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S1 Sub-models in isolation
We explored either sub-model in isolation using the reference parameter constellation (Equation 8). Simulat-
ing data with the production sub-model alone required initialising all agents with knowledge of both behaviours,
resulting in a flat acquisition curve constant at 100% of the population, and generating an r-shaped production
curve that ended quickly (mean time-to-first-production [92% percentile interval]: 11.6[4.52,20.5] time-steps;
Figure S1A). We then simulated data where acquisition was not conditioned on production, which led to
a knowledge acquisition curve that completed much faster than the first production curve (mean time-to-
diffusion [PI] 5.70[4,8] time-steps; Figure S1B). The shape of the production curve was not connected to the
acquisition curve, leading to a growing distance between the two as the diffusion progressed (mean TTFP [PI]:
18.2[11,27] time-steps). In summary, neither model alone was an adequate model of diffusion. In the isolated
acquisition sub-model, production frequencies could not influence acquisition, and in the isolated production
sub-model, agents must be initialized with both behaviors in repertoire.

S2 Sensitivity analysis of acquisition parameters
Beyond manipulating the parameters related to production presented in the main text, we also varied four
parameters related to the acquisition sub-model: network architecture, the baseline learning rate, the rate of
social transmission (s) and the presence of asocial innovation, or innovation A.

In this section, we used the following parameter constellation as reference

network= random regular,λb = 0.05, s = 5, A = 0. (1)

.
The parameters from the production sub-model were held at their reference value (main text Equation

8). The results of manipulating acquisition parameters are summarized in Table S1.
In addition to random regular networks, we tested ring lattice networks, Erdős–Rényi networks and

Barabási–Albert scale free networks. Ring lattice networks were fixed degree (k = 6), and equivalent to a
Watts-Strogatz small world network where the probability of rewiring was 0. ER and BA networks were pa-
rameterized such that k̄ = 6. ER networks are a type of low-clustering random network that created under the
assumption that each link is independent and equally likely. It results in a graph that has a Poisson degree
distribution. For each simulation, we generated networks until the resulting network contained 0 orphaned
nodes. BA networks are random networks created under an assumption of preferential attachment of new
nodes. Their degree distribution follows a scale-free power law. Degree was standardized between networks,
as the probabilities generated by the sub-model of acquisition are degree dependent.

We found some variation in diffusion tempo and divergence between network types. While holding all
other parameters at the reference level, random regular networks obtained the fastest tempo, followed by
Erdős–Rényi networks, Barabási–Albert networks and ring lattice networks (see Table S1, network architec-
ture). We found that small-world networks obtained the slowest diffusion, and the smallest divergence score
between orders of acquisition and production (59.8% lower mean divergence score compared to reference).
However, the overall percentage of divergence agents was only reduced by 8%. These differences were likely
due to the fact that we constructed ring lattice networks without any probability of rewiring, thus neighbor-
hoods of individual agents were uniform lattice structures arranged within a ring. This topology led to the
highest local clustering within neighborhoods of agents (C = 0.6 when K = 6) and longer average path lengths
than other networks tested (L = 2.43). In ring lattice topology, the novel behaviour only had two directions
from which to spread from the seed agent around the ring structure of the network, creating a longer, more
uniform and predictable diffusion. In general, we expect this relationship between high local clustering and
longer path length to decrease divergence score, as it constrains the overall pattern of diffusion.

The social transmission rate s influenced the probability of acquisition in a given time-step per unit
connection to knowledgeable individuals, thus having consequences for diffusion tempo, as well as divergence
in orders of production and transmission. Increasing the value of s increased the tempo of diffusion as
behaviours took fewer time-steps to spread from knowledgeable to naïve agents (see Table S1, s). More
interestingly, it also increased amount of variation between order of acquisition and production, with 82% of
agents obtaining divergent orders and a divergence score nearly 50% higher under the largest s value tested,
when compared with the reference setting. This was because the higher s was, the more neighbours might
have acquired knowledge of the novel behaviour before the next first-production event. Generally, longer
periods between acquisition events lead to less divergence between orders of acquisition and production.
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The baseline learning rate λb influenced the probability of acquisition through either social transmission or
asocial innovation by multiplying s and A. At the reference level, asocial innovation was impossible (A = 0), so
λb only influenced social transmission, and thus was similar in effect to the direct manipulation of s, detailed
below. Interestingly, even at very low probabilities of social transmission (λb = 0.01), 56.92% of agents still
obtained divergent orders, although the divergence score was reduced (mean dor der = 1.12 [0.52,2.05]).

The presence of asocial innovation A = 1 halved the tempo of diffusion, as agents could acquire the
behaviour independent of their associates’ knowledge states. It also greatly increased the divergence (mean
dor der = 3.25 [4.43,11.57]), while slightly decreasing delay (mean dt i me = 5.23 [3.41,7.30]).
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Table S1: Summary of results for transmission parameters. Mean, SE, and and 92% PI values for time-to-diffusion (TTD),
time-to-first-production (TTFP), divergence of orders of acquisition and first production (dorder), and time delay between
acquisition and first production (dtime). The reference constellation of parameter values is given first, and rows are arranged by
model parameters.

TTD TTFP divergence dor der delay dt i me

value mean± SE PI mean± SE PI % divergent mean± SE PI mean± SE HDPI

reference constellation: network=random regular, s = 5, λb = 0.05, A = 0
55.52 [34,81.04] 61.98 [42.92,91.08] 73.50 2.02 [1.04,3.22] 5.34 [3.71,7.81]

Network architecture
random regular 55.52± 1.42 [34,81.04] 61.98± 1.46 [42.92,91.08] 73.50 2.02± 0.06 [1.04,3.22] 5.34± 0.13 [3.71,7.81]

ring lattice 75.19± 1.51 [51.88,104.32] 80.95± 1.55 [57,116] 65.46 1.22± 0.03 [0.69,1.83] 5.19± 0.11 [3.38,7.04]
erdos 58.63± 1.87 [34,90.12] 64.54± 1.85 [37.92,96.04] 71.71 1.85± 0.05 [1.04,2.7] 5.11± 0.12 [3.16,7.08]

barabasi 60.82± 1.56 [35,90.12] 66.47± 1.6 [40,98.12] 72.21 1.9± 0.05 [1.13,2.7] 5.14± 0.1 [3.74,7.18]
Social trans. rate (s)

1 152.7± 3.41 [101,215.12] 156.82± 3.38 [107.96,220.08] 47.50 0.76± 0.03 [0.26,1.3] 5.19± 0.1 [3.58,6.89]
5 55.52± 1.42 [34,81.04] 61.98± 1.46 [42.92,91.08] 73.50 2.02± 0.06 [1.04,3.22] 5.34± 0.13 [3.71,7.81]

10 38.78± 1.07 [25,60.2] 47.05± 1.15 [30.96,70.32] 80.38 2.67± 0.06 [1.74,3.83] 5.25± 0.11 [3.5,7.54]
15 31.34± 0.83 [21.96,46.08] 40.38± 0.84 [30.96,58.12] 82.25 3.11± 0.08 [2,4.63] 5.46± 0.1 [3.82,6.96]

Baseline learning rate (λb)
0.01 150.66± 4.1 [95,215.44] 155.37± 4.14 [98.96,222.24] 56.92 1.12± 0.05 [0.52,2.05] 5.28± 0.12 [3.33,7.17]
0.05 55.52± 1.42 [34,81.04] 61.98± 1.46 [42.92,91.08] 73.50 2.02± 0.06 [1.04,3.22] 5.34± 0.13 [3.71,7.81]
0.1 38.03± 0.99 [26.96,54.04] 46.1± 1 [34,63.04] 87.79 3.54± 0.1 [2.04,5.35] 5.17± 0.09 [3.62,7]

Asocial learning (A)
0 55.52± 1.42 [34,81.04] 61.98± 1.46 [42.92,91.08] 73.50 2.02± 0.06 [1.04,3.22] 5.34± 0.13 [3.71,7.81]
1 24.7± 0.4 [19,32.04] 32.53±0.49 [24.96,41] 85.38 3.25±0.08 [2,4.52] 5.23±0.11 [3.41,7.3]

4



Table S2: Contributions of parameters to false negatives and positives in NBDA inference. Summary of the number of
simulations (out of 2430) resulting in either false negative (AIC casoci al − AIC csoci al ≤ 0) when data was generated with social
transmission) or false positive support (AIC casoci al −AIC csoci al > 0) when data was generated with asocial innovation), according
to relative AICc scores.

value false negatives % sims w/ value % all FN false positives % sims w/ value % all FP

Social info. bias
weak 16 1.98 15.69 340 41.98 25.80

medium 23 2.84 22.55 407 50.25 30.88
strong 63 7.78 61.76 571 70.49 43.32

Recent exp. bias
weak 30 3.70 29.41 424 52.35 32.17

medium 32 3.95 31.37 454 56.05 34.45
strong 40 4.94 39.22 440 54.32 33.38

Risk-appetite
risk-tolerant 22 2.72 21.57 329 40.62 24.96
risk-neutral 20 2.47 19.61 402 49.63 30.50
risk-averse 60 7.41 58.82 587 72.47 44.54

Freq. dependent production bias
0.33 1 0.12 0.98 446 55.06 33.84

1 13 1.60 12.75 486 60.00 36.87
3 88 10.86 86.27 386 47.65 29.29

Memory window
10 28 3.46 27.45 429 52.96 32.55
20 30 3.70 29.41 438 54.07 33.23
30 44 5.43 43.14 451 55.68 34.22
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Table S3: Posterior distributions from EWA inference on simulated data. Posterior estimates for EWA parameters from
three types of simulations (column headers), with each row containing the true parameter value used to generate data, the
estimated mean and 92% HPDI, the mean and range of the Gelman-Rubin statistic (R̂) and number of effective samples from
the posterior across inference from all simulations containing the true value. In “homogeneous” simulations, all agents began
with knowledge of both behaviours, without active diffusion of the novel behaviour. Here, parameter estimates were reasonably
matched the true values used to simulate the data. In “heterogeneous social learning” simulations, agents began with knowledge
of the establish behaviour, while a novel behaviour diffused via social learning. Recent experience bias (ρ) and social information
bias (σ) were over-estimated. In “Heterogeneous asocial innovation” simulations, the behaviour diffused only through asocial
innovation. Again, here ρ and σ are over-estimated.

parameter true value estimate rhat effective sample size

Homogenous
0.25 0.3 [0.15,0.45] 1.001 [1,1.002] 6504 [5682,7277]

0.50 0.5 [0.3,0.67] 1 [1,1.001] 6315 [5299,7385]
rho

0.75 0.75 [0.61,0.89] 1.001 [1,1.002] 6147 [4952,7349]

0.25 0.27 [0.18,0.35] 1 [1,1.002] 6480 [5764,7098]

0.50 0.5 [0.4,0.61] 1 [1,1.002] 6250 [5163,7467]
sigma

0.75 0.75 [0.64,0.85] 1 [1,1.001] 6166 [5287,7068]

Heterogenous (social transmission)
0.25 0.6 [0.34,0.87] 1 [1,1.001] 8720 [6843,10517]

0.50 0.69 [0.45,0.93] 1 [1,1.001] 8729 [7048,10606]
rho

0.75 0.8 [0.6,0.97] 1 [1,1.001] 9154 [7511,10630]

0.25 0.65 [0.5,0.8] 1 [1,1.001] 9001 [7496,10916]

0.50 0.82 [0.71,0.92] 1 [1,1.001] 9465 [7985,10452]
sigma

0.75 0.93 [0.88,0.98] 1 [1,1.001] 9428 [8691,10125]

Heterogenous (asocial learning)
0.25 0.51 [0.29,0.77] 1 [1,1.001] 8239 [7048,9558]

0.50 0.67 [0.49,0.89] 1 [1,1.001] 7986 [6788,9814]
rho

0.75 0.81 [0.63,0.97] 1 [1,1.001] 8102 [5993,10276]

0.25 0.52 [0.4,0.66] 1 [1,1.001] 7751 [6940,8654]

0.50 0.71 [0.6,0.81] 1 [1,1.001] 8527 [7048,9934]
sigma

0.75 0.86 [0.8,0.92] 1 [1,1.001] 9179 [8047,10327]
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Table S4: Inferential EWA performance by condition. For each combination of true values of ρ and σ (row), inference was
run on 10 simulated data-sets. When agents had heterogeneous repertoires, the inferential ability of EWA was impaired, with
especially σ̂ consistently over-estimated. These results demonstrate that the use of EWA during diffusions should be avoided, as
σ is intended to represent social influence, and should not be taken to infer social transmission.

True values true ρ in HPDI true σ in HPDI

rho sigma # sims % # sims %

Homogeneous repertoires
0.25 0.25 10 100 10 100
0.25 0.50 9 90 9 90
0.25 0.75 10 100 9 90
0.50 0.25 10 100 9 90
0.50 0.50 10 100 10 100
0.50 0.75 9 90 9 90
0.75 0.25 10 100 10 100
0.75 0.50 9 90 10 100
0.75 0.75 10 100 10 100

Heterogeneous repertoires (social transmission)
0.25 0.25 0 0 0 0
0.25 0.50 0 0 0 0
0.25 0.75 2 20 0 0
0.50 0.25 0 0 0 0
0.50 0.50 4 40 0 0
0.50 0.75 9 90 0 0
0.75 0.25 5 50 0 0
0.75 0.50 10 100 0 0
0.75 0.75 10 100 0 0

Heterogeneous repertoires (asocial innovation)
0.25 0.25 0 0 0 0
0.25 0.50 2 20 0 0
0.25 0.75 2 20 0 0
0.50 0.25 2 20 0 0
0.50 0.50 4 40 0 0
0.50 0.75 8 80 1 10
0.75 0.25 1 10 0 0
0.75 0.50 6 60 0 0
0.75 0.75 10 100 0 0
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Figure S1: Simulation dynamics of isolated production and acquisition sub-models. Mean values (with 95% bootstrapped
CI) over time (scaled between 0 and 1) of the proportion of agents which know the novel behaviour (black), the proportion
of agents which have produced the novel behaviour at least once (grey), the proportion of behaviours that are the established
behaviour (light green), and the novel behaviour (dark green). Parameters set at reference level (N=100 sims for each panel).
A) Generating data with the sub-model of production only results in an r-shaped curve of first production, with approximately a
quarter of all agents choosing to produce the novel behavior in the first time-step, despite having no prior experience with it, and
no expected values. Thus, the production sub-model is not appropriate for approximating diffusion as it greatly overestimates
initial probabilities of production when most agents should not know the novel behavior, and produces no true acquisition curve.
B) Generating data with the sub-model of transmission disconnected from production results in a diffusion curve that is completely
disconnected from the first production curve, as agents can learn the novel behaviour without ever having seen it produced. The
first production curve is only constrained by the transmission curve very early in the simulation, and more resembles the r-shaped
curve in panel A.
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Figure S2: Exemplar networks. Four types of network architectures used for simulations. Random regular and ring lattice
networks contain nodes which each have 6 connections to neighbours. Erdős–Rényi and Barabási–Albert networks were param-
eterized such that the mean degree was 6 to make results comparable.
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Figure S3: Diffusion curves for parameter values of production sub-model. Diffusion curves for the novel behaviour with
distributions of time-to-diffusion in top margin, pooled within parameter value (colour, mean with 95% bootstrapped CI and traces
from individual simulations). For each parameter, data shown holding all other parameters at reference level (300 simulations)
and x-axis is square-root transformed for ease of reading.

10



Figure S4: Delay between acquisition and production against inter-acquisition intervals. For each parameter manipulated
in the main text, we plot the mean delay between acquisition and production events within an individual (red color), and the
mean interval of time between acquisition events. We observed a decreasing relationship between order of acquisition and delays
when social information bias was strong, and when agents were risk averse. Delays remained relatively constant over the order
of acquisition when agents were conformist, or had larger memories.
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Figure S5: Dynamics of internal states of agents following acquisition. For each parameter manipulated in the main text, we
plot the mean values of the expected value of novel behaviour b, its softmax transform, social observation values, and the final
probability of production choice over the first 40 time-steps after agents acquired b.
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Figure S6: Parameter estimates from NBDA analyses of simulated data Each point represents parameter estimates for one
simulation: rate of social transmission (x-axis) and baseline transmission rate values (y-axis). colour represents the support given
to social transmission (∆AIC c). Dashed lines represent true values of parameters used to generate data. A) Ideal data from a
social transmission results in correct inference, although simulation variance leads to the curved shape of parameter estimates.
If the diffusion follows the network closely, estimated strength of social transmission is inflated. B) Idealized asocial innovation
data also results in correct inference, with very low s estimates and little support for social transmission. C & D) Realistic data
is generated with transmission and production sub-models interacting. Parameters are mis-estimated in both cases, with many
more false negative and positives than the idealized cases.
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Figure S7: Posterior density estimates for parameters from EWA inference. Each panel shows the inferred posterior density
estimates for recent experience bias (ρ) and social information bias (σ) for one simulation (N=1500 draws from posterior per
parameter). The distribution with the dashed line represents the prior for both variables. True values used to simulate the
data are shown with vertical lines, coloured by parameter. Inference on data simulated with homogeneous repertoires results
in parameter estimates consistent with true values. Inference on data simulated with social transmission or asocial innovation
results in general over estimation of both parameters.
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