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1.1 Weak form of the equilibrium statement and linearisation

The principle of virtual work written in a total Lagrangian framework is∫
0V

t+∆t
0 Sijδ

t+∆t
0 Eijd

0V = t+∆tR (1)

where Sij are Cartesian components of the second Piola-Kirchhoff stress tensor, Eij are Cartesian components
of the Green-Lagrange strain tensor, and R is the external virtual work; sub- and superscripts 0 and t+∆t
represent the initial reference state and predicted state at t +∆t, respectively. The state at t +∆t can be
written in terms of the state at t and an incremental term: t+∆t

0 Sij =
t
0Sij +0 Sij and t+∆t

0 Eij =
t
0Eij +0Eij .

The incremental strain tensor can be decomposed into linear and nonlinear parts as

0Eij = 0eij + 0ηij , (2)

where 0eij = (0ui,j + 0uj,i +
t
0uk,i 0uk,j + 0uk,i

t
0uk,j)/2 and ηij = 0uk,i 0uk,j/2 are linear and quadratic in

the incremental displacement components 0ui, respectively, with repeated indices k denoting summation and
subscripted commas denoting partial differentiation. Note that the variation δt+∆t

0 Eij = δ0Eij , such that
Eq. (1) can be written as∫

0V
0Sijδ0Eijd

0V +

∫
0V

t
0Sijδ0ηijd

0V = t+∆tR−
∫

0V

t
0Sijδ0eijd

0V. (3)

For both linear and nonlinear elastic constitutive behaviour the incremental stress is linearly proportional
to the strain increment via the instantaneous elasticity tensor 0Dijkl, i.e. 0Sij = 0Dijkl 0Ekl. By neglecting
terms that are more than quadratic in 0ui, Eq. (3) can be linearised as∫

0V
0Dijkl 0eklδ0eijd

0V +

∫
0V

t
0Sijδ0ηijd

0V = t+∆tR−
∫

0V

t
0Sijδ0eijd

0V. (4)

1.2 Constitutive modelling with thermal pre-strain

Both film and substrate are modelled using a compressible Neo-Hookean hyperelastic material model [1].
Note that a ‘nearly’ incompressible Neo-Hookean material (with incompressibility enforced using a penalty
constraint [1]) was also implemented, with minor quantitative and no qualitative changes to the bifurcation
manifolds. The Neo-Hookean material features parameters that are recognised from a familiar linear elastic
material model. The Helmholtz free energy of the compressible Neo-Hookean material is given by

Φ =
µ

2
(IC − 3)− µlnJ +

λ

2
(lnJ)

2
, (5)
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Figure 1: Decomposition of the deformation gradient tensor into a thermally-induced part (FΘ) and an elastic
part (FM). B0, BΘ and B represent the reference state, intermediate state and current state respectively.

where IC = trC and J2 = detC with C = F⊤F being the right Cauchy-Green deformation tensor derived
from the deformation gradient tensor F . Lamé’s first parameter is given by λ = Eν/[(1 + ν)(1 − 2ν)] and
the shear modulus is expressed as µ = E/[2(1 + ν)] with E and ν representing the Young’s modulus and
Poisson’s ratio, respectively. Note that when there is no deformation, i.e. C = I, the stored energy function
vanishes as expected.

The second Piola-Kirchhoff stress tensor S is obtained by differentiation of Eq. (5) with respect to C:

S = 2
∂Φ

∂C
= µ(I −C−1) + λ(lnJ)C−1. (6)

Further, the Lagrangian elasticity tensor is obtained by differentiation of Eq. (6) with respect to C:

D = 2
∂S

∂C
= λC−1 ⊗C−1 + 2(µ− λlnJ)(C−1 ⊙C−1), (7)

where (C−1 ⊗C−1)ABCD = C−1
ABC

−1
CD and (C−1 ⊙C−1)ABCD = (C−1

ACC
−1
BD +C−1

ADC
−1
BC)/2.

For plane strain problems, the right Cauchy-Green deformation tensor C can be obtained explicitly from
the in-plane displacement gradient

C = F⊤F =

[
1 + ∂u1

∂x1

∂u1

∂x2
∂u2

∂x1
1 + ∂u2

∂x2

]⊤ [
1 + ∂u1

∂x1

∂u1

∂x2
∂u2

∂x1
1 + ∂u2

∂x2

]
. (8)

The stress tensor S and the elasticity tensor D can be determined by substituting the in-plane right
Cauchy-Green tensor from Eq. (8) in to Eqs. (6) and (7), respectively. For plane strain problems, the
elasticity tensor D can be written as:

D =

D1111 D1122 D1112

D1122 D2222 D1222

D1112 D1222 D1212

 . (9)

Pre-strain in the substrate is modelled using a multiplicative decomposition of the deformation gradi-
ent tensor F . This decomposition represents a stress-free expansion/contraction of the substrate into an
intermediate state (e.g. through growth, swelling, or thermal expansion) followed by additional elastic and
stress-inducing deformation that ensures compatibility with the attached film, see 1.3. In this paper, a ther-
mal representation of the multiplicative decomposition is chosen for convenience. Hence, an intermediate
configuration BΘ is introduced by de-stressing the current material configuration B, see Figure 1. If we
set the elastic deformation gradient from BΘ to B to be FM and the thermal deformation gradient from
B0 to BΘ as FΘ, the total deformation gradient F = ∂X/∂X0 can be written as F = FMFΘ, where
FM = ∂X/∂XΘ and FΘ = ∂XΘ/∂X0.

The Green-Lagrange strain tensor can then be written as

E =
1

2
(F⊤F − I) =

1

2
(C − I) = EΘ + F⊤

ΘEMFΘ, (10)
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where EΘ = (F⊤
ΘFΘ − I)/2 and EM = (F⊤

MFM − I)/2 = (CM − I)/2. Assuming that the material
model (i.e. the material constants) is independent of temperature, then only FM induces a change in strain
energy. If the applied thermal strain is compatible (free expansion), no residual stresses are induced in the
mapping from BΘ to B. In this case, the elastic deformation tensor is the identity tensor FM = I and the
corresponding strain energy is zero.

By using the multiplicative decomposition of the deformation gradient tensor and acknowledging that
only EM induces a change in strain energy, the second Piola-Kirchhoff (2PK) stress can be written as

S =
∂Φ

∂E
=

∂Φ

∂EM
:
∂EM

∂E
= F−1

Θ

∂Φ

∂EM
F−⊤

Θ = F−1
Θ SMF−⊤

Θ , (11)

which corresponds to a pull-back operation of the 2PK stress from the intermediate configuration BΘ to the
original configuration B0. Similarly, the Lagrangian tangent modulus in the original configuration can be
written as:

D =
∂S

∂E
=

∂S

∂EM
:
∂EM

∂E
. (12)

Using the definition of the elasticity tensor as defined in the intermediate configuration, DM = ∂SM/∂EM,
the elasticity tensor in the original configuration can be written as:

Dijkl = F−1
Θ,ipF

−1
Θ,jqF

−1
Θ,krF

−1
Θ,lsDM,pqrs, (13)

which again corresponds to a pull-back operation of the tangent modulus from the intermediate configuration
to the original configuration.

1.3 Modelling pre-compression in the substrate using thermal loading

Figure 2(a) presents the procedure to introduce pre-strain in the substrate of the bilayer. Many techniques
have been developed to model pre-strain in the substrate using the commercial software Abaqus, such as
developing a user-defined subroutine UMAT [2, 3], and adopting a background mesh technique [4]. In this
paper, we introduce the pre-strain using thermal loading. The procedure is shown in Figure 2(b). The initial
length of the film and substrate are equal in the FE model. The thermal expansion factor of the film αf is
set to zero so that it remains strain-free during the thermal loading step (pre-strain process). The thermal
expansion factor of the substrate in the x-direction αs,x is nonzero but in the y-direction αs,y = 0. As shown
in Figure 2(b-2), if the substrate is free to expand or shrink, the thermal deformation gradient Fθ in the
substrate under temperature variation ∆T can be expressed as:

F θ =

[
1 + α∆T 0

0 1

]
(14)

However, if the horizontal displacements at both ends of the bilayer system are restrained when thermal
loading is applied, as shown in Figure 2(b-3), an effective pre-compression is introduced in the substrate and
the pre-compression factor can be expressed as:

λpre =
1

1 + αs∆T
, (15)

which is equivalent to the pre-strain procedure shown in Figure 2(a-2). The increase of temperature thus
leads to pre-compression in the substrate, and a decrease in temperature to pre-stretch. Due to the zero
thermal expansion factor in the film, the film remains stress-free throughout the thermal loading step.

1.4 Generalised path-following technique

The linearised equilibrium equation (4) is disretised using 16-noded isoparametric, displacement based, planar
finite elements and is implemented in an in-house FE code using Matlab [5]. Apart from standard arc-length
continuation methods, the in-house FE implementation features additional functionality for pinpointing
limit and branching points directly, and branch-switching at bifurcation points. In this section, a relatively
concise but self-contained outline of this generalised path-following technique is presented. A more detailed
exposition can be found in references [5, 6].

3



Figure 2: Schematic shows (a) the manufacturing procedure to pre-stretch the bilayer structure and (b)
modelling technique adopted to introduce pre-compression in the substrate using thermal loading. Note that
the schemes show the procedure to introduce pre-tension. The increase of temperature (∆T > 0) thus leads
to pre-compression in the substrate, and a decrease in temperature (∆T < 0) to pre-stretch.
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1.4.1 Path-following of non-critical points

Equilibrium is expressed as a balance between internal and external forces at the finite element nodes. Hence,
the force balance of n equations is written in terms of n discrete displacement degrees-of-freedom, u, and
one scalar loading parameter λ,

F (u, λ) = f(u)− p(λ) = 0. (16)

By defining an additional scalar arc-length constraint, N(u, λ) = n⊤
uu + nλλ − σ, the system of n

equations in (n+ 1) unknowns, x = (u, λ), can be solved:

FN(x) =

(
F (x)
N(x)

)
= 0, (17)

where nu and nλ take different forms depending on the nature of the arc-length constraint. Here, Crisfield’s
cylindrical arc-length constraint [7] is adopted due to its robust performance in the traversal of turning points
and snap-back points.

1.4.2 Pinpointing singular points

A direct method of pinpointing critical points (singular points of the tangent stiffness matrix) is implemented,
which uses a bordering equation to describe the singularity of the tangential stiffness matrix and is then
solved using Newton’s method. The method is computationally efficient, since the singularity condition
forces Newton’s method to converge to the singular point directly in a single iterative loading step.

This direct pinpointing procedure is implemented using the so-called nullvector method [8]. The nullvector
method is based on the fact that the tangential stiffness matrix, F ,u ≡ KT, has at least one zero eigenvalue
at a singular point, and the associated eigenvector ϕ is in the nullspace of KT. The augmented system is
formulated as

G(u, λ,ϕ) ≡

 F (u, λ)
KT(u, λ)ϕ
∥ϕ∥2 − 1

 = 0. (18)

The linearisation of Eq. (18) leads to the iteration matrix for the predictor-corrector solution process KT F ,λ 0
(KTϕ),u (KTϕ),λ KT

01×n 0 ϕ⊤

∥ϕ∥2


δu
δλ
δϕ

 = −

 F (u, λ)
KT(u, λ)ϕ
∥ϕ∥2 − 1

 . (19)

The directional derivatives of the tangential stiffness matrix KT and F can be approximated using the finite
difference method [9]. Equation (19) is solved using a partitioning procedure and the computational cost is
similar to that of a standard arc-length continuation step.

In the computer implementation, the 20 smallest magnitude eigenvalues of the tangential stiffness matrix
are monitored during continuation along an equilibrium path. When the number of negative eigenvalues
between two consecutive converged equilibria changes, a singular point must exist between these two con-
verged equilibria and the pinpointing procedure is triggered. The number of singular points depends on the
change in the number of negative eigenvalues, N∗. The set of eigenvectors Φ associated with the smallest N∗

eigenvalues at the last converged equilibrium state, (u1, λ1), is then extracted. Each ϕj ∈ Φ for j = 1 . . . N∗

is sequentially seeded to perturb (u1, λ1) as the starting point for the iterative pinpointing procedure. If
the solver does not converge, an additional equilibrium point between the previously determined equilibria
is determined and the process is repeated.

1.4.3 Branch-switching at bifurcations

When a bifurcation point (u∗, λ∗) is pinpointed, branch-switching to other equilibrium branches is initi-
ated by inserting the nullvector into the displacement field [10]. Therefore, the critical eigenvector at the
bifurcation point ϕ is used as a perturbation to the displacement field at the bifurcation point u∗:

up = u∗ + ξ
ϕ

∥ϕ∥2
, (20)
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such that the perturbed configuration up is now used as the predictor for the first step on a new path starting
from the bifurcation point. The magnitude of the scaling factor, ξ, is determined from

ξ = ±
∥u∗∥2

ρ
, (21)

where the sign of ξ controls the direction of path-following along the bifurcated path, and ρ is a problem-
specific constant in the range of 1–100. If ρ is too small, the algorithm may continue on the primary path; if
ρ is too large, the solution may not converge. Therefore, a restarting facility is embedded into the algorithm
such that the magnitude of ρ can be varied for certain scenarios.

1.4.4 Path-following in two parameters

In preceding subsections, path-following is restricted to a single loading parameter, λ. However, it is often
useful and computationally efficient to vary two parameters simultaneously. For instance, in this paper we
trace certain equilibria with respect to bilayer length directly rather than conducting expensive parametric
studies. To implement this, the equilibrium of internal and external forces, Eq. (16), is adapted to incorporate
any number of additional parameters, such that

F (u,Λ) = f(u,Λ1)− p(Λ2) = 0, (22)

where Λ = [Λ⊤
1 Λ

⊤
2 ]

⊤ = [λ1, λ2, · · ·λp]
⊤ is a vector that contains p controlling parameters; Λ1 corresponds

to parameters that influence the internal forces (i.e. material properties, geometric dimensions, and temper-
ature) and Λ2 relates to externally applied mechanical loads, such as forces, moments and tractions.

The expression in Eq. (22) describes n equilibrium equations in n displacement degrees of freedom.
Because the system is parameterized by p additional parameters, a p-dimensional solution manifold in Rn+p

exists. Specific solution subsets on this p-dimensional manifold can be determined by defining bordering
equations, g:

G(u,Λ) ≡
(
F (u,Λ)
g(u,Λ)

)
= 0. (23)

In total, p − 1 bordering equations are required to define a one-dimensional subset curve on the multi-
dimensional solution manifold. For instance, we enforce the criticality condition to solve for a line of critical
points, e.g. g = F ,uϕ = 0 with ϕ a critical eigenvector of the Jacobian F ,u. Thus, in the most general form,
a vector of q auxiliary variables, v, is added to the bordering equations g,

G(u,Λ,v) ≡
(

F (u,Λ)
g(u,Λ,v)

)
= 0. (24)

Following the example for critical point tracking referenced above, a critical subset curve in two parameters,
p = 2, is appropriately constrained by the associated bordering equations F ,uv = 0 (criticality) and ||v||2 = 1
(normalization constraint). When evaluating a one-dimensional curve, one additional equation is needed to
uniquely constrain the system to a solution point y = (u,Λ,v). Hence,

GN(y) ≡

 F (u,Λ)
g(u,Λ,v)
N(u,Λ)

 = 0, (25)

where N a scalar equation that plays the role of a multi-dimensional arc-length constraint. A specific solution
to Eq. (25) is determined by a consistent linearisation coupled with Newton’s method,

yj+1
k = yj

k −
(
GN

,y(y
j
k)
)−1

·GN(yj
k) = yj

k + δyj
k, (26)

where the superscript denotes the jth equilibrium iteration and the subscript denotes the kth load increment.
Detailed expressions for tracing loci of critical points (limit and branching points) can be found in Groh et
al. [5].
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Figure 3: Equilibrium path: normalised wrinkling amplitude versus the nominal compression strain of
bilayers with different pre-compression/pre-stretch levels. The definition of the wrinkling amplitude can be
found in Figure 1(c) of the paper. Blue solid lines and black triangles represent FE simulations and the
experimental results, respectively. The nominal modulus ratios between the film and substrate Ef/Es are
(a) 120, (b) 200, (c) 50, (d) 130, (e) 225 and (f) 35. The details of the experimental set-up and procedure
can be found in [2]. Grey shadows represent the range of strains at the secondary bifurcation points from
the experiments.

1.5 Verification of FE model

Figure 3 presents the comparison of the FE model against the experimental results on bilayers with different
pre-compression/pre-stretch levels in the substrate [2]. Note that the film/substrate stiffness ratio and the
pre-compression/pre-stretch levels in the substrate are the same as for the specimens in the experiments.
The Poisson’s ratio in the model is set as 0.43, which yields the best correlation for all cases. Note that
preceding studies [11, 12] also reported that adopting a Poisson’s ratio between 0.43 and 0.44 in the numerical
model leads to the best fit with the experimental results in the wrinkling of bilayers made of PDMS. Note
that the length of the FE model is set to twice that of the critical wrinkling wavelength, such that it
can accommodate the wrinkling mode progression from sinusoidal wrinkling to period doubling. Moreover,
following the modelling strategy in Auguste et al. [2], the substrate depth is modelled to be 50 times of the
film thickness. The results generally show good correlations with the experimental results.

Figure 4 presents the comparisons of the nominal strains at the secondary bifurcation point, where
period doubling occurs, for different pre-compression/pre-stretch levels. The FE model used in this paper
can generally correlates well with the experimental results.

2 Sensitivity study on the substrate depth of the bilayer

Since there is no consensus on the depth of the substrate required in FE models to approximate the infinite
substrate assumption for the post-wrinkling analysis of bilayers, a sensitivity study is conducted to under-
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Figure 4: The nominal strain at the secondary bifurcation point, where period doubling occurs, for different
substrate pre-compression/pre-stretch levels. The solid black line represents FE results using the incom-
pressible Neo-Hookean model in the commercial FE package Abaqus. Red stars represent the experimental
results, with error bars corresponding to minimal/maximum values for at least 3 samples. The blue triangles
represent the FE results using the FE formulation developed in this paper.

stand the effect of the substrate depth on the post-wrinkling behaviour of bilayers. The focus of this section
is to determine the substrate depth to satisfy the infinite substrate assumption. A thorough study on the
effect of substrate depth on the behaviour of the post-wrinkling behaviour of bilayers is left for future work.

Figure 5 presents the equilibrium path of a bilayer with length L0 = 6Lcrw and substrate depth ds/tf = 60,
i.e. ds = 12 mm. The material properties are presented in Table 1. The post-wrinkling behaviour of the
bilayer is qualitatively different from the case with ‘infinite’ substrate depth. Even though the critical
wrinkling mode is the same as for the infinite substrate and the transition from stable periodic sinusoidal
wrinkling to stable period doubling is also observed, the system exhibits qualitatively different behaviour
with increasing compression level. Specifically, the final stable wrinkling modes are period tripling and
period quadrupling. No further period doubling occurs beyond these basic building blocks. However, when
the substrate is infinite, the stable wrinkling mode beyond period doubling is period sextupling and further
period doubling occurs when the compression level increases. This difference occurs because the vertical
restraint from the bottom edge of the finite substrate stiffens the substrate and prevents the localisation
from bumping out to form a period sextupling mode with longer characteristic wavelength.

The depth of substrate to satisfy the infinite-depth assumption depends on the compression level or
strain dissipation in the substrate. Therefore, a depth sensitivity study with respect to the post-wrinkling
state of interest is required. Using the generalised path-following method [5], we can trace the equilibrium
state (including limit and bifurcation points) with respect to a second parameter without having to conduct
computationally expensive parametric analyses. This functionality makes it efficient to investigate the effects
of substrate depth on the wrinkling behaviour of the bilayer, i.e. to determine the threshold value of substrate
depth to satisfy the infinity assumption with respect to specific equilibria. We choose the bifurcation point
where the basic building blocks with period n-tupling (quintupling, sextupling, septuple, octupling) becomes
unstable and further period doubling occurs as the equilibria of interest. The film/substrate stiffness ratio as
well as the thickness of the film are the same as those in the main body of the paper. The pre-compression
factor in the substrate is λp = 0.7.

Figure 6 presents the depth sensitivity results of the bilayer with respect to varying lengths at the
bifurcation point where further period doubling occurs. With the increase of the substrate depth, the
nominal critical strain at the bifurcation point decreases, i.e. the substrate becomes more compliant due to
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Figure 5: Equilibrium path of a bilayer with length L0 = 6Lcrw and substrate depth ds = 60hf . To aid
visualisation, the wrinkling modes have been amplified by a factor of 5. The depth of the substrate does
not reflect the actual depth. Note that the full wrinkling stability landscape features significantly more
equilibrium paths, and only those paths that lead to the final stable wrinkling mode with a localisation at
either or both boundaries are presented here.

reduced restraint from the bottom edge. Beyond the threshold depth, the nominal critical strain remains
approximately constant. The Modified Southwell (MS) method [13] is adopted to determine the threshold
depth and the results are labelled as red crosses in Figure 6. Beyond the threshold, the substrate can be
treated as infinite for the equilibrium state investigated. Note that the threshold increases with the increase
in bilayer length or compression level, i.e. the nominal compression strain level at the bifurcation point
increases with increase in the bilayer length. This implies that the threshold depth to satisfy the infinite
depth assumption depends on the compression level.

The depth sensitivity study reveals that the bilayer depth to satisfy the infinity assumption depends
on the type of analysis and the state investigated. Generally, the more advanced the post-wrinkling stage
investigated, the deeper the substrate required in the FE model. A depth sensitivity study is therefore just
as necessary as mesh sensitivity studies in the analysis of wrinkling behaviour in bilayers.

In order to compare the strain energy of bilayers with different lengths, we adopt the same depth for all
bilayers with different lengths. We use a substrate depth of 30Lcrw, which is sufficiently deep to satisfy the
infinite substrate assumption.

3 Length effects on the critical wrinkling behaviour

Previous work has focused on the wrinkling formation of bilayers with a specific length and suitably applied
symmetry conditions at the left and right extremeties, where the total length of the system was taken to be
an integer multiple of the critical wrinkling wavelength (i.e. the wavelength at the transition from the flat
to the sinusoidally wrinkled state). Geometric and material imperfections introduced during manufacturing
can seed the formation of localisations as compression is increased, and as is shown in this paper, can even
divide bilayers into several independent segments of finite length. Therefore, a length sensitivity study of
the bilayer system is important to understand the mechanics of the intermediate and deep post-wrinkling
behaviour. To introduce the relevant terms used throughout the paper, we first briefly discuss the critical
wrinkling behaviour of bilayers with different lengths.

Closed-form solutions exist to predict the compressive strain at which an initially flat bilayer with pre-
strained substrate first wrinkles into a sinusoidal wave of a certain wavelength [4, 14]. These solutions are
based on the assumption of incompressible Neo-Hookean solids and do not provide accurate predictions for
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Figure 6: Substrate depth sensitivity results. A multi-parameter continuation of the bifurcation point where
the basic stable building blocks become unstable and further period doubling occurs. Red crosses represent
the threshold beyond which the nominal compressive strain at the bifurcation point remains constant. This
is determined based on the Modified Southwell (MS) method [13].

Table 1: Material and geometric properties of the stiff film/compliant substrate system.

Ef (MPa) Es (MPa) νf νs hf (mm) hs (mm)
1.2 0.01 0.43 0.43 0.2 160

the case of compressibility, particularly when the substrate is significantly pre-compressed. Moreover, these
closed-form solutions are independent of bilayer length (assumption of inifinite length) and therefore do not
describe the variation of critical wrinkling strain with respect to a finite bilayer length. This relationship
is, however, important to understand as the ordering and interaction of bifurcations on the fundamental
path of the flat and compressed bilayer defines the subsequent wrinkling evolution and therefore the deep
post-wrinkling behaviour.

Using the ability to trace critical points through parameter space, we path-follow the locus of the critical
wrinkling strain (bifurcation point) with respect to bilayer length. Table 1 presents the geometry and material
properties of the film/substrate bilayer system in this length sensitivity study. The parameters chosen are
identical to those in Brau et al. [11]. The chosen film/substrate thickness ratio satisfies the infinite substrate
assumption. The pre-compression level λpre in the substrate is set as 0.7, i.e. λpre = L0/L

0
0 = 0.7, where L0 is

the length of the film and the substrate after pre-compression; L0
0 is the initial length of the substrate before

pre-compression. For this level of pre-compression, seemingly ‘chaotic’ wrinkling patterns were observed
experimentally [2].

Figure 7 presents the relationship between the nominal critical wrinkling strain εcrw (transition from flat
to sinusoidally wrinkled) with respect to the bilayer length L0. The nominal critical strain is normalised by
the critical wrinkling strain of an infinitely long bilayer, εcr,min, and the bilayer length is normalised by the
critical wavelength of the infinitely long bilayer, Lcrw. For the bilayer with properties presented in Table 1,
the critical wrinkling wavelength is Lcrw = 5.34mm and the critical strain εcr,min = 0.0163.

The curves in Figure 7 are determined numerically using the ability of the generalised path-following
solver to trace bifurcation points through parameter space. Due to the symmetry boundary conditions
at both ends, the bilayer can only accommodate an integer number of half waves. The curves describing
the bifurcation point into an integer number of full waves and into a half-integer number of full waves are
intertwined, in a manner similar to the critical buckling curves (critical buckling stress versus aspect ratio)
for axially compressed flat plates [15]. With increasing bilayer length, the nominal critical wrinkling strain
approaches εcr,min. The integer and half-integer curves intersect denoting transitions in the critical wave
number (integer to half-integer and vice versa) and an interchange between the first and second bifurcation
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Figure 7: The relationship between the nominal critical wrinkling strain (transition from flat to sinusoidally
wrinkled states) and the bilayer length. The solid curves represent the envelope of critical strain; the dotted
lines represent the second-order critical wrinkling strain. The geometry and material properties of the bilayer
are presented in Table 1; the pre-compression factor in the substrate is λpre = 0.7. L0 and Lcrw are the
length of the film (length of the substrate after pre-compression) and the critical wrinkling wavelength of
an infinitely long bilayer, respectively. εcrw is the nominal critical wrinkling strain; εcr,min is the minimal
critical wrinkling strain, i.e. the critical strain of an infinitely long bilayer.

points on the fundamental path of the flat compressed bilayer. Therefore, the solid envelope curve in Figure 7
describes the onset of wrinkling into the first, critical mode for different bilayer lengths. For bilayer lengths
exactly an integer or half-integer multiple of Lcrw, the critical wrinkling strain is equal to that of the infinitely
long bilayer, while for intermediate values it is slightly greater. Furthermore, for bilayer lengths exactly an
integer or half-integer multiple of Lcrw, the critical wavelength is identical to that of the infinitely long bilayer
(i.e. equal to Lcrw), while for intermediate values the number of waves is defined by the nearest integer or
half-integer value of L0/Lcrw with the wavelength appropriately scaled (i.e. not equal to Lcrw). Thus,
for non-integer and non-half-integer values of L0/Lcrw, the mismatch between the energetically favourable
wavelength of the infinitely long bilayer and the wavelength permitted by the boundary conditions induces
a small increase in the nominal critical strain.

4 Length effects on the post-wrinkling behaviour

In this section, we explore the post-wrinkling behaviour of bilayers with integer and non-integer number of
full waves and unveil their bifurcation structures using the generalised path-following solver. In particular,
we focus on the evolution of the wrinkling pattern from the critical sinusoidal mode into a pattern with
pronounced downwards localisations at one or both ends of the bilayer with an upwards hump forming in-
between, as a result of sequential period-doubling and symmetry-breaking bifurcations. We find that there
is a minimum and a maximum possible distance between two adjacent localisations, i.e. a minimum and a
maximum possible length to the intermediate hump, and any bilayer system longer than the upper bound
ultimately forms an array of smaller ‘building blocks’ that fall within this allowable range.

4.1 Cases with integer number of wrinkling waves

4.1.1 L0 = 3Lcrw

Figure 8(a) presents the wrinkling landscape of the bilayer with length L0 = 3Lcrw plotted in terms of engi-
neering strain (∆/L0) versus the reaction force at the top node of the film normalised by the corresponding
reaction force at the onset of wrinkling. The blue segment in the bottom left-hand corner is a stable equilib-
rium path corresponding to an initially flat state. As compression is increased, this flat state loses stability
at a supercritical pitchfork bifurcation (point B1), and upon branch-switching, the bilayer transitions into
the critical wrinkling mode showing a sinusoidal wave with three full waves, see Figure 8(c). The sinusoidal

11



Figure 8: Equilibrium path and wrinkling modes of a bilayer with length L0 = 3Lcrw and pre-compression
strain level in the substrate of 0.7. (a) The normalised reaction force at the top node of the film Fa,FT/F

cr
a,FT

versus compressive engineering strain ∆/L0. F cr
a,FT is the force at the top node at the critical wrinkling

point B1. (b) Critical eigenmodes at bifurcation points, and (c) the wrinkling mode at critical points. To
aid visualisation, the wrinkling modes have been amplified by a factor of 5. The depth of the substrate
does not reflect the actual depth. Note that the full wrinkling stability landscape features significantly more
equilibrium paths, and only those paths that lead to the final stable wrinkling mode with a localisation at
either or both boundaries are presented here.

wrinkling mode is stable until the secondary bifurcation point B2. The critical eigenmode at B2 corresponds
to period doubling (see see Figure 8(b)), leading to wrinkling modes similar to the case of a bilayer with
no pre-strain in the substrate [16]. The period doubling mode then loses stability at bifurcation point B3,
which introduces an asymmetric eigenvector into the displacement field (see Figure 8(b)). Branching onto
the connected equilibrium path leads to the formation of a localisation at the right end of the bilayer. This
equilibrium path is initially unstable and then regains stablity at limit point LP1, whence the localisation at
the right end is fully formed and the bilayer forms an elongated hump corresponding to period sextupling, as
shown in Figure 8(c) at ∆/L0 = 0.1. The equilibrium path remains stable until a crease occurs at the right
end, i.e. the bilayer has bulged sufficiently to form contact with material on the right side of the applied
symmetry plane.

Note that the symmetry boundary condition at the left end inhibits symmetry breaking of the elongated
hump mode. Hence, in longer bilayers, e.g. a bilayer of twice the length L0 = 6Lcrw, the period sextupling
mode observed for L0 = 3Lcrw may regain stability at a different critical point.

4.1.2 L0 = 4Lcrw

The equilibrium path of the bilayer with L0 = 4Lcrw is presented in Figure 9. There are four full waves in
the critical eigenmode at the critical bifurcation point B1. Similar to the previous case with L0 = 3Lcrw, the
critical eigenmode at bifurcation point B2 corresponds to period doubling and branch-switching leads to a

12



Figure 9: Equilibrium path and wrinkling modes of a bilayer with length L0 = 4Lcrw and pre-compression
strain in the substrate of 0.7. The details are the same as described in Figure 8.

stable period doubling mode on the tertiary path. Hence, period doubling is a stable wrinkling mode in the
initial post-wrinkling compression range.

The period doubling mode then loses stability beyond bifurcation point B3, with the critical eigenmode
being symmetric about the mid-span but anti-symmetric about each quarter-span. Branch-switching at B3
leads to the formation of unstable period quadrupling. As shown in the inset of Figure 9(a), there is a
bifurcation point B4 with an anti-symmetric critical eigenmode immediately after branch-switching from
B3. The connected path at B4 leads to the formation of a localisation at one end of the bilayer. The system
then regains stability at limit point LP1, from which period octupling is a stable mode. The final stable
wrinkling mode before the formation of a crease (self-contact across a symmetry line) is an elongated hump
with a localisation at one end, see the wrinkling mode at ∆/L0 = 0.1 in Figure 9(c). Similar to the case
with L0 = 3Lcrw, the stability of this period octupling mode requires further analysis when the symmetry
boundary condition at the left end is relaxed, i.e. an analysis for a bilayer with L0 = 8Lcrw.

4.1.3 L0 = 5Lcrw

Figure 10 presents the bifurcation landscape of the bilayer with L0 = 5Lcrw. The critical wrinkling mode
accommodates five full waves. Before B3, the wrinkling mode progression essentially follows the same pattern
as in the preceding two cases, i.e. from sinusoidal wrinkling to period doubling modes. Period doubling then
loses stability beyond bifurcation point B3. The profile of the corresponding asymmetric eigenmode is similar
to a combination of the eigenmodes of the bilayers with L0 = 3Lcrw and L0 = 4Lcrw at B3, see Figures 8(b)
and 9(b), respectively. Branch-switching at B3 leads to an unstable equilibrium path and the formation
of a localisation at the right end of the bilayer. Stability is then restored and lost again at limit points
LP1 and LP2, respectively. In displacement-controlled end-compression, the bilayer jumps from B3 to an
equilibrium state between LP1 and LP2 directly, where the wrinkling pattern is irregular, see LP1 and LP2
in Figure 10(c).

Path-following further, the wrinkling mode restores left-right symmetry at the pitchfork bifurcation B4
by forming a period quintupling mode, as shown in Figure 10(c). Note that stable period quintupling was
previously observed numerically in bilayers with pre-compressed substrates [3]. Unlike the preceding two
cases (L0 = 3Lcrw and L0 = 4Lcrw), there exists an independent stable period quintupling mode over a
relatively large range of compressive strains, i.e. ∆/L0 = 0.0353 to ∆/L0 = 0.051 between B4 and B5.
Further period doubling is triggered at the bifurcation point B5 with the addition of an anti-symmetric
critical eigenmode leading to a mode with ten-fold periodicity (decupling). Further loading leads to the
formation of a crease at the right end of the domain at the nominal compressive strain of ∆/L0 = 0.1057.

This is the first example where the bilayer has formed a single outwards hump delimited by two inwards
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Figure 10: Equilibrium path and wrinkling modes of a bilayer with length L0 = 5Lcrw and pre-compression
strain in the substrate of 0.7. The details are the same as described in Figure 8.

localisations at either end (see period quintupling at B5 in Figure 10(c)) and a further doubled mode delim-
ited by one localisation at the right end only (see period decupling at ∆/L0 = 0.07 in Figure 10(c)). This
demonstrates the bilayers tendency to sequentially lengthen the wrinkling wavelength as the applied com-
pressive strain is increased. The initial sinusoidal mode first bifurcates into period doubling by preserving
symmetry and then bifurcates into period quintupling by breaking and restoring symmetry. The intermedi-
ate compressive strain range is therefore governed by a stable period quintupling mode (an outward hump)
bounded by two localisations. In the deep post-wrinkling range the wrinkling wavelength lengthens again
through additional doubling to form period decupling. For a system of length L0 = 10Lcrw this would corre-
spond to two adjacent period quintupling blocks merging into one larger period decupling block. The period
quintupling mode is therefore a ‘building block’ that governs the bilayer’s behaviour in the intermediate
strain range.

Also note that the transition from period doubling to period quintupling is accompanied by a sequence
of snap-back and snap-through instabilities as well as breaking of symmetry groups, leading to an irregular
pattern of the wrinkling mode. This irregularity may explain the seemingly ‘chaotic’ or irregular wrin-
kling modes observed in experiments. Hence, irregular patterns arise as a result of symmetry-breaking at
bifurcations, and specifically as transition paths between two symmetric regular patterns.

4.1.4 L0 = 6Lcrw

Figure 11 presents the equilibrium path, critical eigenmodes and wrinkling modes at selected equilibria along
the manifold for L0 = 6Lcrw. The bifurcation structure and the wrinkling progression on the primary and
secondary paths are essentially identical to those in the preceding three cases. On the tertiary path, the
profile of the critical eigenmodes of the first and second bifurcation points (labelled B3 and BH4) are similar
to the critical eigenmodes of the first bifurcation point on the tertiary path for L0 = 4Lcrw and L0 = 3crw,
respectively. Specifically, the critical eigenmode for B3 is anti-symmetric, while it is symmetric for BH4.
Branch-switching from both B3 and BH4 leads to period sextupling. Period sextupling is thus another
‘building block’ that governs the bilayer’s behaviour in the intermediate strain range.
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Figure 11: Equilibrium path and wrinkling modes of a bilayer with length L0 = 6Lcrw and pre-compression
strain in the substrate of 0.7. The details are the same as described in Figure 8.

The two bifurcated paths from B3 and BH4 connect at the bifurcation point B5/BH5. On the path
branching from B3, the wrinkling mode follows a transition that initially breaks and then restores symmetry,
leading to a stable irregular wrinkling pattern between limit points LP1 and LP2, as is observed in the case
for L0 = 5Lcrw. For the path branching from BH4, symmetry is always preserved during the transition
process and the equilibrium path is essentially identical to the bilayer with half the length, i.e. L0 = 3Lcrw.
The system with L0 = 6Lcrw is of course equivalent to two L0 = 3Lcrw systems end-to-end but with no
symmetry condition at the mid-span. Owing to the release of this symmetry condition at the mid-span, the
bilayer of length L0 = 6Lcrw regains stability at bifurcation point BH5 and not at LPH1 as was previously
observed for L0 = 3Lcrw in Figure 8 (denoted limit point LP1 for L0 = 3Lcrw).

With further loading into the advanced strain regime, the stable period sextupling from the intermediate
strain regime loses stability at bifurcation point B6. As was observed for the period quintupling-to-decupling
transition for L0 = 5Lcrw, an additional doubling occurs on the associated bifurcated path from B6 to form
period duodecupling (twelve-fold periodicity). A crease with self-contact across the symmetry line occurs at
the nominal compression strain of ∆/L0 = 0.0915.

4.1.5 L0 = 7Lcrw

The bifurcation landscape with the associated critical eigenmodes at critical points and selected wrinkling
modes is presented in Figure 12 for bilayer length L0 = 7Lcrw. The progression of the wrinkling mode
from sinusoidal wrinkling to period doubling is the same as for the preceding cases. For conciseness and
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Figure 12: Equilibrium path and wrinkling modes of a bilayer with length L0 = 7Lcrw and pre-compression
strain in the substrate of 0.7. The details are the same as described in Figure 8. The path bifurcating from
BH3 leads to period septupling, which is separated from the stable secondary path by unstable equilibrium
segment B2–BH3. Under monotonically increasing end-shortening, the bilayer follows the path B2–B3 in-
stead, which leads to period quintupling.

clarity, the fundamental path as well as the first bifurcation point are not presented in Figure 12. Unlike the
preceding cases for which a single and unique stable ‘building block’ existed in the intermediate strain range,
for the case of L0 = 7Lcrw there exist two regular patterns delimited by localisations: period quintupling
(see B4 in Figure 12(c)) and period septupling (see BH4 in Figure 12(c)). The co-existence of different
stable wrinkling modes was previously posited as an explanation for the ‘chaotic’ behaviour observed in
experiments of bilayers with pre-compressed substrates [2] in that different stable wrinkling modes with
similar total potential energy ‘compete’ and the occurrence of either pattern along a long bilayer is driven
by starting conditions.

Period quintupling is on the path bifurcating from point B3, which is the point where period doubling loses
stability. The critical eigenmode of the bifurcation point is very similar to a combination of the corresponding
critical eigenmodes for L0 = 3Lcrw and L0 = 4Lcrw, see B3 in Figure 8(b) and B3 in Figure 9(b). There
are sequential snap-backs and snap-throughs along the bifurcated path, corresponding to the formation of
localisations at the right end of the bilayer and at the left one-third span, see e.g. point LP3 in Figure 12(c).
The full periodicity of the wrinkling pattern, i.e. period quintupling, is restored at bifurcation point B4. Also
note that bifurcation point B4 connects to the secondary path that bifurcates from the second bifurcation
point on the fundamental path (flat bilayer) with 7.5 waves in the critical eigenmode.

The period septupling mode is unattainable via a standard loading history of monotonically increasing
end-compression because the regions of stable period septupling are separated by interstitial unstable equi-
libria. This may provide a possible reason why the period septupling mode is not reported or observed in
experiments. Specifically, branch-switching from bifurcation point BH4 does not connect back with any fun-
damental, secondary or tertiary paths as observed in the preceding two cases for L0 = 5Lcrw and L0 = 6Lcrw.
Instead, the period septupling equilibrium path connects to the bifurcation point where fourteen-fold peri-
odicity (quattuordecupling) is fully formed, i.e. a half hump with no additional wrinkling in the film, which
is the stable wrinkling mode in the advanced strain regime.
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Figure 13: Equilibrium path and wrinkling modes of a bilayer with length L0 = 8Lcrw and pre-compression
strain in the substrate of 0.7. The details are the same as described in Figure 8.

4.1.6 L0 = 8Lcrw

In the preceding case with L0 = 7Lcrw, it was demonstrated that the bilayer can accommodate different
stable wrinkling patterns, i.e. period quintupling and period septupling. The multiplicity of stable wrinkling
modes and complexity of the associated equilibrium manifold increases further as the bilayer lengthens.
Therefore, the time required to explore all possible equilibrium branches and identify all stable wrinkling
modes increases considerably. For this reason, we now focus only on the stable wrinkling modes featuring
a single hump and localisations at both ends using so-called ‘homotopy’ continuation. The known period
septupling mode for the case of L0 = 7Lcrw is chosen as a starting point and the length of the bilayer is then
smoothly increased to identify the equivalent octupling mode for a length of L0 = 8Lcrw (and nonupling
mode for L0 = 9Lcrw in the next section). Once the stable octupling mode with a single hump is obtained,
we have identified a starting point to trace the entire equilibrium path.

Figure 13 presents the equilibrium path of the bilayer with L0 = 8Lcrw. The stable ‘building block’ in the
intermediate strain range featuring a localisation at either end of the bilayer is a period octupling wrinkling
mode. The bifurcation structure of the bilayer is similar to the preceding cases, where stable period octupling
starts from a bifurcation point with anti-symmetric critical eigenmode (B6). Further period doubling then
occurs at bifurcation point B9 to form a wrinkling pattern with stable 16-fold periodicity (sexdecupling),
which then governs the advanced strain range.

Compared to the case with half the length, i.e. L0 = 4Lcrw, the bifurcation structure is more complex as
a result of releasing the symmetry boundary condition at the mid-span. Additional bifurcation points with
anti-symmetric critical eigenmodes arise, i.e. B4, B6, B7, and B8. In particular, the existence of B4 prevents
the bilayer from restoring stability at limit point LP1 as was previously observed for L0 = 4Lcrw (point
LP1 in Figure 9). Moreover, the pair of additional bifurcation points (B7 and B8) on the stable period
octupling path correspond to snap-back and snap-through instabilities accompanying symmetry breaking
and symmetry restoring with respect to the mid-span, with the number of full waves in the wrinkling mode
changing from 8 to 7 and the valley in the wrinkling mode at mid-span transitioning into a peak, see B7
and B8 in Figure 13(c). Moreover, similar to the case with L0 = 7Lcrw, the bilayer can also accommodate
period quintupling modes (one full and one half hump as shown for point B4 in Figure 12(c)), which initially
bifurcates from the secondary bifurcation point on the fundamental path featuring 7.5 sinusoidal waves in
the critical eigenmode. For brevity, this quintupling mode is not shown in Figure 13.

Similar to the septupling mode for L0 = 7Lcrw, the stable octupling mode for L0 = 8Lcrw is also separated
from the natural loading path by interstitial unstable equilibria. Moreover, there are no stable segments di-
rectly connected to B3 or B4. The bilayer will thus undergo a dynamic transition upon reaching B3 and will
either stabilise in the mode with least total potential or the closest local minimum potential. In this case, the
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Figure 14: Equilibrium path and wrinkling modes of a bilayer with length L0 = 9Lcrw and pre-compression
strain in the substrate of 0.7. The details are the same as described in Figure 8. The grey curve represents
the equilibrium path leading to period octupling, which has been presented in the paper. Note that the
bifurcation structure in the dashed rectangle is essentially the same as presented in Figure 11.

two possible modes are period octupling (global minimum) or period quintupling (local minimum). A dy-
namic analysis is required to determine the stabilised wrinkling pattern. Note also that branch-switching from
the bifurcation point B6 does not connect back to any bifurcation point on fundamental/secondary/tertiary
paths throughout a standard loading history of monotonically increasing end-compression.

4.1.7 L0 = 9Lcrw

Figure 14 presents the equilibrium path as well as the wrinkling modes and critical eigenmodes at selected
equilibria for the bilayer with L0 = 9Lcrw. Grey curves represent the path leading to period octupling,
which has been discussed in details in the paper. Coloured curves here represent the equilibrium path
branch-switching from B1, which leads to a stable wrinkling mode with 9 sinusoidal waves and then evolves
into stable period sextupling (one full and one half hump bounded by localisations) in the intermediate
strain level. Note that the bifurcation diagram of the equilibrium path is essentially identical to the case
with L0 = 6Lcrw.

4.1.8 Summary and n-tupling building blocks

From the numerical results discussed in this subsection that investigated the bifurcation structure beyond
the initial sinusoidal post-wrinkling regime, a set of stable period n-tupling modes was identified that are
characterised by the formation of inward localisations at either end of the wrinkling pattern. These n-
tupling modes are period quintupling, period sextupling, period septupling, and period octupling and were
denoted as stable ‘building blocks’ that govern the intermediate strain range. With further loading beyond
the intermediate post-wrinkling regime and into the advanced strain range, these regular wrinkling patterns
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undergo further period doubling that leads to the formation of a single outward hump until eventually a
crease forms through self-contact across imposed symmetry lines. The significance of these ‘building blocks’
is that bilayers longer than L0 = 9Lcrw form a combination of these stable n-tupling wrinkling modes in the
intermediate strain range.

4.2 Cases with non-integer waves

In the preceding subsection, we explored the bifurcation structure of bilayers with overall length equal to an
integer number of the critical wrinkling wavelength. In practice, the length of bilayers is rarely exactly an
integer multiple of the critical wavelength. Moreover, the symmetry boundary conditions adopted at both
ends of the bilayer also accommodate half waves. Therefore, it is important to understand the wrinkling
behaviour of bilayer lengths equal to a non-integer number of the critical wavelength.

Here, two bilayers with L0 = 4.455Lcrw and L0 = 4.720Lcrw are selected. These chosen lengths are
immediately to the left and right of the minimum at L0 = 4.5Lcrw on the buckling curve in Figure 7. The
critical eigenmodes of these two bilayers corresponding to the first bifurcation point on the fundamental path
are the same, featuring 4.5 sinusoidal waves, whereas the second eigenmodes corresponding to the second
bifurcation point on the fundamental path are different.

Figure 15 presents the equilibrium path of the bilayer with L0 = 4.455Lcrw. The first two bifurcation
points on the fundamental equilibrium path of the flat bilayer feature 4.5 and 4 sinusoidal waves, see B1
and BH2, respectively in Figure 15. Branch-switching from the first (critical) bifurcation point B1 leads
to a stable periodic wrinkling mode with 4.5 waves; however, further branch-switching along the ensuing
equilibrium path does not lead to stable periodic wrinkling patterns.

Branch-switching from the second bifurcation point on the fundamental path (BH2) initially leads to an
unstable equilibrium path with 4 periodic sinusoidal waves, but the periodic wrinkling mode stabilises at the
bifurcation point BH3. With further loading, period doubling occurs at the bifurcation point BH4, reflecting
the scenario observed for L0 = 4Lcrw. However, the sequential bifurcation structure is different from the
case with L0 = 4Lcrw. Specifically, the critical eigenmode at the bifurcation point BH5 is anti-symmetric.
Branch-switching from this bifurcation point leads to sequential snap-back and snap-through instabilities,
see LPH1 and LPH2 in Figure 15(c), with associated irregular wrinkling patterns. The symmetry of the
wrinkling mode is restored at the bifurcation point BH6, where stable period quadrupling is formed and
this is here identified as another stable ‘building block’ in the intermediate strain range. As observed for
the bilayers in the previous subsection, further loading into the advanced strain regime then causes further
period doubling, leading to a half hump with a localisation at one end. The entire bifurcation structure
is essentially identical to that in the case with L0 = 9Lcrw in Figure 14. However, due to the additional
symmetry boundary condition, some symmetry-breaking bifurcation points vanish.

Figure 16(a) presents the equilibrium path of the bilayer with L0 = 4.720Lcrw. In this case, the first
two bifurcations on the fundamental equilibrium path of the flat bilayer feature 4.5 and 5 waves in the
critical eigenmodes, see B1 and BH2 in Figure 16(b), respectively. Branch-switching from B1 leads to a
stable periodic sinusoidal wrinkling mode with 4.5 waves but further loading does not lead to a stable period
quadrupling or period quintupling mode. Similar to the preceding case with L0 = 4.455Lcrw, there are
isolated stable equilibria on the path bifurcating from the secondary bifurcation point BH2. However, unlike
the preceding case with L0 = 4.455Lcrw and the case with integer number of full waves, stable period doubling
is not observed on the tertiary path branch from the bifurcation point BH4. Instead, there is a bifurcation
point BH5 on the tertiary path immediately after branch-switching, with the critical eigenmode being anti-
symmetric. Branch-switching from bifurcation point BH5 leads to sequential snap-back and snap-through
instabilities and finally a restoration of a symmetric wrinkling mode at bifurcation point BH6. The symmetry
breaking and restoring process to form stable period quintupling is similar to the case with L0 = 5Lcrw in
Figure 10. Once stable period quintupling has formed across the intermediate strain range, further period
doubling into a period decupling mode (ten-fold periodicity) occurs in the advanced strain range, as was
observed in the case for L0 = 5Lcrw.

Note that the two paths for L0 = 4.455Lcrw and L0 = 4.72Lcrw that lead to period quadrupling and period
quintupling modes, respectively, both bifurcate from the secondary bifurcation point on the fundamental
path and are separated from the stable fundamental path by unstable equilibrium segments. Therefore,
these states are not expected to arise smoothly under monotonically increasing loading from the unloaded
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Figure 15: Equilibrium path and wrinkling modes of a bilayer with length L0 = 4.455Lcrw and pre-
compression strain in the substrate of 0.7. The details are the same as described in Figure 8. The path
leading to period quadrupling bifurcates from the second bifurcation point on the fundamental path BH2.
Under natural loading (monotonically increasing end-shortening), the bilayer bifurcates at B1 and follows
the secondary path B1–B2.

state. In the presence of certain imperfections, for instance, the inclusion of dents at both ends of the
bilayer, the bilayer may favour a bespoke response that leads to stable period quadrupling or quintupling
from the unloaded state. One of the most efficient techniques to tailor the response of nonlinear structures
by embedding certain geometric perturbation in the perfect geometry is called ‘modal nudging’ [17].
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Figure 16: Equilibrium path and wrinkling modes of a bilayer with length L0 = 4.72Lcrw and pre-compression
strain in the substrate of 0.7. The details are the same as described in Figure 8. The path leading to period
quintupling bifurcates from BH2. The equilibria between B1–BH2 are unstable. Hence, under natural loading
(monotonically increasing end-shortening), the bilayer bifurcates at B1 and follows the stable secondary path
with 4.5 sinusoidal wrinkling waves (see the dashed blue curves).
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