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Here, we provide the full details for the principle solution, first bifurcation, and the post-bifurcated
solution derivation for the film-substrate system. We also include the results for a exponentially graded
material.

1 Film-Substrate System

1.1 Problem Description
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Figure 1: The geometry considered for the film-substrate problem, with infinite length in the z; direction
and a finite thickness L in the zo direction. We consider a piece-wise constant shear modulus with value
py in the top (film) layer, and us in the bottom (substrate) layer. A is the prescribed average compressive
strain.

Consider a two-dimensional (2D) strip of layered material with infinite length and finite thickness, occu-
pying region {2 = (—o00,00) x (0, L), as shown in Figure 1. The film thickness is defined as t = L — L;. Here,
it is assumed the film is perfectly bonded to the substrate. We consider the case of displacement control,
where the loading parameter X\ prescribes the average stretch in the x; direction, Ay = 1 — A\. We will adopt
a 2D plane strain, compressible Neo-Hookean constitutive law with internal energy density function,

W (F; 25) = pu(z2) % (I —2—logI) + 1—% (JE— 1)2] = u(ws) W(F), (1.1.1)

where F' is the deformation gradient, and I; and Iy are the 2D invariants of the Cauchy-Green tensor
C = FTF. These are given by
I =trC, Iy=detC. (1.1.2)

The shear modulus p(z2) is taken as a piece-wise function, having constant values in the film and substrate,

o Ms, T2 € [OaLl)
w(xg) = {Mf, e (Ll (1.1.3)



For simplicity, we assume that both the film and substrate share the same Poisson ratio v.
The total strain energy for a given displacement field u(z) : © — R?, can be expressed as',

E(u; \) = / W (Vu; zg) dQ. (1.1.4)
Q
The first variation gives the equilibrium condition for a displacement field,
ow
Eu(u; A) du = / —Voudd =0 You € KA, (1.1.5)
' q OF

where K A is the space of kinematically admissible displacement variations, having average strain A in the
x1 direction, zero vertical displacement at xo = 0, and zero average horizontal displacement at x5 = 0.

1.2 Principal Solution

Here, we solve for the principal solution, 2, which satisfies equilibrium, passes though the undeformed
configuration, and remains stable for small A. The first Piola-Kirchoff stress can be expressed as,
oW 2vp

— S =P -FT)+ R (12 - \/72) FT. (1.2.1)
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0
We assume a deformation with constant deformation gradient F' = diag(\1, A2), expressed in the Cartesian
basis aligned with the z; and x5 axis. Here A\ is assumed known in terms of the loading A, i.e., Ay :=1— .
Using this, we have,

H|% = diag(H117H22), (122)
where,
-1 2v 2
My =p (A=A + 171/()\1/\2—)\2) ,
(1.2.3)
—1 2V o
My = p [)\2 -y + T V()\l)\z — )\1)] .
Enforcing zero normal traction on the free surface gives,
-1 2V o
Hao|zy=r =0 — Ao — A5+ - V(/\l/\2 — A1) =0. (1.2.4)
Thus, the unknown vertical stretch Ao is the solution to the quadratic,
2 2v 2,2
)\2 -1+ 1= V()\l)\z — )\1)\2) =0. (1.2.5)
We consider only the non-negative root of this quadratic. For 0 < v < 1 this is,
1 2 2w \? 2
Ay = A+ <> N +4 (/\% + 1> : (1.2.6)
2(12_u>\%_|_1> 1—v 1—v 1—v

This homogeneous solution satisfies the equilibrium equation in (1.1.5). It also passes through the undeformed
configuration at A = 0, as then \; = A\, = 1. Stability along this principal solution can be analyzed with the
help of the incremental moduli,

0w 2up 2uv
Liinl = —— 1506 _ (1 /I ) Folpo! (21 — I ) FIF-Y (127
jkl OF;;0Fw MOk 051 + [u -, \2 2 } ik Tt T 2 2 ) Fi Fj ( )

1For practical purposes, we implicitly replace the infinite domain with a periodic domain of periodic length as large as
desired.



Then, along the principal solution, the non-zero components of the incremental moduli may be expressed as,

u

L = m [/\f(ZV)\§+1—u)+1—y],
I
L9900 = N0 A3 (2vAT+1—v) +1—1],
2uv
L1os = Looyy = 1571/ (2A1A2 — 1), (1.2.8)

L(1J212 = L8121 =K,
L9991 = L9115 = ———— [20 (Ao — A2A3) +1— 1] = uﬁ
1221 2112 AMha(l—v) 172 bV

3w

0 _
where Ly, = 57 i |y’

1.3 First Bifurcated Solution

As the solid continues to be compressed, it will reach a point when the principle solution loses stability. This
transition occurs when the second variation of the energy becomes singular,

0 1 ?wW

for some bifurcated mode, u € KA. Considering a Cartesian basis aligned with the x; and x5 axis, this can
be written as,

L Vu|dQ=0, Véue KA, (1.3.1)
F(\)

0 1
/ /L(wg)L?jklukJéui,j dQ = 0, You € KA, (132)
Q
~ 5 1

where ngkl = % %()\), and we use the notation du; ; := %?. We consider u to be a piece-wise function
of the film and substrate as,

1,

u, T € [0, Ll)

%L(Il,xg) = (133)

—

4, zpel[li, L]

Then, splitting the integrals in (1.3.2) into domains for the film and substrate, and applying the Gauss
divergence theorem gives,

O:MS/ igj“%jk*leé“idS_Hs/ E?jkl%ik,ljéuidQ
- oM " =0 1y (1.3.4)
+Tup /{m Lijkzuk,lefsuids—uf/Q L9ty 1500, 92,
s f

where N is the reference outward unit normal vector. Localizing gives the linear second-order system of
PDE’s that holds for both the film and substrate domains,

LOpny =0,  i=1,2. (1.3.5)

Using the major symmetries and known zero components of the incremental moduli, this can be expanded
to,

7o 1 7o 1 7o 1 7o 1
Lii1qu111 + Liggout 22 + Liggguz 12 + Lijgou2,21 = 0, (1.3.6)

7o 1 7o 1 7o 1 7o 1
L3goouz 20 + Lojoruz 11 + Lajiaui 21 + Laggqur,i2 = 0.



The integrals over the external boundaries and the film-substrate interface give the natural boundary con-
ditions. The shear-free and vertical displacement conditions on the bottom edge are,

~ 1 1,
Ly tig(21,0) =0, tz(r1,0) = 0. (1.3.7)

The traction-free conditions on the free surface result in,

1
Lo tpa(1, L) =0,  i=1.2. (1.3.8)

The film-substrate interface conditions for traction and displacement continuity gives,

= 1, = 1y . 1, 1
£% tni(z1, L1) = %L?M (e, L1), i=1,2, U1, L1) = d (21, Ly). (1.3.9)
Finally, the zero average horizontal displacement condition at x5 = 0 gives
/11?1(x1,0)dx1 = 0. (1.3.10)

. !
We now look to separate the PDE’s in (1.3.5). We assume each of the vector components in u may be
separated as,

1 1
Uy = X1 (.’171)}/1(.1'2), Uy = X2<.’I;1>Y§($2). (1.3.11)
Substituting this into each of the PDE’s in (1.3.6) gives,
LY X7V1 + LYy, X1 Y + (Z(1)221 + E?122) X5Y5 =0, (13.12)
L3900 XYy + L9151 XJ Vo + (iguz + igzu) XY/ =0,

where the prime denotes a derivative with the function’s dependent variable. For non-zero X, Xo, Y7, Y3,

- X// - 1 ~ - X/ Y/
L?111711 + 11(1)212711 + (L(1)221 + L(1)122> Yiﬁ =0,
o Y g XY e s VXY (1319
11222272 + 1;212172 + (L2112 + L2211> X, =0.
Taking derivatives with 1 and zo of both equations yields,
" . DANNAZAN
(L?221 + L(1)122) =2 =2 =0,
Xi Y,
, , (1.3.14)
= = X1\ (Y
(Lglu + Lg211) X, Y, =0,
requiring
Xé £ YQ/ t
—= = cons or —= =cons
X1 Y '
and (1.3.15)
X{ £ Yl/ t
— = cons or —— = const.
Xo Y,

We find that only one of these four cases results in bounded, non-trivial solutions that satisfy the boundary
and zero average strain conditions. For scalar constants ¢; and co this is,

X5 X1
) 1.3.16
X1 “ Xa 2 ( )



These can be used to separate (1.3.13), resulting in the following set of ODE’s,

c - - -
X5 =aX, Xi= E%Xla LispY!" + (L(1)221 + L(1)122> ¥y +e3Y1 =0,

o ) ) ) (1.3.17)
Xi = 2 X, X) = =—Xo, Loy ¥s' + (Lgll2 + Lngl) e2Y{ + s =0,

2121

where c3 and ¢4 are additional constants that arise from the separation. This system can be un-coupled,
resulting in the following set of ODEs,
X! +w?X; =0,
X+ w?X, =0,

L3999 L991,Y7" + w? {(L(ﬁm + L?122) (Lgnz + ngu) — L3115 L005 — L(1)111L(2)222} Yy +w'LY);,L91,Y1 =0,

L9923 L5155 + w? {(L(fzm + L?122) (Lguz + L8211) — L9115 L%15 — L[1)111L(2)222] Yy +w! L1y, L5;15Y2 = 0,
(1.3.18)
where w is the only independent separation constant (in particular, it is found that —w? :=cjcy = c3/ Z(l)ln =
ca/L115)-
Solving the first two equations of (1.3.18), and using the additional conditions in the first column of
(1.3.17), we find two linearly independent solutions for the x; part of the solution. These may be written

as anti-symmetric (corresponding to ¢; = —w and ¢; = w) and symmetric (corresponding to ¢; = w and
¢o = —w) about z; = 0 solutions

A Xi(x1) =sin(wezy), Xo(x1) = cos(wzy),

and (1.3.19)

S: X1(z1) = cos(wzy), Xo(xp) = sin(way).

Next, solving the last two equations of (1.3.18), using the additional conditions in the last column of
(1.3.17), we find four linearly independent exponential solutions for the xo part of the solution. These may
be written as

Yi(z2) = e™1%2,  Yo(xg) = —B1e®'®2,
. Yi(xa) = e*?%2,  Ya(xg) = —Bae™?™?
A Yi(z2) = e*3%2,  Ya(wg) = —B3e*3™?
Yi(za) = %2, Ya(mg) = —Bye™®%;
and (1.3.20)
Yi(z2) = ™72, Ya(wz) = Bre®'™2,
S Yi(z2) = €™, Ya(x2) = Bae™™,
T Yi(ao) = e*372, Yo(xg) = Bze®s™2,
Yi(xo) = ™2, Ya(xq) = Bge™™2.

In the above, the a’s are roots of the characteristic equation for the last two ODEs in (1.3.18)
act +ba® +c¢=0,
a= E8222I~/(1)212a
b=w? [(E(l)221 + E(1)122) (Egnz + Zgzn) — L9115 L0515 — E(1)111[~13222} .
c= W4E?111I~13112a
and the B’s are found (from the last column of (1.3.17)) to be given by
C‘)2I~/?111 - i?mza%

w (L?221 + L(1)122) Q;

B; = (1.3.21)



Taking arbitrary linear combinations of the Y’s (by introducing the undetermined constants A; and
defining vy (z2) := Z?Zl Aie®®2 and vy (x2) := Z?:l A; B;e“i*2 we obtain the following anti-symmetric and
symmetric solutions to (1.3.8)

A 1;1(9:1,332) sin(wx1)vy (z2),

flug(xl,xg) cos(wxy)[—va(z2)]; (1.3.22)
S, ?1(5017932) os(wz1)v1(z2),

us (1, 2) = sin(wz)ve(x2).

Finally, we recall that these solutions are valid in both the film and substrate domains. So, to express
the complete piece-wise general form of the anti-symmetric and symmetric solutions we reintroduce the
superscripts s and f. Further, we multiply the entire asymmetric solution by minus one for convenience in
the derivation and write

1g

1 i1 = —sin(wzr)vi(z2), 2 €[0,Ly),
uy (71, 72) = 1y f
w1 = —sin(wx)v] (x2), x2 € [L1, L],
A:
Uy = cos(wz1)vs(xe), w2 €10,L1),
2(71, 72) 1f f
g = cos(wzr)vy(x2), =2 € [L1,L],
: (1.3.23)
1 = cos(wxy)vi(x2), 2 €[0,L1),
.Tl,JfQ 1y !
U1 = cos(wzr)v] (x2), w2 € [Lq,L],
S:
Ty = sin(wzq)vs(x2), w2 € [0,Ly),
xlaxQ 1f . f
o = sin(wzy)v) (x2), x2 € [L1, L],
where vf‘f( 9) 1= ZZ 1 As|f @i®2 and vy (xg) 1= Z?:l Af‘fBiea'i“, giving a total of eight undertermined

coeflicients: A and AZ. fori=1,...,4.
Inserting either (anti-symmetric or symmetric) form of our solution into the eight boundary conditions



(1.3.7)—(1.3.9) gives a linear, homogeneous set of equations for the eight unknowns A and Af

7

[i?mzaiAf + wj/(1)221AfBi} =0,
i—1

4
> AiB;=0
=1

M-

i=1

w

|:i322204iA{Bi - wig211Aﬂ eaiL = 0,

! (1.3.24)

[z?mzau‘lf + WE?221AfBZ} pils _ Pf

M-
NG

[igzmaiAzf + w‘i(l)221AifBi:| et =0,

i=1 Hs i=
4 u 4
Z [ngzzaiAfBi - WL3211AZ$:| et — =5 Z [L(2)222041A{Bi - WngllA{] et =0,
=1 Hs =
4 4
D Aserir =y Al =0
? 1 ’
i=1 i=1
4 4
> AiBie* it — 3" Al Biehr = 0.
i=1 i=1

The first two lines are the shear-free and vertical displacement conditions on the bottom edge from (1.3.7).
The third and fourth line are the zero traction conditions at the free surface from (1.3.8). The fifth and sixth
lines are the traction continuity conditions at the interface. Finally, the last two lines are the displacement
continuity at the interface from (1.3.9). This system can be expressed in matrix form,

MA =0, (1.3.25)

where A = [AS,.. .,Ai,A{, e ,A{]T is the vector of amplitudes, and M is the assembled matrix of co-
efficients from the boundary conditions. Then our first bifurcated solution occurs at the smallest \ that

satisfies,
det(M) = 0. (1.3.26)

Because the incremental moduli depend on A, the matrix M depends on A. Then, for a given w, we may
solve for the smallest A that satisfies (1.3.26). This gives the load for modes of that frequency to occur,
and we denote this as X(w) The smallest of these over all wavelengths gives the critical load, A., to trigger
instability for the first mode,

Ae = min A(w), w, = argmin A(w). (1.3.27)

w w

2 Asymptotic Mode

We look to solve for the unknown field % at the critical load Ac which has critical frequency w.. This can be
written as (c.f., (2.3.10) in the main article),

~ 1 1

/ (u(xg)ifjklak,l + u(mg)ijklmnuk,lum,n) dv; ; A2 =0, Vov € Nt (2.0.1)
Q



- 817 = 2 . : . 2
where M¢ = and LS, = 57 b . We assume a piece-wise solution for ,
)\C)

ijklmn OFj0Fki0Fmn }07(>\C) }07(
%, me [0, L1)
2 » 2 i
u(xl’xQ) _ (2.0.2)

4, xpe[Li,I]

Splitting the integral in (2.0.1) into the film and substrate domains and applying the Gauss divergence
theorem gives,
1,

T 25 = E 15
0 :us/ (ijmuk,l + ijkzmnuk,lum,n) n;ovds
0N

-2 - L1
c s c s s
- Hs/ (Lijkzuk,l + M jimn Uk, Um,n) Ov;df
Q. g

(2.0.3)
Tec 2y re Ly 1y
+ py Lijkl Ug, + Mijklmn klUmon | Tj0vids
a0
oo 2 ~ e lp 1y
) Liiki kg + Mpmn Ukg Umn | 00;dS2
2y J
and localizing gives the governing system of PDE’s,
Fe 2 Vis 11 .
Lijkluk,lj = - (Mimmnuk,lum,n> B fori=1,2, (2.0.4)

5]

which holds in both the film and substrate domains. It should be noted that this is the same PDE that
appears for the first bifurcation in (1.3.6), except now it is inhomogeneous, and we must restrict outselves
to solutions in N--. The boundary conditions on the bottom edge are,

-~ 2, ~ 1 1 2,
Lo Uk1(21,0) + Mispimn Wei(21,0) Um n(21,0) =0, ua(z1,0) =0. (2.0.5)

The conditions on the free surface are,

2 ~ .
Ly thrs(zr, L) + My et (w1, L) (21, L) =0, i =1,2. (2.0.6)

Finally, the film-substrate interface boundary and continuity conditions are,

1

-2 - 1 1
C s C
[Li2kl Ukt + Moggmm Wk 1 Um,n

.2 - 1 )
[szkl 7v{k,l + M imn Wk 1 Um,n , 1=1,2
(z1,L1) (207)

=
(z1,L1) Hs

25 2
u(xl, Ll) = 7,{(1’17111).

Using the known form of the initial asymmetric bifurcation mode A, 4 from (1.3.23), we may expand the
right hand side of (2.0.4). After grouping terms and simplifying, and with the help of a half-angle identity
for the case of i = 2, this gives,

~ 11 .
— (ijkzmnuk,lum,n) = —esin(2wezr) B (22),
} Lo N (2.0.8)
— (VS gt i ) = =& cO8(2ue1) Ba(@2) + B (w2),
J
where we have used the major symmetries of MZCJ kimn a0d its known zero components, which are found in a

manner similar to that used to obtain (1.2.8). The constant € is +1 for A, and —1 for S. The expressions



for Fq, Eo, and Eg are,

“rc “re vie 2
Ey(x2) = — M111111w3 (Ul)Q + 2-M111122W§ (v1) (UZ)/ — M7i5990we ((UZ)/)

+ M{j1210we ((Ul)/) + 2M{y 190107 (v1) (V2) + Mfyg191w3 (v2)
2

- - - - !
+ [Mf21112wc (v1) (V1) 4 Mfpy191w7 (v1) (V2) = Mip9015 (V1) (v2) — M{y9001we (v2) (Uz)/] )

/

Ey(2) :2M2C11112w3 (v1) (Ul)/ + 2M2Cl1121w§ (v1) (v2) — 2M2612221w3 (v2) (U2)I - M§12212wc (Ul)/ (1’2)/
1~ c 2 “re 1 - c 2
+ {2M222222 ((U2)/) — M, 95w (v1) (v2) + §M221111WE (v1)

1 2 1

/
“re “re 2 “re
- §M221212 ((Ul)/) - §M222121W3 (v2)” = M331991we (Ul)/ (1}2)] )

2

7 1 “re “re “re 2
Es(z2) 25 {M2‘22222 ((U2)/> — 2M 391 190wWe (V1) (U2)/ + M221111W3 (v1)

+ M391219 ((Ul)/)2 + M1 01 w5 (U2)2 + 2M55 99y we (v1)] (UQ)} .
(2.0.9)
We notice that the right hand side of the first equation in (2.0.4) is harmonic in z; with frequency 2w,
from (2.0.8). Similarly, the right hand side of the second equation in (2.0.4) has a harmonic part in z; with
frequency 2w, with an additional zo dependence of E, from (2.0.8). Inspired by the form of the homogeneous
solution in (1.3.23), we search for solutions that are harmonic in z; with frequency 2w,

9 w1 = sin(2w.x1)wi (ws), x9 €[0,Lq)
ur(z1,22) = q 5 ; )
U1 = sin(2wez1 )wi (z2), 29 € [Lq, Lo]
) S B (2.0.10)
9 g = cos(2w.x1)ws(z2) + w5 (x2), 9 €[0,L1)
us(z1,72) =, :
Ug = cos(2wcx1)w£(x2) + wg(ajg), x9 € [Ly, Lo]

By construction, this form of the solution is in N from the 2w, frequency of the z; dependence. This form
of the solution can be plugged into the PDE (2.0.4). After simplification, this gives,

—(2we)? LSy w1 + Ligppw] + (2w,) (ifzm + iimz) wy = —eF (22),
—(2we)2 L9 w2 + Lgoow} + (2we) (Egnz + Zgzn) w) = —eBy(x2), (2.0.11)
Zgzzzﬂv’g = Eéa

which must be satisfied in both the film and substrate domains. Our form of the solution in (2.0.10) can



also be plugged into the boundary conditions (2.0.5)—(2.0.7) giving,

E§212 (U’f)/ (0) - (ch)ﬂiﬂlw;(O) = —eF7(0),

w3(0) =0,

Eara (w]) (1) = (o) Efpaywd () = <3 (D),
(2we) Lso11w] (L) + gy (wg), (L) = —eF{(L),
[ Loz (i) (£1) = (2we) L wi (L)

_% [Nfzu (w{)/ (L1) — (2wc)l~/fzz1wg(L1): =—c (Ff(Ll) _ ZJCF{(LO) 7 (2.0.12)

S

—~

[(2000) Efonywi(£1) + Lo (w3) (L1)]

) s 0 (00) + L (wf) (00)] = ¢ (P32~ 2R (1)),

Hs s
wi(Ly) — w{ (L) =0,
ws(L1) — wf(L1) =0,
and
w3(0) =0,
iégzﬁﬁ’(L) = _E{@), ( )
Fec ~g Hf =c ~ Hf = s 2.0.13
L2222w2'(L1) - M—fL2222w£/(L1) = *ng(Ll) — BE5(Ly),
@5 (L) — @y (L1) =0,
where,

- / -
Ff‘f(@) :Mf21112wcviq|f (Ui‘f) + Mfzumw(?vf‘fvi‘f
- / / -
— Mi52912 (Ui‘f) (”5”) —Mf22221wcv§‘f (Uglf)
2
s|f 1]~ s\’ ~ s|f A\ s|f\2 (2.0.14)
F;‘ (z2) :i lM2022222 <(v; )> *2M2621122Wc”;‘ (’Ugl ) M2621111w3 (Ufl )

2
- 17\ y 2 (sI\? o 11\ slf
— M351912 ((Ui ) > — M359101 W5 (U;‘ ) — 2M 351991 wWe (Ui ) U; .

/
)

The first line in (2.0.12) comes from the traction conditions at the bottom edge in (2.0.5). The second line
in (2.0.12) and the first line in (2.0.13) come from the Dirichlet condition on the bottom edge in (2.0.5).
The third and fourth line in (2.0.12) and the second line in (2.0.13) come from the traction condition on
the free surface from (2.0.7). The fifth and sixth line in (2.0.12) and the third line in (2.0.13) from the
interface Neumann conditions from (2.0.7). Finally, the seventh and eighth line in (2.0.12) and the fourth
line in (2.0.13) come from the continuity conditions at the interface from (2.0.7). The second order system
of in-homogeneous ODE’s for wy (z3) and wy(z2) in (2.0.11) can be written as a first order system for the
film and substrate domain as,

(Ws‘f>l (z2) = Aw*M (25) + g°¥ (22), (2.0.15)

’ nT X s (g sif i y1 T
wia) = [uf () wi ()], &V@)=[o —He o-cEe]

c c
L1212 L2222

10



0 1 0 0

(2w )2@?111 0 0 (2w )if12~2+f:§112
A = © T212 ¢ 1212
0 0
Ly0p LS 2 LS
0 —(2 112272112 2 Z2121 0
( wc) L3522 ( UJC) L3a22

These systems can then be diagonalized. If A has eigenvalues r; with corresponding eigenvectors ;, matrix
® can be defined as,

D=0 p2 @3 . (2.0.16)

Then, by defining h*!/ (2) as,
W'l (25) = @7 1g°V (), (2.0.17)
the solution of (2.0.15) can be found by considering both a homogeneous part and a particular part. The

particular solution can be obtained by using an integrating factor. The homogeneous solution is a linear
combination of exponentials, with coefficients determined by the boundary conditions. These are given by

wi (22) = wi (w2) + wi)f (22),

. . - (2.0.18)
wlp (22) Z(I)“ / 7”7hi‘f(7')d7', wllhf (22) Z‘bu I/ ez,
and s o o
wy? (22) = wyy (x2) + wyy (v2),
T2 (2.0.19)
w2p 332 Z(I)?) emrz/ e—m'rhj\f(7_)d7_7 w§|hf x2 2@31 S|f eliT2
The “p” and the “h” denote the particular and homogenous solutions, respectfully, and the C’f \Vog are

1ntegrat10n constants that must be solved for using boundary conditions. Plugging (2.0.18)—(2.0.19) into the
boundary conditions of (2.0.12) gives the following linear equations for C’s,

4
> [@riliarars - @ai(2we) Lian | CF = —eFF(0),

i=1
4
Z P53,C7 =0,
i=1

[‘Dliii?l?ri - <I>3i(2wc)if221] eTiLCif =@,

-

=1

el

[‘Pu(ch)f/gQH + ‘I)Bz'?“if/gzzz] e”LCif = Qq,
1

M-
M=

Il
-

|:q>1i-Z/€l:2127'i - ¢3i(2wc)f1(1:221:| eritios _ B

P [‘I)uf/ffmgn - ¢'3%'(2"‘16)E§221} eriLICif =Qs,
1 s

.
Il

7

NE
NE

[‘@li(ch)igzu + ®3iril~/§222:| ety + s

1 H i

[®1i(2w6)ﬂ§211 + ‘%ih‘igzzz] e”Llc’if = Qu,
1

.
Il

4 4
Do ue M Cr =Y e O =wl (L) — wiy (1),

i=1
4 4
Z (I)BieriLlcis - Z (I)Sielecif = wgp(Ll) - wSP(Ll)v
1=1

i=1

(2.0.20)
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where,
~ / ~
Qi = eF{ (L) = Lz (wl,) (L2) + (2w0) Lo, (1),

~ ~ /
Q2 =— Esz(L2) - (2wC)L;211wlfp(L2) — L5222 (w£p) (L),

Qs =& (FE(0) = LRI (0)) - L | (w) (00) = “Lwfy(00)]

(2.0.21)
+ (2wc)l~/i221 [1})2P(L1) - Mifﬁ)2P(L1):| )

s

Qi =& (FE(0) — BLR (L)) — Liaas (05 (00) — Bty (2]

£ Kl

s

b Qw0 [wfp@n - Z—fw{p@l)} .

This gives an inhomogenous system of eight linear equations for the eight C’s, and can be solved numer-
ically, giving the solutions of wy (z2) and wo(z2). As for we(x2), the solution is trivially found to be,

. 1 *z
w3 (z2) = —=—— E5(T)dr,
L5295 Jo
(2.0.22)
.y L e g
wy (22) = —= B (t)dr + w3(L1).
L5905 J1s

. . . 2
This gives the entire solution for u.

3 Exponential Graded Material

T -—

Figure 2: The geometry we will consider for the exponentially graded material, with infinite length in the
21 direction and a finite thickness L in the x5 direction. X is the prescribed average compression.

We consider the compression of a similar 2D strip of material, only now the modulus varies exponentially
with depth, as shown in Figure 2. Again, we adopt a plane strain, compressible Neo-Hookean constitutive
law,

WE) = plaa) |5 (1~ 2 =Yg ) + 2 (V= 1) | = plan) W () (304)

The parameter x controls the exponential growth through,
p(za) = poe? (3.0.2)

The same treatment that we applied to the film-substrate problem may be used here. First, the principle
solution is derived, and is found to be identical to that of the film-substrate problem. Next, we analyze
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the first bifurcation by solving (1.3.2) for the instability mode 4 and the corresponding critical compression.
As expected, & takes the form of a surface wave. An identical power series expansion for the bifurcation

amplitude and loading parameter is considered, resulting in the same equation for the asymptotic mode @
as (2.0.1). We then solve the resulting inhomogeneous PDE in a similar manner. While there are slight
differences in the derivations for the exponentially graded case, we consider these minor as they follow
trivially from the details outlined for the film-substrate problem. Thus, for brevity, we choose to not detail
them here.

To analyze the stability of the surface wave bifurcation, a MATLAB® script was developed to compute the
asymptotic expansion parameters. Figure 3 shows how these expansion parameters vary with the exponential
growth parameter k. We see that for k > 2, the system is stable in displacement control. For x > 7.5, the
system is stable in load control. Thus, for k£ < 2 the system behaves similar to a homogeneous material with
unstable surface waves. However, for k > 7.5 these surface waves are stabilized in both the displacement
and load control settings, and the system behaves similar to the stiff film-substrate. In limited cases, it
was found that the stability in load control was dependent on the Poisson ratio. A further study would be
required to fully characterize this system.

8 x x — —— 800

4+ . 1400

4| 1-400

8L x x x —1-800
2 4 6 8 10

Figure 3: Plot of the asymptotic parameters for varying exponential growth parameter for v = 0.60. We
also illustrate the behavior of the bifurcation diagram for the regions of parameters, that being the A vs A
plot along equilibrium paths.
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