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and

sin(2γ )[−ξ2
s + η2] + cos(2γ )[2ηξs] = 2msns. (6.19)

Now let us complete the comparison between the second equation of (6.11) and (6.8), focusing
the attention on Û2(ξ ) (6.12) and comparing the functional coefficient of û1,2(ζ1) in Û2(ξ ) with the
ones of vX,Y(−mp). With the help of table 1 and (6.14)–(6.15), for û1(ζ2) and vX(−mp), we have,
respectively

b̄2(ξ ) = 2ζ2η2 → 2mpnp (6.20)

and

sin(2γ )[−ξp
2 + η2] + cos(2γ )[2ηξp] = 2mpnp (6.21)

with the same calculus as done in (6.18)–(6.19). On the contrary, we note that û2(ζ2) and vY(−mp)
show different properties with respect to (6.16)–(6.17). Their respective functional coefficients are

a(ζ2) = κ2
1 − 2ζ 2

2 → k2
s − 2m2

p (6.22)

and

sin(2γ )[−2ηξp] + cos(2γ )[−ξp
2 + η2] + (kp

2 − ks
2) = k2

s − 2m2
p (6.23)

that are equivalent after some trigonometric manipulation. Note in (6.22)–(6.23), we have the
simultaneous presence of SV and P spectral variables and propagation constants, and the presence
of additional term (kp

2 − ks
2) on the LHS of (6.23) with respect to the LHS of (6.17). This property

denotes coupling between SV and P waves.
We conclude by affirming that (6.8), (6.9), (6.10) are the GWHEs for the elastic wave motion

angular problem in two dimensions (αo = 0) with traction-free face boundary conditions that
model the planar (6.8), (6.9) and anti-planar (6.10) problems in the presence of plane-wave sources
or sources located at infinity with the help of the concept of non-standard Laplace transforms (see
§1.4 of [5]).

7. Validation of functional equations through the estimation of characteristic
impedances in half-space planar regions

In this section, we further validate the functional equations (5.11)–(5.13) and (5.18)–(5.20) obtained
in the general case of three-dimensional angular region problems by computing the characteristic
impedances of the half spaces identified as region 1 (y> 0) and region 2 (y< 0) in figure 3 for
planar problems.

Figure 3 shows the half-plane problem (crack) where arbitrary boundary conditions can be
applied. We recall that GWHEs for practical problems can be derived from (5.11)–(5.13) and
(5.18)–(5.20) by applying specific boundary conditions (traction-free, clamped, etc.). For example,
this method can be used to compare with solutions reported in [35,36] for the half-plane problem.
In this case, we note that, starting from the general functional equations, by imposing γ = π , we
model the half-plane problem via GWHEs that reduce to CWHEs due to the definitions of spectral
variables m.

Let us start from region 1, considering (5.11)–(5.13). To model the planar problem, we impose
γ = π , αo = 0 and all the continuous z components of the field T and v null: Tyz = TYZ = 0, vz =
vZ = 0. From (5.11)–(5.12) ((5.13) is trivially null in this case) we have

Zo((2η2 − ks
2)vy + 2ηvxξp) + ks(ηTxy − Tyyξp)

= Zo((2η2 − ks
2)vY + 2ηvXξp) − ks(ηTXY − TYYξp),

Zo((ks
2 − 2η2)vx + 2ηvyξs) + ks(Txyξs + ηTyy)

= Zo((ks
2 − 2η2)vX + 2ηvYξs) − ks(TXYξs + ηTYY).

(7.1)
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Figure 3. Half-plane planar crack problem with the reference coordinate systems and boundaries adapted from the general
configuration reported in figure 2 (X ≡ X2, Y ≡ Y2 local face Cartesian coordinates are reported and are equal in this case due
to rotation). The half crack is localized at x< 0, y = 0 and the surrounding space is divided into two rectangular regions: region
1 (y> 0) and region 2 (y< 0). In this section, we evaluate the characteristic impedances of the half-space regions 1 and 2 that
are independent from the boundary conditions on the half-plane and implicitly assume absence of sources localized at finite.

Now let us focus attention on the non-null continuous field component of T and v, we have,
respectively, for (2.16) with (4.1) and (5.9) with (4.15)

ψ t = (Tyy, Txy, vx, vy)′ and ψas = (−TYY, −TXY, vX, vY)′. (7.2)

From the definitions of ψ t and ψas, respectively, defined in x> 0, y = 0 in x, y coordinates and in
x< 0, y = 0+ in X, Y coordinates, we estimate the total fields for y = 0+ as

ψ tot
0+ =ψ t − ψas = (Ttot

yy , Ttot
xy , vtot

x , vtot
y )′. (7.3)

In fact, we note that the local-to-face-a X, Y coordinates have opposite direction with respect to
x, y thus the velocity vectors are measured with opposite directions while the tensorial stress
components have the same directions because of the double inversion.

With the definition of total fields at y = 0+ (7.3), from (7.1), we derive expressions of Ttot
yy , Ttot

xy
in terms of vtot

x , vtot
y that in matrix form yields the matrix characteristic impedance of region 1

⎛⎝Ttot
yy

Ttot
xy

⎞⎠= Z
+
c

⎛⎝vtot
x

vtot
y

⎞⎠ , Z
+
c =

⎛⎜⎝ ηZo
ks

(
2 − ks2

η2+ξpξs

)
− ksZoξs
η2+ξpξs

− ksZoξp

η2+ξpξs

ηZo
ks

(
ks2

η2+ξpξs
− 2

)
⎞⎟⎠ . (7.4)

Note that the definition of the characteristic impedance is independent from boundary conditions
on the half-plane and implicitly assumes absence of sources localized at finite. The impedance
(7.4) is validated with the admittance Y

+
c = (Z+

c )−1 reported in (2.12.5)–(2.12.8) of [4] where, by
mistake, a coefficient 2 is missing in (2.12.7) and (2.12.8). We note that while in §2.12 of [4] the
characteristic impedance is evaluated from the homogeneous solution of transverse equations in
Fourier domain, in the present work, we have used Laplace transforms with boundary conditions
that result in a completely different and independent proof.

Now, let us consider region 2 (figure 3) and the related functional equations (5.18)–(5.20) and
(5.17) with (4.22). To model the planar problem, we impose γ = π , αo = 0 and all the continuous
z components of the field T and v null: Tyz = TYZ = 0, vz = vZ = 0. From (5.19)–(5.19) ((5.20) is
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trivially null in this case) we have

Zo(vy(ks
2 − 2η2) + 2ηvxξp) − ks(Tyyξp + ηTxy)

= Zo(vY(ks
2 − 2η2) + 2ηvXξp) + ks(TYYξp + ηTXY),

Zo(vx(2η2 − ks
2) + 2ηvyξs) + ks(Txyξs − ηTyy)

= Zo(vX(2η2 − ks
2) + 2ηvYξs) − ks(TXYξs − ηTYY).

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(7.5)

Now let us focus attention on the non-null continuous field component of T and v, we have,
respectively, for (2.16) with (4.1) and (5.17) with (4.22)

ψ t = (Tyy, Txy, vx, vy)′ and ψbs = (TYY, TXY, −vX, −vY)′. (7.6)

From the definitions of ψ t and ψbs, respectively, defined in x> 0, y = 0 in x, y coordinates and in
x< 0, y = 0− in X, Y coordinates, we estimate the total fields for y = 0− as

ψ tot
0− =ψ t + ψbs = (Ttot

yy , Ttot
xy , vtot

x , vtot
y )′. (7.7)

Due to the expressions (7.6), the total field in region 2 (7.7) shows a different sign with respect
to the expression of region 1 (7.3) to maintain the same physical meaning. With the definition of
total fields at y = 0− (7.7), from (7.5) we derive expressions of Ttot

yy , Ttot
xy in terms of vtot

x , vtot
y that in

matrix form yield the matrix characteristic impedance of region 2⎛⎝Ttot
yy

Ttot
xy

⎞⎠= Z
−
c

⎛⎝−vtot
x

−vtot
y

⎞⎠ , Z
−
c =

⎛⎜⎝ ηZo
ks

(
ks

2

η2+ξpξs
− 2

)
− ksZoξs
η2+ξpξs

− ksZoξp

η2+ξpξs

ηZo
ks

(
2 − ks

2

η2+ξpξs

)
⎞⎟⎠ . (7.8)

The impedance (7.8) is validated with the admittance Y
−
c = (Z−

c )−1 reported in §12 at (2.12.5)–
(2.12.8) of [4] as discussed for region 1. Note that in (7.8), we have assumed a different sign in
the velocity with respect to (7.4) of region 1 due to the different direction of propagation in the
two regions. Finally, we recall that the method presented in this paper for the calculation of the
characteristic impedances is more general and independent from the one reported in [4].

8. Remarks and conclusion
In this work, we have introduced a general method for the deduction of spectral
functional equations and thus GWHEs in angular regions filled by arbitrary linear isotropic
homogeneous media in elasticity. The importance to formulate wedge problems with GWHEs
in electromagnetism has been shown in [4,5]. We remark that these equations are important also
for elastic wedge problems. In particular, the functional equations obtained and solved in [14] by
Gautesen’s group for the planar elastic wedge are GWHEs, although not defined in this way.

The method is based on the original solution of vector differential equations of first order via
dyadic Green’s function method and on the projection of this solution along the boundaries of
the angular region using reciprocal vectors of the pertinent algebraic matrix related to the matrix
differential operator. The application of the boundary conditions to the functional equations
yields GWHEs for practical problems. We observe that the functional equations are the starting
point to develop solutions using the WH technique for complex scattering problems.

Using the concept of non-standard Laplace transforms (see §1.4 of [5]), the validity of the
functional equations and of the GWHEs obtained in the absence of sources is extended to the total
fields in the presence of plane-wave sources or in general of sources located at infinity. We observe
that the GWHEs in elasticity contain unknowns defined in multiple complex planes η, −mp, −ms

related to P and S waves and this property recalls electromagnetic applications (and related
solution methods) in media with multiple propagation constants as reported in [25–27]. In fact, in
this case, the reduction of GWHEs to classical WH equations is not possible. Explicit expressions
of spectral functional equations in algebraic form are provided in the text in the general case
of non-planar elastic problems in angular regions with isotropic media and arbitrary boundary
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