuted data, 

meaning that results cannot be interpreted conclusively due to the equivalence of estimates and 

are thus not shown in Figure 4 in the main article. The quality of the fits of the adaptation-only 

model and the joint model to the data was evaluated by comparing log-likelihood estimates 

(LLE) for the two models across datasets in a paired-samples t-test. Fits for the adaptation 

model (mean LLE = -271, SD = 141) and joint model (mean LLE = -255, SD = 135) did not 

differ significantly (t(6)= -0.611, p = 0.564). 

To obtain estimates for two agents within a pair, the estimation procedure is run twice: 

once with one agent serving as the focal individual and the other as the external reference, and 

then with these roles reversed. In the present case, this reciprocal estimation procedure was 

applied only to data from interacting pups. Similar parameter estimates for each pup within a 

pair indicate a symmetrical pattern of mutual influence, whereas different estimates for both 

pups indicate asymmetrical influence, which could indicate leader-follower roles or processes 

enhancing the temporal distinction of calls. Note that the relative magnitude of parameter 

estimates is more meaningful than the absolute magnitude for the present, concatenated data 

(because larger absolute values could indicate either a large change in rate or skipped events, 

and it is difficult to distinguish between these two possibilities).  

To test the reliability of the obtained ADAM parameter estimates, they were compared 

against corresponding values that were estimated for randomly permuted data. For this 

comparison, we ran 10,000 permutations in which the order of events within a sequence was 

randomly shuffled. Specifically, the rows of the data matrix (with each row containing a 

reference inter-stimulus interval, an inter-response interval, and an asynchrony) were randomly 

ordered 10,000 times for each sequence before parameter estimation procedures were applied 

for the two versions of ADAM. Each obtained parameter estimate for the real (unpermuted) 

data was then converted to a z score based on the mean and standard deviation of the 

corresponding 10,000 permuted data estimates, and the p-value for the z score was calculated. 

It was assumed that obtained parameter estimates for which 2-tailed p < 0.05 were unlikely to 
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have arisen by chance and therefore were interpretable. Given the exploratory nature of the 

modelling exercise, we also discuss estimates that are significant at the 1-tailed level. 

 

Discussion S1. Effects of concatenating bouts on ADAM parameter estimates 

Seal pups produced sequences of interactive calls that were deemed too short for each 

bout to be modelled individually (for guidelines, see [20]). We therefore concatenated these 

interactive bouts to produce longer sequences. The current simulations assess the potential 

effects of this concatenation process on the estimates of the ADAM parameters. The 

concatenation procedure might, for example, introduce a bias in the estimates due to 

discontinuities at the transition points between bouts (e.g., jumps in tempo or timing 

adjustments that are not consistent with the combination of the parameter settings of the 

preceding events). 

In the present tests, we simulated the task of one agent synchronising with an external 

pacing sequence (analogous to the playback session in 1-way interaction). This single agent 

case can be assumed to be equivalent to two interactive agents to the extent that the ADAM 

modelling procedure consists of assigning one agent as the referent (i.e., the external pacing 

sequence), and then repeating the process with the other agent as the referent, thus obtaining 

separate parameter estimates for each of the two agents. 

The simulations addressed two timing regimes, one in which tempo remains steady and 

the other in which tempo changes gradually. To match the wide range of time intervals present 

in the seal pup data, tempo varied within a range spanning intervals of 1 to 1000 ms.  

Two sets of simulations were performed. Set 1 compared parameter estimates for long 

sequences versus averaged estimates for short sequences (i.e., the segmented long sequences). 

Set 1a tested multiple long sequences for each tempo regimen, while set 1b used a single 

sequence for each regimen, as this was more convenient for comparison with set 2. Set 2 

simulates synchronisation with long sequences and short sequences (again, segments of the 

long sequences) and then concatenates the simulated short time series of IOIs and asynchronies 

prior to parameter estimation. Set 1 therefore addresses the effects of sequence length on 

parameter estimates, while set 2 addresses sequence length and potential discontinuities that 

occur due to the concatenation procedure. Effects of concatenation (independent of sequence 

length) can be gauged by comparing the two sets of simulations.  

 

Simulation set 1: Effects of sequence length 
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Set 1a used multiple sequences for each tempo regimen. Pacing sequences were 

generated by first specifying the number of IOIs (64 or 96) and then assigning each interval a 

value that, for steady tempo sequences, was the mean of the overall range (500.5 ms) or, for 

tempo-changing sequences, got progressively slower and faster in alternation in accordance 

with groups of prespecified length (8+8+8+8+8+8+8+8; 6+10+6+10+6+10+6+10; 

12+12+12+12+12+12+12+12; 10+14+10+14+10+14+10+14). This resulted in two sequences 

of 64 intervals and two sequences of 96 intervals for each tempo regime. These sequences were 

then segmented into shorter ‘child’ sequences based on pairs of groups from the original longer 

‘parent’ sequences (8+8; 8+8; 8+8; 8+8; 6+10; 6+10; 6+10… etc). Set 1b was like set 1a but 

used just a single, longer parent sequence with 128 IOIs with a repeating value of 500.5 ms for 

the steady tempo and mixed grouping for the sequence with tempo changes 

(8+8+8+8+8+8+8+8+6+6+10+10+6+6+10+10). 

Synchronisation with the long parent sequences and short child sequences in each of the 

two tempo regimens was then simulated for all possible combinations of ADAM parameter 

settings (within pre-specified ranges). The adaptation-only version of ADAM (with parameters 

‘alpha’ and ‘beta’) was used for steady tempo simulations, and the full ‘joint’ model (with 

parameters ‘beta’ ‘delta’ and ‘gamma’) was used for tempo-changing simulations. Parameter 

settings ranged from 0 to 1 in 0.1 steps. Timekeeper noise was set to 10 and motor noise was 

set to 0 in all simulations. One hundred runs were executed for each parameter combination for 

long parent and short child sequences in each tempo regimen. 

Following each simulation with a given combination of parameter settings, a procedure 

was executed to estimate the parameter values from the simulated time series of IOIs and 

asynchronies. The resulting parameter estimates were then averaged across all sequences and 

run for each combination of original parameter settings separately for the long parent and short 

child sequences.  

The relationship between long and short sequences was examined for two behavioural 

outcome measures: the mean asynchrony and the variability (standard deviation) of 

asynchronies, as well as the ADAM parameter estimates for the two tempo regimens. 

Scatterplots of the relationships for each measure and estimate are shown in Figure S7 

(simulation set 1a) and Figure S8 (set 1b). Canonical correlation analyses were performed to 

quantify the strength of the relationships across parameters using the MATLAB function 

canoncorr. A canonical correlation analysis models the associations between two 

multidimensional datasets, each containing several different variables (here, parameter 

estimates), by finding linear combinations of corresponding variables in each dataset that have 
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the highest correlation (and are statistically independent of other pairs of canonical variables 

in the dataset). These analyses revealed strong correlations between parameter estimates for 

long and short sequences for both simulation sets for the adaptation model (set 1a: Wilks' 

lambda = 1.99e-07; F(16,345.86) = 3354.70; p < 0.001; set 1b: Wilks' lambda = 2.34e-05; 

F(16,345.86) = 687.18; p < 0.001) and the joint model (set 1a: Wilks' lambda = 2.87e-05; F(16, 

44705.19) = 82,881.98; p < 0.001; set 1b: Wilks' lambda = 2.59e-04; F(16, 44705.19) = 

38,920.15; p < 0.001). Based on these results, we conclude that the reliability of ADAM 

parameter estimates is not undermined by differing sequence lengths. 

 

Simulation set 2: Effects of sequence length and concatenation 

Set 2 addresses the potential effects of sequence length and potential discontinuities due 

to concatenation by first simulating synchronisation with long sequence and short sequences 

and then concatenating the simulated short time series of IOIs and asynchronies prior to 

parameter estimation. Set 2a uses four sequences and set 2b uses one longer sequence. 

Scatterplots of the relationships for each dependent measure and parameter estimate are shown 

in Figure S9 (simulation set 2a) and Figure S10 (set 2b). 

A conspicuous difference from set 1 is the lowering of the estimated parameter values 

for short concatenated (part) sequences (compare scales on vertical axes). This suggests that 

discontinuities led to a reduction bias whereby the parameter values were underestimated. 

Apart from this consistent bias, which affects the absolute parameter values, robust 

relationships emerged between full and part estimates, suggesting that the relative parameter 

values are resistant to the effects of concatenation. A possible exception is seen in the case of 

joint model ‘beta’ parameter estimates, which appear to be almost fully dampened by 

concatenation. This will need to be kept in mind when interpreting the corresponding estimates 

in the main analyses. Notwithstanding this issue, the canonical correlation analysis revealed 

strong correlations between parameter estimates for long and short sequences for both 

simulation sets for the adaptation model (set 2a: Wilks' lambda = 6.56e-06; F(16,345.86) = 

1,053.46; p < 0.001; set 2b: Wilks' lambda = 1.08e-05; F(16,345.86) = 890.62; p < 0.001) and 

the joint model (set 2a: Wilks' lambda = 1.24e-04; F(16, 44705.19) = 50,307.49; p < 0.001; set 

2b: Wilks' lambda = 7.83e-04; F(16, 44705.19) = 26,246.55; p < 0.001). Based on the results 

of both sets of simulations, we conclude that the reliability of ADAM parameter estimates is 

not seriously undermined by differing sequence lengths or by concatenation. 
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Figure S1. Housing conditions and experimental setup for the 2-way interaction condition. (A) 

One of the two pups has a red mark (denoted by the red arrow) to facilitate identification during 

video analyses. (B) Two placement configurations of microphones and tripods in the intensive 

care units. Grey circles: tripods each holding 2 microphones (which are labelled as 1–6); black 

square: video camera; blue rectangle: pool with water; orange rectangle: plateau.  
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Figure S2. Schematic of the ADaptation and Anticipation Model (ADAM) of sensorimotor 

coordination applied to interpersonal coordination. The synchronisation of one’s own actions 

with another’s actions is facilitated by temporal adaptation mechanisms that influence action 

planning in the ‘self’ internal model, anticipation mechanisms that enable temporal prediction 

in the ‘other’ internal model, and an anticipatory error correction mechanism that reduces 

discrepancies between plans and predictions in a joint internal model before a motor command 

is issued.  
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Figure S3. Circular plots for response phases in all four behavioural contexts. (A) 1-way 

interaction. (B) Alone. (C) 2-way interaction. (D) Silent partner. Angles are measured in 

degrees starting from 0∘ and going clockwise to 360∘. The data points are shown around the 

circumference in black, while the red arrows indicate the circular mean (µ). The length of the 

arrow corresponds to the value of the mean resultant length (ρ). 
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Figure S4. IOI ratio density plots for pups (A) C, (B) E, and (C) H in the silent partner context. 

See Figure 3 for details. For all three pups, the empirical ratio distribution does not significantly 

differ from the simulated ratio distribution. Note that the scale of the y-axes differs.   
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Figure S5. Granger causality results for the 1-way interaction context. The bar plots indicate 

the percentage of times (y-axis) that the playback timing significantly influenced (p < 0.05) the 

timing of the pup call for the different lag values and the two conditions we considered 

(different bouts within a recording vs whole recording).   
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Figure S6. Granger causality results for the 2-way interaction context. The bar plots indicate 

the percentage of times (y-axis) that the timing of a calling pup was significantly influenced (p 

< 0.05) by another calling pup (i.e., the partner). We considered different pairs of pups 

bidirectionally and different lag values. We measured Granger Causality for pup pair A/B in 

two conditions: (A) different bouts within a recording and (B) whole recordings. For pup pairs 

C/D (C) and E/F (D) we measured Granger Causality only on whole recordings.   
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Figure S7. ADAM set 1a results. Scatter plots showing relationships between simulated long 

(full) and short (part) sensorimotor synchronisation time series for multiple sequences (set 1a) 

on performance measures (mean asynchrony and the standard deviation of asynchronies) and 

parameter estimates (alpha, beta, delta, and/or gamma) from the adaptation only model (left) 

and full ‘joint’ model (right) versions of ADAM.  
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Figure S8. ADAM set 1b results. Scatter plots showing relationships between simulated long 

(full) and short (part) sensorimotor synchronisation time series for a single sequence (set 1b) 

on performance measures (mean asynchrony and the standard deviation of asynchronies) and 

parameter estimates (alpha, beta, delta, and/or gamma) from the adaptation only model (left) 

and full ‘joint’ model (right) versions of ADAM.  
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Figure S9. ADAM set 2a results. Scatter plots showing relationships between simulated long 

(full) and concatenated short (part) sensorimotor synchronisation time series for multiple 

sequences (set 2a) on performance measures (mean asynchrony and the standard deviation of 

asynchronies) and parameter estimates (alpha, beta, delta, and/or gamma) from the adaptation 

only model (left) and full ‘joint’ model (right) versions of ADAM.  
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Figure S10. ADAM set 2b results. Scatter plots showing relationships between simulated long 

(full) and concatenated short (part) sensorimotor synchronisation time series for a single 

sequence (set 2b) on performance measures (mean asynchrony and the standard deviation of 

asynchronies) and parameter estimates (alpha, beta, delta, and/or gamma) from the adaptation 

only model (left) and full ‘joint’ model (right) versions of ADAM.  
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Table S1. Dataset overview for four behavioural contexts.  

Behavioural 

context 

Number 

of pups 

Pup ID(s) Acoustic 

stimuli 

Number 

of 

sessions 

Dataset reference 

Alone  1 I None 20 [1] 

Silent partner 8 A/B 

C/D 

E/F  

G/H 

None 3  

1  

2  

2 

Unpublished (this 

study) 

1-way 

interaction  

1 I Playback 

calls 

5 [2]  

2-way 

interaction  

8 A/B 

C/D 

E/F 

G/H 

Partner calls 3  

1  

2  

2  

Unpublished (this 

study) 
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Table S2. The contribution of each pup in each analysis is shown with an X.  

Pup Categorical 

rhythms analysis 

Granger 

causality 

ADAM Circular 

statistics 

TOTAL 

A X X X X 4 

B X X X X 4 

C X X  X 3 

D  X  X 2 

E X X  X 3 

F  X  X 2 

G    X 1 

H X   X 2 

I X X X X 4 

TOTAL 6 7 3 9  
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Table S3. Descriptive statistics of response phases for each behavioural context. n = total 

number of pups; N = number of recorded calls; μ = mean direction; CI = 95% confidence 

intervals for μ; v = circular standard deviation; ρ mean resultant length. 

 

Behavioural 

context 

Pup ID & 

total pup 

number (n)  

N Median μ CI  v ρ 

Alone  I (n = 1) 752 253.53∘ 252.01∘ 182.60∘ – 321.50∘ 2.51∘ 0.04 

Silent 

partner 

A-H  

(n = 8) 

790 258.93∘ 260.33∘ 233.40∘ – 287.70∘ 2.12∘ 0.11 

1-way 

interaction 

I (n = 1) 205 80.91∘ 80.98∘ 68.92∘ – 93.01∘ 1.38∘ 0.38 

2-way 

interaction 

A-H  

(n = 8) 

57 91.81∘ 92.91∘ 66.48∘ – 117.90∘ 1.34∘ 0.41 
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Table S4. Descriptive statistics of response phases and Rayleigh test results for each pup were 

recorded in the silent partner context. N = number of calls recorded; μ = mean direction; v = 

circular standard deviation; z = Rayleigh test statistic; p = p-value. Significant p-values are 

bolded. 

 

Pup ID N μ v z p 

A 65 119.35∘ 2.31∘ 0.07 0.727 

B 59 227.42∘ 1.49∘ 0.33 0.002 

C 474 280.46∘ 2.07∘ 0.12 0.002 

D 10 325.69∘ 1.41∘ 0.37 0.258 

E 42 215.85∘ 1.69∘ 0.24 0.0887 

F 12 256.90∘ 1.76∘ 0.21 0.5967 

G 2 195.52∘ 1.28∘ 0.44 0.7363 

H 126 252.57∘ 2.39∘ 0.06 0.6604 
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Table S5. von Mises distribution assumption test results based on a significance level of 

0.01. n = total pup number; κ = concentration parameter. 

 

Dataset Pup IDs Test score k Outcome 

Alone I  0.04 0.08 von Mises distributed 

Silent partner A - H  0.07 0.08 von Mises distributed 

1-way interaction I  0.21 0.11 NOT von Mises distributed 

2-way interaction A - H  0.07 0.11 von Mises distributed 
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Table S6. Additional tests for circular uniformity in the 1-way interaction context, which was 

not von Mises distributed. Rao’s spacing, Kuiper’s V, and Watson’s U2 test validated the 

Rayleigh test results. Significant p-values are bolded. 

 

Test Statistic p 

Rao's Spacing  163.0 < 0.01 

Watson's  1.81 < 0.01 

Kuiper's  4.46  < 0.01 
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Table S7. On- and off-integer ratio bin boundaries used in the categorical rhythm analysis. 

Fractions denote the left and right boundaries of each on- and off-ratio bin. For on-integer 

ratios, the ratio itself is also given in parentheses in the ‘Centre’ column.  

 

Left bound Centre Right bound 

1/5.75 1/5.5 (off) 1/5.25 

1/5.25 1/5 (on, 1:4) 1/4.75 

1/4.75 1/4.5 (off) 1/4.25 

1/4.25 1/4 (on, 1:3) 1/3.75 

1/3.75 1/3.5 (off) 1/3.25 

1/3.25 1/3 (on, 1:2) 1/2.75 

1/2.75 1/2.5 (off) 1/2.25 

1/2.25 1/2 (on, 1:1) 1.25/2.25 

1.25/2.25 1.5/2.5 (off) 1.75/2.75 

1.75/2.75 2/3 (on, 2:1) 2.25/3.25 

2.25/3.25 2.5/3.5 (off) 2.75/3.75 

2.75/3.75 3/4 (on, 3:1) 3.25/4.25 

3.25/4.25 3.5/4.5 (off) 3.75/4.75 

3.75/4.75 4/5 (on, 4:1) 4.25/5.25 

4.25/5.25 4.5/5.5 (off) 4.75/5.75 

 

  



 

 

28 

 

Table S8. Range of empirically observed IOIs for each tested pup/condition. Pups D (n=10), 

F (n=12), and G (n=2) had too few ratios to analyse.  

 

Pup 

ID 

Number 

of ratios 

Behavioural context Corresponding 

part of Figure 1 

Observed 

IOI range (s) 

I 752 Alone  A  0.341–4.121 

A 65 Silent partner B  0.711–4.119 

B 59 1.130–4.411 

C 474 0.927–3.429 

E 42 0.644–7.534 

H 126 0.763–5.189 

I 145 1-way interaction (disregarding 

playback) 

C (blue bars) 0.034–4.689 

I 205 1-way interaction (pup I responds) C (grey bars) 

A 16 2-way interaction (pup A responds) D (grey bars, 

purple shaded 

interactions) 

0.144–4.355 

B 22 2-way interaction (pup B responds) D (grey bars, 

yellow shaded 

interactions) 

0.150–2.245 
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Table S9. Categorical rhythm analysis one-sample Kolmogorov-Smirnov (KS) and paired Wilcoxon signed-rank (WSR) test results for each 

pup/behavioural context. The KS tests assessed whether empirical and simulated ratio distributions significantly differed (D = D statistic range; p 

= p-value), and the WSR tests assessed whether empirical ratio distributions exhibited significant peaks at seven tested ratios (Med = pseudo-

median; dashes = ratio sample sizes too small to perform test, i.e., 95% confidence interval could not be estimated). The 1:4 and 1:3 ratio WSR 

test results are omitted because ratio sample sizes were too small for all tested seals.  Only conditions with a significant KS test result underwent 

categorical rhythm analyses. Significant p-values are coded as: 0 = ***, 0.001 = **, and 0.01 = *. 

 

Pup 

ID 

Behavioural context KS test WSR test 

D  Mean p 1:2 1:1 2:1 3:1 4:1 

Med p Med p Med p Med p Med p 

I Alone  0.117–0.197 *** 3.25 0.611 -6.75 0.091 -2.75 0.215 -3.75 0.103 - - 

A Silent partner 0.077–0.385 0.304           

B 0.068–0.339 0.473           

C 0.025–0.114 0.495           

E 0.071–0.381 0.584           

H 0.048–0.230 0.535           

I 1-way interaction 

(disregarding playback) 

0.048–0.166 0.609           



 

 

30 

I 1-way interaction (pup I 

responds) 

0.376–0.590 *** - - 2.25 0.505 11.0 0.245 -21.3 0.068 5.25 0.712 

A 2-way interaction (A 

responds) 

0.125–0.688 0.440           

B 2-way interaction (B 

responds) 

0.273–0.773 * - - 5.73 0.414 -36.0 0.099 - - - - 
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Table S10. Categorical rhythm analysis KS test results for each pup, across conditions. All p-

values were significant (i.e., Bonferonni corrected to p ≤ 0.017 for pup I analyses; p ≤ 0.05 for 

pup A and B analyses) and are coded as: 0 = ***, 0.001 = **, and 0.01 = *. 

 

Pup ID Behavioural context D statistic p 

I Alone vs. 1-way interaction (disregarding playback) 0.192 *** 

Alone vs. 1-way interaction (pup I responds) 0.605 *** 

1-way interaction (disregarding playback) vs. 1-way 

interaction (pup I responds) 

0.464 *** 

A Silent partner vs. two-way interaction (pup A responds) 0.375 0.04 

B Silent partner vs. two-way interaction (pup B responds) 0.705 *** 
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Table S11. Granger causality test results for both behavioural contexts (1-way and 2-way). F- 

and p-values are provided. We reported bouts and sessions for which at least one of the tested 

lags yielded statistically significant results (in bold): four bouts featuring pup I; one bout and 

two sessions featuring pups A and B; one session featuring pups C and D. Dashes denote cases 

where the test was inconclusive due to small sample size [14]. 

 

   Lag-1 Lag-2 Lag-3 Lag-4 Lag-5 

Pup 

ID 

Behavioural 

context 
Bout F p F p F p F p F p 

I 

 

1-way 

interaction 

7 

(n=16) 
3.132 0.102 6.934 0.015 5.634 0.035 2.869 0.206 - - 

10 

(n=7) 
89.601 0.002 - - - - - - - - 

13 

(n=14) 
0.017 0.900 0.692 0.532 0.486 0.710 4818.6 0.011 - - 

30 

(n=10) 
8.326 0.028 4.907 0.113 - - - - - - 

A 

2-way 

interaction  

(B responds) 

3 

(n=11) 
10.601 0.014 3.626 0.126 0.883 0.635 - - - - 

Pup 

ID 

Behavioural 

context 
Session F p F p F p F p F p 

A 

2-way 

interaction  

(B responds) 
1 

(n=71) 

0.709 0.403 0.367 0.694 5.276 0.003 3.179 0.020 3.255 0.012 

B 

2-way 

interaction  

(A responds) 

0.111 0.740 0.028 0.972 4.786 0.005 2.562 0.047 2.584 0.036 

A 

2-way 

interaction  

(B responds) 

2 (n=8) 8.369 0.044 1.922 0.454 - - - - - - 

C 

2-way 

interaction  

(D responds) 
4 

(n=17) 

0.160 0.695 16.427 0.001 8.461 0.010 0.533 0.721 1.548 0.542 

D 

2-way 

interaction  

(C responds) 

0.164 0.692 16.413 0.001 8.444 0.010 0.531 0.723 1.870 0.503 
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Table S12. ADAM descriptive statistics for asynchronies, IOIs, and the number of events for sequences for all pairs of time series analysed. Data 

are included for the 2-way interaction context between pups A and B, and for pup I in five playback sessions (PB1-PB5). Median, Min, and Max 

asynchrony are computed with unsigned (absolute) asynchronies; SD of asynchronies is computed with signed asynchronies. 

 

 

Pup pair 

Asynchronies (s) Inter-onset intervals (s)  

N events 

Median SD Min Max Median SD Min Max 

A/B 0.454 3.243 0.000 21.003 7.689 14.610 1.215 50.054 47 

I/PB1 0.731 0.696 0.156 2.602 8.265 12.482 1.847 47.964 22 

I/PB2 0.624 1.712 0.005 10.226 6.064 10.235 1.105 55.608 60 

I/PB3 0.553 0.916 0.105 4.028 16.683 15.248 0.679 53.986 21 

I/PB4 0.617 1.166 0.041 8.399 4.510 7.995 0.504 34.246 91 

I/PB5 0.575 1.753 0.081 11.842 4.564 8.925 0.724 51.932 86 
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Table S13. Significance test results for parameter estimates from the Adaptation Model version 

of ADAM for seal pups in the one-way playback sessions (1-5) and two-way interaction 

behavioural context condition (with bi-directional focal and reference ‘ref’ roles). Parameter 

estimates were converted to z scores based on permuted data estimates (Figure 4), and then p-

values were computed for the z scores. 2-tailed p < 0.05 = **, 1-tailed p < 0.10 = *. 

 

Pup ID ADAM parameter Behavioural context Z score p 

292 Phase correction 1-way interaction: Playback 1 0.682 0.495 

1-way interaction: Playback 2 0.359 0.720 

1-way interaction: Playback 3 -0.271 0.786 

1-way interaction: Playback 4 -2.065 0.039* 

1-way interaction: Playback 5 0.840 0.401 

Period correction 1-way interaction: Playback 1 -1.121 0.262 

1-way interaction: Playback 2 -0.760 0.447 

1-way interaction: Playback 3 -0.504 0.614 

1-way interaction: Playback 4 -0.948 0.343 

1-way interaction: Playback 5 -1.529 0.126 

108 Phase correction 2-way interaction (108 focal, 112 ref) 
-0.493 0.622 

Period correction 2-way interaction (108 focal, 112 ref) 2.758 0.006** 

112 Phase correction 2-way interaction (112 focal, 108 ref) 1.687 0.092* 

Period correction 2-way interaction (112 focal, 108 ref) -2.545 0.011** 
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Table S14. Significance test results for parameter estimates from the Joint Model version of 

ADAM for seal pups in the playback sessions (1-5) and two-way interaction behavioural 

context condition (with bi-directional focal and reference ‘ref’ roles). Parameter estimates were 

converted to z scores based on permuted data estimates (Figure 4), and then p-values were 

computed for the z scores. 2-tailed p < 0.05 = **, 1-tailed p < 0.10 = *. 

  

Pup ID ADAM parameter Behavioural context Z score p 

292 Period correction 1-way interaction: Playback 1 -1.977 0.048** 

 1-way interaction: Playback 2 -0.618 0.537 

 1-way interaction: Playback 3 -1.582 0.114 

 1-way interaction: Playback 4 -1.019 0.308 

 1-way interaction: Playback 5 -0.916 0.360 

  Prediction-tracking 1-way interaction: Playback 1 -2.263 0.024** 

   1-way interaction: Playback 2 -2.158 0.031** 

   1-way interaction: Playback 3 0.897 0.370 

   1-way interaction: Playback 4 -1.909 0.056* 

   1-way interaction: Playback 5 -1.006 0.314 

108 Period correction 2-way interaction (108 focal, 112 ref) 5.399 < 0.001** 

  Prediction-tracking 2-way interaction (108 focal, 112 ref) 1.348 0.178 

112 Period correction 2-way interaction (112 focal, 108 ref) -2.622 0.009** 

  Prediction-tracking 2-way interaction (112 focal, 108 ref) -0.571 0.568 
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