7. Validation of functional equations through the estimation of characteristic
impedances in half-space planar regions

In this section, we further validate the functional equations (5.11)—(5.13) and (5.18)—(5.20) obtained
in the general case of three-dimensional angular region problems by computing the characteristic
impedances of the half spaces identified as region 1 (y > 0) and region 2 (y <0) in figure 3 for
planar problems.

Figure 3 shows the half-plane problem (crack) where arbitrary boundary conditions can be
applied. We recall that GWHEs for practical problems can be derived from (5.11)—(5.13) and
(5.18)—(5.20) by applying specific boundary conditions (traction-free, clamped, etc.). For example,
this method can be used to compare with solutions reported in [35,36] for the half-plane problem.
In this case, we note that, starting from the general functional equations, by imposing y =, we
model the half-plane problem via GWHEs that reduce to CWHEs due to the definitions of spectral
variables m.

Let us start from region 1, considering (5.11)—(5.13). To model the planar problem, we impose
y =m, ap =0 and all the continuous z components of the field T and v null: Ty:=Tyz=0, v;=
vz =0. From (5.11)-(5.12) ((5.13) is trivially null in this case) we have

Zo((2n2 - ksz)vy + 2nviép) + ks(nTxy - Tyyép)
= Zo((21" — ks*)vy + 2nvxdp) — ks(nTxy — Tyvép),
Zo((ks2 - 2772)Ux + 2nvyés) + ks(Txyés + nTyy)

= Zo((ks* — 2n*)vx + 2nvy&s) — ks(Txys + nTyy).

(7.1)
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Figure 3. Half-plane planar crack problem with the reference coordinate systems and boundaries adapted from the general
configuration reported in figure 2 (X = X;, Y = Y; local face Cartesian coordinates are reported and are equal in this case due
to rotation). The half crackiis localized at x < 0,y = 0and the surrounding space is divided into two rectangular regions: region
1(y > 0)and region 2 (y < 0). In this section, we evaluate the characteristicimpedances of the half-space regions 1and 2 that
are independent from the boundary conditions on the half-plane and implicitly assume absence of sources localized at finite.

Now let us focus attention on the non-null continuous field component of T and v, we have,
respectively, for (2.16) with (4.1) and (5.9) with (4.15)

¥y = (Tyy, Txy, vx, Uy)/ and ¥, = (-Tyy, —Txy, vx, vy)". (7.2)

From the definitions of ¥; and ¥, respectively, defined in x > 0,y =0 in x, y coordinates and in
x <0,y=04 in X, Y coordinates, we estimate the total fields for y =04 as

tot tot —tot tot | toty/
l/’0(3r =V — Vs =(Ty(;rTx(;/va /vyo ) (7.3)

In fact, we note that the local-to-face-a X, Y coordinates have opposite direction with respect to
x,y thus the velocity vectors are measured with opposite directions while the tensorial stress
components have the same directions because of the double inversion.

With the definition of total fields at y = 04 (7.3), from (7.1), we derive expressions of T}y', Ty
in terms of vt viot

© vy thatin matrix form yields the matrix characteristic impedance of region 1

Zo ks? KeZoks
Ttot ot 1 <2 — 27) by
vy _ Z+ X Z+: ks n +$p€s n JFEpEs . (74)
Ttot ot ] _ kZ§, nZ, ( ks> )
Y y n2+€p$s ks '727"5;1%‘5

Note that the definition of the characteristic impedance is independent from boundary conditions
on the half-plane and implicitly assumes absence of sources localized at finite. The impedance
(7.4) is validated with the admittance Y} = (Z)~! reported in (2.12.5)—(2.12.8) of [4] where, by
mistake, a coefficient 2 is missing in (2.12.7) and (2.12.8). We note that while in §2.12 of [4] the
characteristic impedance is evaluated from the homogeneous solution of transverse equations in
Fourier domain, in the present work, we have used Laplace transforms with boundary conditions
that result in a completely different and independent proof.

Now, let us consider region 2 (figure 3) and the related functional equations (5.18)-(5.20) and
(5.17) with (4.22). To model the planar problem, we impose y =, ap =0 and all the continuous
z components of the field T and v null: Ty, =Tyz =0, v; = vz =0. From (5.19)-(5.19) ((5.20) is

V2901202 -LLp ¥ 905 01 edsy/jeunol/BioBuysyqndiraposjefos H



trivially null in this case) we have
Zo(vy(ks® — 20%) + 2nvep) — ks(Tyy&p + nTxy)
= Zo(vy(ks* — 2n%) + 2nvx&p) + ks(Tyyép + nTxy),
Zo(w(2n* — ks?) + 2nvyks) + ks(Tays — nTyy)

= Zo(vx(21* — ks?) + 2nvy&s) — ks(Txy&s — nTyy).

Now let us focus attention on the non-null continuous field component of T and v, we have,
respectively, for (2.16) with (4.1) and (5.17) with (4.22)

(7.5)

l/’t = (Tyy/ Txy/ Ux, 'Uy)/ and l//bs = (TYY/ TXY/ —UX, _UY)/' (76)

From the definitions of ¥; and v, respectively, defined in x > 0,y =0 in x, y coordinates and in
x<0,y=0_1in X, Y coordinates, we estimate the total fields for y =0_ as

Y =1+ ¥y = (Th, T v v . (7.7)
Due to the expressions (7.6), the total field in region 2 (7.7) shows a different sign with respect
to the expression of region 1 (7.3) to maintain the same physical meaning. With the definition of
total fields at y = 0_ (7.7), from (7.5) we derive expressions of Tt, Tt in terms of v!®t, v;Ot that in

vy - xy
matrix form yield the matrix characteristic impedance of region 2
2
ot tot nZ, ( ks _ ) _ kZo&
T’;y _ _UXO _ ks n2+§pgs 2 '72+Ep§5 (7 8)
ot | ¢ | _tot c _ kZoy Zo < k2 ) :
w y ’]2+§p§s ks 772"!‘5;7‘-‘?5

The impedance (7.8) is validated with the admittance Y. = (Z, )1 reported in §12 at (2.12.5)-
(2.12.8) of [4] as discussed for region 1. Note that in (7.8), we have assumed a different sign in
the velocity with respect to (7.4) of region 1 due to the different direction of propagation in the
two regions. Finally, we recall that the method presented in this paper for the calculation of the
characteristic impedances is more general and independent from the one reported in [4].
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