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Formula Derivation
The temporal evolution of the position, velocity, size and temperature of an evaporating droplet,
whose size is smaller than the smallest scales of the turbulent carrier flow, can be described in
the framework of the so-called point-droplet approximation [1]. In this framework, an evaporating
droplet is modelled as a rigid point-wise sphere whose dynamics is described by the following
Lagrangian equations [2, 3, 4, 5]:

dud
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1
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ū− ud
τd

+
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where ud is the droplet velocity, Dd is the droplet diameter, and Td is the temperature of
the droplet. The over-bar notation refers to Eulerian quantities, describing the carrier flow,
evaluated at the instantaneous position of the point-droplet. Equation (0.1) is the one-dimensional
governing equation of a sphere in viscous flow. The variable ū is the velocity of the moist
airflow carrying the droplet evaluated at the position of the droplet itself and ρ̄ its density.
Gravitational acceleration, g, and buoyancy forces are accounted for by the second right-hand
side term of equation (0.1). The parameter τd is called droplet relaxation time, τd = ρdD

2
d/(18µ̄),

with ρd the water droplet density and µ̄ the dynamic viscosity of the airflow. A factor f is
used to account for droplet finite inertia, which is a function of the droplet Reynolds number,
Red = ||ū− ud||Dd/ν̄, with ν̄ the kinematic viscosity of the carrier flow. Equation (0.2) governs
the evolution of the droplet diameter, whereas equation (0.3) describes the temporal evolution
of the droplet temperature. The variable T̄ is the temperature of the moist air flow that carries
the droplets. The parameters S̄c= ν̄/Da,v and P̄ r= µ̄c̄p/k̄ are the Schmidt and Prandtl numbers,
respectively, with c̄p the isobaric specific heat capacity of the moist air flow, and k̄ its thermal
conductivity. The parameter Dg,v is the mass diffusivity of water vapor into air, whereas cd
and ∆Hv are the specific heat capacity of liquid droplet and its latent heat of vaporization,
respectively. As (T̄ − Td) is the forcing term for convective heat transfer, the term Hm drives
the mass transfer rate:

Hm = ln

(
1− Ȳv

1− Yv,d

)
, (0.4)

with Ȳv(χ̄v) the vapor mass fraction in the carrier flow evaluated at the droplet center and
Yv,d(χv,d) the mass fraction of a saturated gas-vapor mixture evaluated at the temperature of
the droplet, Td. The vapor mass fractions depend on the vapor molar fractions:

Ȳv =
χ̄v

χ̄v + (1− χ̄v)Wa
Wd

, Yv,d =
χv,d

χv,d + (1− χv,d)Wa
Wd

, (0.5)

which, in turn, are related to the vapor pressure:

χ̄v = R̄H
psv(T̄ )

pa
, χv,d = 1.0

psv(Td)

pa
, (0.6)

where pa is the ambient pressure, psv(T̄ ) the saturated vapor pressure evaluated at T̄ , R̄H
the relative humidity of the moist carrier, Wa and Wd the molar weight of air and liquid
water, respectively. The saturated vapour pressure depends on temperature and pressure and
can be calculated by using the Clausius-Clapeyron equation. Finally, the Nusselt number, Nu,
and Sherwood number, Sh, are correlated to the droplet Reynolds number via the Frössling
correlations, see e.g. Wang et al. [6] for details.

Let consider an evaporating droplet in an environment with uniform thermodynamic
properties, Ta, pa, ρa and RHa being the uniform ambient temperature, pressure, density and
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Figure 1. Main panel: the ratio between the asymptotic droplet temperature, Td,s, computed according to equation (0.11)
and ambient temperature, Ta, versus ambient temperature itself for an isolated water droplet. Inset: temporal evolution

of the temperature of an evaporating water droplet; the time is normalized by τd,0, the initial relaxation time. Data are

obtained by the numerical solution of equation (0.2) and equation (0.3).

relative humidity, respectively. Since Hm in equation (0.2) depends on the droplet temperature,
ambient temperature and pressure, it can be assumed to be constant during evaporation. Under
this assumption equation (0.2) can be integrated analytically:

Dd(t) =
√
D2

d,0 − kt, k= 4
ρa
ρd

Sh

Sca
νaHm(Td, Ta, pa, RHa), (0.7)

with Dd,0 the droplet initial diameter and k a decay constant. When the effect of non-volatile
matter is taken into account [7], one can estimate the droplet evaporation time as:

te =D2
d,0(1− ψ2/3)/k. (0.8)

with ψ being the volume fraction of non-volatile matter inside each droplet. In the present model,
assuming for simplicity ψ= 0, equation (0.8) can be rewritten as:

te =D2
d,0/k. (0.9)

Equation (0.7) is historically referred to as D2-law since it predicts a linear temporal evolution
of the square droplet diameter (surface), and it is used in the classical model of Wells, which
implicitly assumed that the droplet temperature is fixed and equal to the initial one Td,0 during
the whole vaporization process. Under this assumption the constant k is:

k= 4
ρa
ρd

Sh

Sca
νaHm(Td,0, Ta, pa, RHa). (0.10)

Nonetheless, this condition holds only for a short time of the order of few droplet relaxation
times, τd = ρdD

2
d,0/(18µ̄), as can be seen in the inset of figure 1. The initial droplet temperature

is equal to the environmental one, Ta; nonetheless, after a time t' 6τd,0, the droplet temperature
sets to an asymptotic value, Td,s, which is lower than Ta depending on RHa. Hence, the droplet
temperature remains close to the ambient one only for t' τd,0, whereas, for the major part of the
vaporization process, it keeps closer to an asymptotic temperature, Td,s. By imposing dTd/dt= 0
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Figure 2. Comparison of the decay of the square droplet diameter of saliva droplets predicted by the classical D2-

law model (dashed lines), the present revised D2-law model (solid lines) and experimental benchmark data (symbols)

from Lieber et al. [8]. Different environmental conditions are considered: T∞ = 23.2◦C RH∞ = 6.7% and T∞ =

22.3◦C RH∞ = 53.4%.

in equation (0.3), we obtain the following relation for the asymptotic temperature:

Td,s +
Pra
Sca

Sh

Nu

∆Hv

cp,a
Hm(Ta, pa, RHa, Td,s)− Ta = 0, (0.11)

Hm = ln

(
1− Yv(Ta, pa, RHa)

1− Yv,d(Td,s, pa)

)
, (0.12)

which can be easily solved for Td,s. The latter can be employed to compute a more accurate value
of the decay constant, k:

k=
ρa
ρd

Sh

Sca
νaHm(Td,s, Ta, pa, RHa). (0.13)

By replacing the k constant in equation (0.7) with equation (0.13), Dalla Barba et al. [2] derived a
revised D2-law. It is worth noting that this revised model does not use any free fit parameter. The
major difference between the classical and revised law relies on the assumptions made on droplet
temperature. In the classical D2-law this is assumed equal to the initial one. In the revised model,
it results from the balance between the heat flux and latent enthalpy during the evaporation
process. Considering an evaporating droplet with an initial temperature higher than, or equal to,
the ambient temperature in quiescent air conditions, its temperature will tend to an asymptotic
value, which is lower than the environmental temperature, after a short transition time. Hence, in
the revised D2-law, the droplet temperature is fixed and equal to this asymptotic value, instead
of the initial one, that results in a constant evaporation rate lower than the one predicted by
the classical model. The performance of this revised D2-law has been tested against DNSs of
turbulent water sprays with different dilute levels, as well as reference data of respiratory droplets
from third parts, i.e. Ng et al. [9], exhibiting an excellent agreement. To further assess the reliability
of the revised D2-law in predicting the evaporation of a droplet we provide a comparison of our
model against independent experimental data [8]. The experiments have been realized using an
acoustic levitator under well-defined ambient and initial conditions, considering single water
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Figure 3. Distance travelled by the front of a turbulent jet/puff reproduced by experimental data from [11]. The two stages

that characterize the flow, jet (early stage) and puff (late stage), are visible. The scaling laws for the jet, L∝ t1/2,

and puff phase, L∝ t1/4, are reported as references with black dashed lines. Qualitative visualizations obtained from

experiments showing the instantaneous tracers concentration (black-high; white-low) at different times (t= 0.25 s and

t= 1.00 s, respectively) are reported as representative of the jet/puff evolution.

and saliva droplet [8, 10]. In figure 2 the decay of the square droplet diameter of saliva droplets
predicted by the classical model, the present one and the experimental results from Lieber et al. [8]
are shown. Two different environmental conditions are considered showing an approximatively
linear decay. For both the cases, the revised D2-law model shows superior performance than
the classical one and very good agreement with the experimental data. As reported in Lieber
et al. [8], a terminal size of around 25% of the droplet initial diameter, is reached at the end
of the evaporation due to the non-volatile components inside the saliva droplet, like salts and
protein. We attribute this reason to explain the slight deviation of the revised model from the
experimental data at the late stage of evaporation. However, as mentioned in Dalla Barba et al.
[2], some restrictions should be considered when using the revised D2-law, i.e. single component
droplets, micro/millimetre size, dilute regimes, and the different properties of turbulent jet/puff
carrying the droplets and the ambient air. In fact, as shown in Figure 2B of the manuscript, the
revisedD2-law fails to capture the mean behavior of droplet evaporation in low temperature and
high relative humidity ambient conditions, which are strongly different from the initial jet ones.
However, the obtained prediction is still much more accurate than the classical one, especially for
long times.

Let consider equation (0.1) applied along the horizontal direction. If the droplet is sufficiently
small, the term τd approaches zero and equation (0.1) becomes ud ' ū. Hence, we assume that,
along the horizontal direction, droplets move with the same velocity of the carrier flow. To
estimate the axial speed of the carrier flow, we split the evolution of the exhaled flow into two
different stages, as can be seen in the Fig 3. From t= 0 up to the time the flow is emitted from
the oral cavity, t= tinj (injection time), we model the flow as an axial, steady round jet for which
a well-established, self-similar velocity profile is known [12]. On the other hand, for t > tinj , we
model the flow as a free turbulent puff. For the latter, the distance travelled by a Lagrangian
tracer is known to scale with a power law of t1/4, L/L0 ∼ (t/t0)1/4 [13]. In this frame, for t≤ tinj ,
by neglecting possible two-way coupling effects, an estimate of the length covered by droplets
carried by the jet can be obtained by considering the self-similar behaviour of the mean jet
centerline velocity, Uc ' ū, and supposing that the droplet mean axial velocity is approximated



6

royalsocietypublishing.org/journal/rsif
J.R

.S
oc.

Interface
0000000

......................................................................

by ud 'Uc:

Uc

U0
=

2B
x
R0
− x0

R0

=⇒ R0

U0

d

dt

(
xd
R0

)
=

2B
xd
R0
− x0

R0

, (0.14)

with B ' 6 a universal constant, x0 the so-called jet virtual origin [14], xd the droplet position
along the jet axis, U0 the bulk velocity at the exit of the oral cavity and R0 the mouth radius
(under the assumption of a nearly circular orifice). Then, integrating equation (0.14) and assuming
a vanishing virtual origin, x0/R0 ' 0, it leads to:

Ld = xd =
√

4BU0R0 t
1
2 . (0.15)

For t > tinj , we suppose that the exhaled moist air behaves like a puff. For the latter, the distance
travelled by a Lagrangian tracer scales as L/L0 ∼ (t/t0)1/4 and its initial value has to match the
one obtained by equation (0.15). Hence,

Ld = xd =
√

4BU0R0 t
1
4
inj t

1
4 . (0.16)

Finally, let consider equation (0.1) along the vertical direction. We suppose that large evaporating
droplets, acting as ballistic particles, reach their terminal settling velocity with a negligible
transient time. Hence, by setting dud/dt' 0 and ū= 0, considering the definition of the droplet
relaxation time, τd = ρdD

2
d/(18µ̄), as well as equation (0.7) and (0.13), we obtain:

ud(t) =
1

18

f

µ̄
(ρd − ρ̄)gD2

d, f =
1

1 + 0.15Red
0.687

. (0.17)

By setting a null initial vertical velocity, the falling distance displaced by droplets, Hd(t), can be
obtained by integrating equation (0.17):

Hd(t) =
f

18

ρd − ρ̄
µ̄

g(D2
d,0t−

k

2
t2) (0.18)

Finally, the latter can be solved for the settling time, ts, when the vertical distance is specified, e.g.
Hd = 2m. The solution is provided in the following, skipping algebraic manipulation:

ts =
1

k

(
D2

d,0 −

√
D4

d,0 −
36µ̄kHd

(ρd − ρ̄)gf

)
. (0.19)

Model description
To further explain how the present model was developed step by step based on the classical
framework, we show in figure 4 a comparison of the lifetime of free-falling, evaporating water
droplets estimated with different models (lines), from A) to D), against the benchmarking data
(symbols) collected from Xie’s results [15]. The seminal theory introduced by Wells in the 1930s,
based on the classical D2-law and Stokes’ law, highly overestimates droplet evaporation rate,
leading to the prediction of very short evaporation times, as reported by recent studies [7, 11,
16, 17] and highlighted in Panel A of figure 4. Simply replacing the classical D2-law with the
revised one [2], a relevant improvement is observed, see Panel B. However, some discrepancies
still subsist; these are attributed to the non-negligible transition time for droplets to reach the
asymptotic temperature and the inaccuracy of StokesâĂŹ law in describing the settling velocity
of evaporating droplets with inertia. These two deficiencies have been mitigated by considering
a two-stage evaporation model and a fixed drag correction factor, as showed in Panel C and D of
figure 4, sequentially.
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environmental conditions: A) Wells Theory; B) Revised D2-law coupled with Stokes’ law; C) Two-stages D2-law coupled

with Stokes’ law; D) Two-stagesD2-law coupled with corrected Stokes’ law. These predictions are shown in lines, whereas

the symbols represent benchmarking data collected from Xie’s results [15]. It is worth remarking that the prediction

accuracy of the classical model can be improved by taking into account the revised D2-law, the two-stages evaporation

model and a fixed drag correction factor f .
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