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1. Spatial proximity for physical contact. We followed 7 pairs of ants that made physical 
contact, and measured the minimum Euclidean distance between each pair during contact 
(d1 = 37 pix; d2 = 44 pix; d3 = 39 pix; d4 = 37 pix; d5 = 43 pix; d6 = 44 pix; d7 = 45 pix), (Fig. 

S1). The maximum of those distances was used as our spatial proximity criterion for 
physical contacts (dcontact = 45 pix). 

 

Figure S1: Snapshots for 7 samples of physical contact in spatial proximity estimation. 

2. Training/Testing data. To create the training and testing datasets, we identified 16 
track segments from different ants, which varied in length from 100-900 frames, with each 
containing a consistent movement pattern that was visually assessed to fall into only one of 
the three alarm states throughout the segment: Alarmed, Unalarmedalert or Unalarmedcalm 
(Table S1). To cross-validate the alarm states of ants in 16 track segments an experienced 

rater chose, ants’ alarm states were evaluated by two new raters initially. The discrepant 
evaluations of alarm states were chosen for two new raters, and the procedures were 
repeated until consistent evaluations of two raters were obtained.  Specifically, three 
paired independent evaluations of alarm states were made by six raters in total. 

 

 

 



Table S1: Details of the 16 track segments: 

Ant ID Tracking source Alarm Status Alarm Strength Frame Start Frame End 

50 Baseline UnalarmedCalm 0 3001 3300 

1 Baseline UnalarmedCalm 0 1 600 

3 Baseline UnalarmedCalm 0 1 900 

2 Baseline UnalarmedCalm 0 1 600 

26 Alarm event Unalarmedalert 0.5 1 500 

28 Alarm event Unalarmedalert 0.5 1 400 

4 Alarm event Unalarmedalert 0.5 1 200 

2* Alarm event Unalarmedalert 0.5 120 300 

32 Alarm event Unalarmedalert 0.5 1 420 

27 Alarm event Alarmed 1 101 1000 

54 Alarm event Alarmed 1 1 900 

10 Alarm event Alarmed 1 60 200 

19 Alarm event Alarmed 1 1 300 

25 Alarm event Alarmed 1 1 300 

7 Alarm event Alarmed 1 61 240 

42 Alarm event Alarmed 1 91 210 

          *: Ant (id = 2) in the video of the alarm event is different from the ant (id = 2) in the video of the baseline. 

We then applied sliding window technique to segments, producing 6462 feature vectors in 

total. Each feature vector includes 5 variables: the mean frame-wise speed (MS), standard 

deviation of frame-wise speeds (SS), standard deviation of body axis orientations (SO), 

convex hall area of locomotion (AR) and mean frame-wise number of contact with 

neighbors (MC) over the sliding window (Fig. S2). All feature vectors within a given 

segment were randomly assigned to either the training or the testing set. Training data 

consisted of 3412 feature vectors and testing data contained 3050 feature vectors (Table 

S2). 



 

Figure S2: Features extracted from the segmental tracks. Three ants with different alarm status were 
given as examples (grey: Unalarmedcalm ant; blue: Unalarmedalert ant; red: Alarmed ant). The alarm 
strength (AS) of those three ants were scored: 0 for Unalarmedcalm ant from frame 1 to 600; 0.5 for 
Unalarmedalert ant from the frame 1 to 300; 1 for Alarmed ant from frame 1 to 150. Five feature variables 
over the session highlighted for training data set on three ants which were visually assessed as the 
Unalarmedcalm, the Unalarmedalert ant and the Alarmed. MS: mean frame-wise speed; SS: standard 
deviation of frame-wise speeds; AR: convex hull area over the track window; SO: standard deviation of 
body axis orientations; MC: mean frame-wise number of contacts with neighbors. 

 

Table S2: Amount of data used to train the machine learning model 

   Alarmed 
(AS =1.0) 

Unalarmedalert 
(AS=0.5) 

Unalarmedcalm 
(AS=0.0) 

Total 

Ntraining 1251 151 2010 3412 

Ntesting 1380 1400 270 3050 

Total 2631 1551 2280 6462 

 

 



3. AUC-ROC and Youden index estimations. The area under the ROC curve (AUC-ROC) 

was calculated (89.06%), and indicated that AUC-ROC values for the employed models are 
more than 80% which shows their acceptable performance. An optimal threshold for 
classification can be estimated by Youden index, J (J=argmax(TPR(AS) - FPR(AS))). As 
Youden index was equal to 0.687, we had the threshold of classification between alarmed 
and unalarmed status, which was equal to 74.9% (Fig.S3). 

 

Figure S3. Illustration for AUC-ROC and Youden index on the ROC curve for the categorization of 
Alarmed vs Unalarmed status. Red dotted lines indicate the value of true positive rate (TPR) and false 
positive rate (FPR) as to achieve the Youden index. 
 

4. Distance-dependent efficacy of alarm signal propagation. Immediately after the 

introduction of the three alarmed ants (t=0 sec), 5 additional ants transitioned into the 

alarmed state, because they came in immediate contact with initially seeded ants. We 

identified those 8 ants as the initially alarmed, and analyzed their impacts on nearby ants 

in Unalarmed states. For ant with id i and alarm status s ∈ {a(alarmed), u(unalarmed)}, Asi, 

set of neighboring ants is defined as 

𝑁(𝐴𝑖
𝑠) = {𝐴𝑗

𝑠′
∶  𝐴𝑗

𝑠′
 ∈ 𝐶(𝑙(𝐴𝑖

𝑠), 𝑟)} 

where 𝑙(𝐴𝑖
𝑠) is the location of ant and r = 135 pixel (3×45pix) is neighborhood radius, and 

𝐶(𝑙(𝐴𝑖
𝑠), 𝑟) is the circle with the center 𝑙(𝐴𝑖

𝑠) and radius r. Following an alarmed ant 𝐴𝑖
𝑎

 , we 

find an unalarmed ant 𝐴𝑗
𝑢

 ∈ N(𝐴𝑖
𝑎) that meets the following criteria: 

1. 𝐴𝑆̂(𝐴𝑗
𝑢) ≤ 10%, that is, 𝐴𝑗

𝑢 is in a calm state. 

2. N(𝐴𝑗
𝑢) ⊆{𝐴𝑖

𝑎)}, that is, the only potential ant in the neighborhood of 𝐴𝑗
𝑢 is 𝐴𝑖

𝑎. 

3. 𝐴𝑗
𝑢has an integrated process of entering and exiting from the spatial range of a seed 

𝐴𝑖
𝑎, (Fig. S4). 



 

Figure S4: An illustration of movement of unalarmed ant 𝐴𝑗
𝑢

 toward and away from alarmed neighbor 𝐴𝑖
𝑎

 as 

time goes. In order to investigate the correlation between distance d and the change in alarm strength of 

unalarmed ant 𝐴𝑗
𝑢  (measured by standard deviation 𝜎𝐴𝑆̂(𝐴𝑗

𝑢)), we keep track of their distance at time 𝑡, 𝑑𝑡 , and 

alarm strength of unalarmed ant 𝐴𝑆̂(𝐴𝑗
𝑢). 

 

After filtering out the target alarmed and unalarmed ants, we calculate the dependent 
variable standard deviation of 𝐴𝑗

𝑢's alarm strength (𝜎𝐴𝑆̂(𝐴𝑗
𝑢

)) across a time window at which 

she comes toward and moves away from 𝐴𝑖
𝑎. The minimal distance of 𝐴𝑗

𝑢
 away from 𝐴𝑖

𝑎, dmin, 

across this time window was assigned as the independent variable. 

 

5. Alarm signal propagation. Ants’ alarm strength (𝐴𝑆̂) predicted from the Random-Forest 

regression model, coupled with tracking data on inter-individual distance, allowed us to 

identify the network pathways of alarm signal propagation indirectly by overlapping two 

layers of events: individual average alarm response level every second (30 frames) and its 

seconds-stamped contact networks. We simultaneously mapped the change in alarm state 

of ants engaged in contact events, based on the rule that unalarmed ants are allowed to 

respond to alarm recruitment with a maximum of 4 seconds’ latency (Fig. S5).  



 

Figure S5: Networking rules of alarm-signal propagation for three cases.  In cases 1 and 2, alarm propagation 
relies on physical contact without a latency (case 1) or with a latency less than or equal to 4 seconds (case 2) 
after contacting an alarmed neighbor. In case 3, alarm signal propagation is achieved independently of 
contact-mediated interactions. 

The time-ordered and time-aggregated alarm-signal propagation networks were built by 

using packages of ndtv, tsna (in R 3.5.0.), networkx and teneto (in Python 3.8.3.). Physical 

contacts were recorded as potential pathways of alarm signal propagation whenever two 

ants’ distance went within dcontact = 45 pixels. Specifically, if an unalarmed ant becomes 

alarmed without a latency (case 1) or with a latency within 4 seconds (case 2) after alarm 

contact, a directional tie between the pair of ants undergoing alarm contact will be included 

from alarmed ant to unalarmed ant as the potential pathway of alarm propagation (Fig. S6 

top). These contacts were defined as events in which previously unalarmed ants 

cumulatively increased their alarm strength above the threshold (0.749) for the first time 

and within 4 seconds’ time window after contacting any alarmed ant. The weights of edges 

were obtained by assessing the standard deviation of 𝐴𝑆̂ on unalarmed ants within a unit of 

time (1 second) as their contact with alarmed neighbors, which indicates the varied 

effectiveness of alarm contacts on alarm state transition (Fig. S6 bottom-left).  If an ant 

became alarmed without alarm contact, we labelled this node as an independent alarm 

transition. The weighted highest edge to an unalarmed ant was identified as the primary 

pathway of alarm propagation. After pruning other low weighted edges, the static 

propagation network (Fig. S6 bottom-right) was formulated by aggregating the time-

ordered propagation events. 

 



 

Figure S6: Alarm signal propagation networks. (Top) The time-ordered network of alarm propagation. In the 
network layout, y-axis indicates the id number of ants, and x-axis indicates the time in seconds. Each colored 
node represents an ant with the unique id number. Each weighted edge represents the varied effectiveness of 
an alarm contact on alarm state transition of an unalarmed ant. (Bottom-left) The time-ordered network of 
alarm propagation at first 10 seconds with all weighted edges. Red arrows indicated the primary pathways of 
alarm propagation by identifying the weighted highest edge on each unalarmed signal receiver. (Bottom-
right) Time-aggregated network at first 10 seconds obtained from assessing primary pathways of alarm 
propagation. “Yellow” represents initially alarmed ants placed into the test arena. “Green” represents ants 
which become alarmed independently of contact-mediated interactions. “Red” represents ants transited to 
Alarmed via contact-mediated interactions. 



Extracting and analyzing the alarm signal propagation network, we estimated the temporal 
dynamics of alarm contact and alarm propagation initiated by three initial alarmed ants. 
Within the first minute of alarm event, three initial alarmed ants contacted 55 (>90%) 
unalarmed ants cumulatively. Meanwhile, the proportion of alarmed ants arrived at the 
maximum (31.1%) at t = 7 sec and damped after.  

 

Figure S7: Temporal dynamics of alarm contact and alarm signal propagation initiated by 3 alarm seed ants. 

(Left) The cumulative proportion of ants contacted (red) or uncontacted (green) the 3 initial alarmed ants 

ever. (Right) The proportion of alarmed ants (red) and unalarmed ants (green) evaluated by the threshold of 

categorization (0.749). 

6. Movie-S. This video shows animations of 𝐴𝑆̂ across all of individual ants predicted from 
the RF regression model, and the alarm propagation networks (Fig. S8). It displays three 
animations: 1. A histogram, which tracks the distribution of 𝐴𝑆̂, and the classifications after 
applying the threshold of categorization (0.749); 2. Colors which visualize the 𝐴𝑆̂ per ant, 
overlapped on the live feed of ants; 3. The temporal propagation networks and nodes color-
labeled by alarm recruitment events. 



 

Figure S8: An snapshot of the Movie-S. (Left) A distribution of alarmed and unalarmed ants over time; 

(Middle) Animation by overlapping 𝐴𝑆̂ per ant color-labeled with the live feed of ants; (Right) A temporal 

alarm propagation networks and nodes color-labeled over time. 


