
Visual design intuition: Supplementary Materials
Philippe M. Wyder∗†, Hod Lipson∗

∗Department Of Mechanical Engineering, Columbia University New York, USA
† Corresponding Author: philippe.wyder@columbia.edu

I. INTRODUCTION

The Visual Design Intuition: Supplementary Materials file contains Appendix A through Appendix I. This document is
intended to be used in combination with the corresponding manuscript. The appendix covers the following sections: neural
network architectures, polygon generation algorithm, roots for analytical eigenfrequency calculation, the effect of input image
resolution on prediction accuracy, dataset vs. label performance table, training graphs, datasets, data generation, and COMSOL
Multiphysics data analysis scripts. All references to document sections that are not part of the appendix are found in the main
manuscript.

APPENDIX A
NEURAL NETWORK ARCHITECTURES

In this section, we provide additional information on the network architectures that we explored before choosing ConvNet
Extended. We present the performance achieved using each architecture in our test in table I. Further, we providing some
notable observations on those results.

TABLE I
NETWORK ARCHITECTURE PERFORMANCE COMPARISON

Exp. Network MAE [Hz] MAPE [%] LR
1 Fully Connected 33.9 10.6 0.0001
2 ConvNet Extended 20.5 6.1 0.0001
3 ConvNet 24 7 0.0001
4 Fully Connected 22.5 6.7 0.00001
5 ConvNet Extended 20.8 6.1 0.00001
6 ConvNet 21.5 6.6 0.00001

1) ConvNet: ConvNet consists of two convolutional and two fully connected layers. The usual input to the network is a
128×128×1 anti-aliased gray-scale image of the beam cross-section. The first convolutional layer has 64 5×5 convolutions of
stride 1 with padding 2, followed by batch normalization. The second convolutional layer has 32 5×5 convolutions of stride 1
with padding 2, followed by batch normalization and a max pool layer with a 2×2 convolution applied at stride 1. Both use
ReLU activations [1]. The third layer is a 32 ∗ img size/2 ∗ img size/2 to 1024 size fully connected layer and the fourth
layer is a 1024 to number of labels fully connected layer.

2) Fully Connected Network: The fully connected network used in our experiment is four layers deep, and its usual input
is a 128×128×1 gray-scale image. All four layers are fully connected and have the input size of 65k, 16k, 16k and 1024,
with 16k, 16k, 1024 and number of labels output size, respectively.

A. Observations on neural network architectures

Based on the findings reported in table I, we adopted ConvNet Extended for all subsequent experiments. We observed
that, when applied to our beam datasets, the Fully Connected Network performed on par with the ConvNet and was in some
cases superior. We ascribe these results to the larger size of the fully connected network used in our test. Although the Fully
Connected Network had the same layer count as our smaller ConvNet, it has an order of magnitude more connections than
even the ConvNet Extended model.

APPENDIX B
POLYGON GENERATION ALGORITHM

The randomly chosen cross-sections that were used to extrude the 3D beams were generated using algorithm 1 and
2. Our implementation is a close adaptation of Michael Ounsworth’s code excerpt shared on the Stack Overflow forum
(https://stackoverflow.com/a/25276331).

APPENDIX C
ROOTS FOR ANALYTICAL EIGENFREQUENCY CALCULATION

The roots used for the analytical eigenfrequency calculations are shown in table II.

0

Algorithm 1 clip
Input: x, min, max
Output: clippedValue

1: if (min > max) then
2: return x
3: else if (x < min) then
4: return min
5: else if (x > max) then
6: return max
7: else
8: return x
9: end if

Algorithm 2 Polygonal cross-section vertices generator
Input: ctrX, ctrY, aveRadius, irregularity, spikiness, numVerts
Output: vertices

Initialisation :
1: vertices = []
2: angularVariance = clip(irregularity, 0, 1) ∗ 2 ∗ π/numV erts
3: radiusVariance = clip(spikiness, 0, 1) ∗ aveRadius

Sample Angle Steps:
4: angleSteps = []
5: minTheta = (2 ∗ π/numV erts)− angularV ariance
6: maxTheta = (2 ∗ π/numV erts) + angularV ariance
7: sum = 0
8: for i = 0 to numV erts do
9: tmp = Uniform(lower, upper)

10: angleSteps.append(tmp)
11: sum = sum+ tmp
12: end for

Normalize vertex angles:
13: k = sum * 2 ∗ π
14: for i = 0 to numV erts do
15: angleSteps[i] = angleSteps[i]/sum
16: end for

Sample radii and generate Cartesian coordinates:
17: angle = Uniform(0, 2 ∗ π)
18: for i = 0 to numV erts do
19: ri = clip(Normal(aveRadius, spikiness), 0, aveRadius)
20: xi = ctrX + r i ∗ cos(angle)
21: yi = ctrY + r i ∗ sin(angle)
22: vertices.append((int(xi), int(yi))
23: angle = angle + angleSteps[i]
24: end for
25: return vertices

APPENDIX D
THE EFFECT OF INPUT IMAGE RESOLUTION ON PREDICTION ACCURACY

We explored the effect of using lower-resolution anti-aliased cross-section images to train our model to predict the first
three eigenfrequencies. As discussed in section IV-C, our models were programmed to adjust to their input image size. We
generated anti-aliased gray-scale cross-section images with 32×32, 48×48, 64×64, 96×96, and 128×128 pixel resolutions. We
trained each network four times, adopting 0.001, 0.0001, 0.00001, and 0.000001 as the learning rate, respectively, in an effort
to reduce a performance bias due to a single choice of learning rate.

As shown in the box plot in fig. 1, model performance was high at all resolutions, as indicated by an average mean absolute
percentage error of below 2.5%. Surprisingly, a larger standard deviation was obtained for images with higher resolution, and
in these cases models performed slightly worse than when applied to images with lower resolution. These findings indicated

1

TABLE II
ROOTS βn OF EQN. 4A IN ASCENDING ORDER

n βn
1 1.87510406871196116644530824107821416257011173353107...
2 4.69409113297417457643639177801981204938989673754577...
3 7.85475743823761256486100858276457045784854192923005...
4 10.9955407348754669906673491078547029396129727746516...

Fig. 1. This figure shows the effect of training our model on input images of different sizes. It is evident that the input image size did not significantly affect
model performance. Interestingly, some models trained with smaller images outperformed other models that were trained on larger input images.

that the resolution of our cross-section representation was over-refined. We encoded 1mm2 per pixel in our 128×128 pixel
image, and could potentially decrease the encoding resolution to 4mm2 per pixel given that the model trained on a 32×32
pixel image exhibited comparably good performance. This would also allow the same encoding to be applied to a wider beam
size range. Our model’s performance did not deteriorate even when trained on significantly less data in terms of pixel count,
and it was able to extract salient information even from a smaller image.

APPENDIX E
DATASET VS. LABEL PERFORMANCE TABLE

Table III shows the model performance when predicting twelve labels for seven datasets. The first four labels correspond to
static analysis results: volume maximum total displacement (TotDisp), total Von Mises stress(TotVonMises), curl displacement
in the y-direction (CurlDisp Y) scaled by a factor of 1,000, and principal strain in the x-direction (PrincStrain X) scaled by
1e6. The remaining eight labels pertain to the frequency analysis results: the first (f1) through third eigenfrequency (f3); the first
three eigenfrequencies together ([f1, f2, f3]); the RMS of the normalized participation factors of the first three eigenfrequencies
(npf1 RMS, npf2 RMS, npf3 RMS), and the RMS of the normalized participation factors of the first, second, and third
eigenfrequencies combined (npf123 RMS). The RMS of the normalized participation factors is a proxy measure for the mass
participation factor corresponding to each eigenfrequency. The RMS of the normalized participation factor allows us to predict
a single value rather than six for each eigenfrequency, while providing a sense of each frequency’s significance. We trained
our model to predict multiple beam properties simultaneously, for the first three eigenfrequencies, as well as for the RMS
normalized participation factors corresponding to the first three eigenfrequencies. All relevant details on the datasets used are
reported in table I.

2

TABLE III
MEAN AVERAGE PERCENTAGE ERROR AND STANDARD DEVIATION OF OUR MODEL TRAINED THREE TIMES ON DIFFERENT DATASET AND LABEL

COMBINATIONS

Label / Dataset
Li

ne
ar

ly
ex

tr
ud

ed

(L
in

ea
r

DS
)

Li
ne

ar
ly

ex
tr

ud
ed

(S
len

de
rB

ea
m

DS
)

50
%

ta
pe

re
d

(T
A5

0
DS

)

15
de

g.
tw

ist
ed

an
d

50
%

ta
pe

re
d

(T
W

15
TA

50
DS

)

15
de

g.
tw

ist
ed

(T
W

15
DS

)

30
de

g.
tw

ist
ed

an
d

50
%

ta
pe

re
d

(T
W

30
TA

50
DS

)

30
de

g.
tw

ist
ed

(T
wi

ste
dB

ea
m

DS
)

La
be

l D
es

cr
ip

tio
n

TotDisp 15.59% (±5.93) 4.54% (±0.75) 11.69% (±2.6) 19.23% (±6.23) 7.91% (±1.45) 11.55% (±3.01) 4.82% (±0.2) Volume maximum
total displacement

TotVonMises 15.51% (±2.91) 7.85% (±0.31) 9.42% (±0.46) 12.17% (±1.72) 19.49% (±6.71) 16.73% (±5.38) 8.70% (±0.56) Volume maximum
total Von Mises stress

CurlDisp Y* 7.32% (±0.61) 5.44% (±1.88) 9.13% (±2.92) 7.93% (±1.74) 9.35% (±2.58) 7.30% (±1.30) 7.39% (±4.72) Volume maximum
curl displacement
in Y-direction

PrincStrain X* 6.41% (±0.59) 5.07% (±0.12) 3.54% (±0.94) 3.94% (±0.97) 5.97% (±0.18) 3.34% (±0.32) 5.70% (±0.15) Volume maximum
principal strain
in X-direction

f1 2.41% (±0.45) 1.63% (±0.04) 2.04% (±0.1) 2.07% (±0.06) 2.23% (±0.15) 2.15% (±0.26) 2.22% (±0.08) First eigenfrequency

f2 2.61% (±0.62) 1.49% (±0.08) 2.12% (±0.07) 2.04% (±0.12) 1.97% (±0.09) 2.03% (±0.24) 1.92% (±0.05) Second eigenfrequency

f3 2.00% (±0.13) 1.43% (±0.01) 1.93% (±0.04) 3.39% (±2.11) 2.17% (±0.42) 1.84% (±0.07) 1.93% (±0.06) Third eigenfrequency

[f1, f2, f3] 6.56% (±0.33) 4.93% (±0.07) 6.48% (±0.26) 6.90% (±0.94) 6.58% (±0.20) 6.33% (±0.37) 6.26% (±0.14) First three
eigenfrequencies

npf1 RMS 0.44% (±0.14) 0.17% (±0.07) 1.12% (±0.91) 0.71% (±0.38) 0.60% (±0.04) 0.44% (±0.25) 0.32% (±0.08) Root Mean Squared
normalized participation
factor of the first
eigenfrequency

npf2 RMS 0.67% (±0.32) 0.22% (±0.03) 0.36% (±0.05) 1.37% (±1.02) 0.36% (±0.05) 1.06% (±0.49) 0.21% (±0.07) Root Mean Squared
normalized participation
factor of the second
eigenfrequency

npf3 RMS 9.95% (±2.37) 6.31% (±1.60) 0.66% (±0.25) 2.95% (±3.43) 7.90% (±1.69) 0.32% (±0.08) 8.17% (±0.66) Root Mean Squared
normalized participation
factor of the third
eigenfrequency

npf123 RMS 15.26% (±2.65) 6.21% (±0.79) 1.66% (±0.64) 5.04% (±3.60) 17.37% (±5.69) 4.28% (±4.79) 8.8% (±0.19) Root Mean Squared
normalized participation
factor of the first
three eigenfrequencies

* label values were scaled before training

APPENDIX F
TRAINING GRAPHS

When training models, a dynamic stopping condition was adopted whereby the training was aborted if the validation loss
had not improved after 50% of the maximum number of epochs that the algorithm should be run. The model that performed
best on the validation data was saved at each epoch. If the model failed to satisfy the stopping condition after the maximum
number of epochs had been reached, the number of training epochs was doubled. This approach ensured that stalled training
sessions would be aborted whereas those that yielded improvements would continue. We also generated training logs showing
the model being trained past the point of divergence between the training loss and the validation loss. Since the best model
was saved at each epoch, the training graph shows the training past the point where the best model was saved.

TABLE IV
PERFORMANCE OF MODEL USED FOR GEOMETRIC OPTIMIZATION OF BEAM CROSS-SECTIONS

dataset f1 MAE f1 MAPE f2 MAE f2 MAPE f3 MAE f3 MAPE Avg MAE Avg MAPE
test 2.8674 2.0664 3.5548 2.2883 14.0474 1.7375 6.8232 2.0307
train 2.1925 1.5608 2.7394 1.7755 10.6596 1.3132 5.1972 1.5498
validation 2.8848 2.0644 3.5594 2.3033 14.0507 1.7294 6.8316 2.0323

A. Training Graph of Model Used For Geometric Optimization of Beam Cross-Sections

Please see table IV for performance figures, and refer to the training graph in figure 2.

APPENDIX G
DATASETS

Our datasets are hosted on Mendeley Data. Access the following DOI to download the datasets: 10.17632/y3m8xm6kfk.

APPENDIX H
DATA GENERATION

For each dataset, we set the beam extrusion length, spikiness, irregularity, and the maximum volume from pixel errors
(V PE).

3

Fig. 2. Training graph of the model used for geometric optimization of beam cross-sections. We selected the model with the lowest validation error during
training.

V PE =
abs(V olume−NRPX ∗ L)

V olume
(1)

The V PE is a measure of how well the cross-section image captures the actual beam shape. The V PE is the absolute
percentage error between the volume determined from pixels and the actual beam volume computed by FreeCAD (see eqn.
1). Volume is computed from pixels by multiplying the number of pixels that make up the beam cross-section in the image
(NRPX) by the beam length (L). All pixels in a 128×128 pixel image are counted, whereby each pixel is scaled to the 1
mm2 size. By eliminating shapes that are outside of the V PE threshold, we ensured that the cross-section images adequately
represent the actual beam shape and thereby partially controlled the noise level in our dataset.

Please visit our cantilever beam dataset generator GitHub repository to access the code and instructions to reproduce our
datasets or generate new ones: https://github.com/ResearchMedia/CantileverBeamDatasetGenerator.

APPENDIX I
COMSOL MULTIPHYSICS: DATA ANALYSIS SCRIPTS

You can download the COMSOL Multiphysics applications used for the FEA static and fre-
quency analyses in this work from our cantilever beam dataset generator repository on GitHub:
https://github.com/ResearchMedia/CantileverBeamDatasetGenerator.

REFERENCES

[1] ARORA, R., BASU, A., MIANJY, P., AND MUKHERJEE, A. Understanding deep neural networks with rectified linear units. In 6th International Conference
on Learning Representations, ICLR 2018 - Conference Track Proceedings (2018).

4

