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METHODS 

Protein sequence and alignment: 

We assembled a dataset of ACE2 NCBI GenBank accessions that are known human ACE2 

orthologs or have high similarity to known orthologs as determined using BLASTx (Altschul et 

al. 1990). Using the R package rentrez and the accession numbers, we downloaded ACE2 protein 

sequences (Winter 2017). We supplemented these sequences by manually downloading four 

additional sequences from the MEROPS database (Rawlings et al. 2018).  

Structural Modeling of ACE2 orthologs bound to SARS-CoV-2 spike: 

Sequences of ACE2 orthologs were aligned using MAFFT (Katoh et al. 2002) and trimmed to 

the region resolved in the template crystal structure of hACE2 bound to the SARS-CoV-2 spike 

(PDB ID: 6m0j, Lan et al. 2020). Ambiguous positions in each sequence, artifacts of the 

sequencing method, were replaced by Glycine to minimize assumptions about the nature of the 

amino acid side-chain but still allow for modeling. For each ortholog, we generated 10 homology 

models using MODELLER 9.24 (Sali and Blundell 1993, Webb and Sali 2016), with restricted 

optimization (fastest schedule) and refinement (very_fast schedule) settings, and selected a 

representative model based on the normalized DOPE score. These representative models were 

then manually inspected and 27 were removed from further analysis due to large 

insertions/deletions or to the presence of too many ambiguous amino acids at the interface with 

spike. Each validated model was submitted for refinement to the HADDOCK web server (van 

Zundert et al. 2016), which ran 50 independent short molecular dynamics simulations in explicit 

solvent to optimize the interface between the two proteins. For each one of the animal species in 

our study, we assigned an average and standard deviation of the scores of the 10 best refined 

models, ranked by their HADDOCK score -- a combination of van der Waals, electrostatics, and 

desolvation energies. Code used for these analyses is freely available 

(https://zenodo.org/record/4517509). 

Trait data collection, processing, and transformations: 

We initially created a dataset of vertebrate traits to take advantage of the broad taxonomic 

breadth of ACE2 sequences available. However, since all known species susceptible to SARS-

CoV-2 are mammals, the primary focus of this study is on the modeling and prediction of 

susceptibility to SARS-CoV-2 in mammals, with vertebrate models included to show our 
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progression through these data. Vertebrate analyses are not discussed in the main manuscript. 

For the mammal-specific analyses, we added additional trait variables compiled for mammals 

(Supplementary Table 2). While we did not pursue the vertebrate modeling process further, 

information about how the vertebrate dataset was created, and how initial models were evaluated 

is reported here. The descriptions below describe the overall process of trait data collection and 

processing.  

As many trait databases use older taxonomic references (e.g., the third edition of Mammal 

Species of the World [Wilson and Reeder 2005], Birdlife V3 world list as modified by Jetz et al. 

2012), species names were reverted to older synonyms associated with trait data when 

appropriate. We primarily sourced trait data from AnAge (de Magalhães and Costa 2009), 

Amniote Life History Database (Myhrvold et al., 2015), and EltonTraits (Wilman et al., 2014) 

(Supplementary Table 2), and augmented these data with values from AmphiBIO (Oliveira et al., 

2017), FishBase (Froese and Pauly, 2019), (Meiri, 2018), (Meiri, 2019), and a database of 

CITES listed turtles and tortoises (“Open Data,” n.d.) to increase variable coverage across our 

species. 

We also engineered additional traits that have shown importance in predicting host pathogen 

associations in other contexts (e.g., habitat breadth using the percentage of ecoregions a species 

occupies; Dallas et al. 2017). We used the sf R package (Pebesma, 2018) to calculate range size 

from IUCN RedList (IUCN, 2020) and Birdlife International species range polygons (“BirdLife 

Data Zone,” 2021) and Food and Agriculture Organization of the United Nations (FAO) 

polygons of Major Fishing Areas (“FAO Fisheries & Aquaculture,” 2020). To determine overlap 

with ecoregions, we used polygons of terrestrial ecoregions from The Nature Conservancy 

(Olson and Dinerstein, 2002) and marine ecoregions from the Marine Ecoregions of the World 

by the World Wildlife Fund (Spalding et al., 2007). These polygons were rasterized with a 

resolution of ~100 km2 using the R package fasterize (Ross, 2020). We counted the number of 

unique ecoregions each species overlapped. To enable comparison across species, we expressed 

ecoregion breadth as the percentage of all terrestrial ecoregions (for terrestrial and freshwater 

species), marine ecoregions (for marine species according to FAO code), or both (for species 

found in both marine and freshwater environments according to their FAO Major Fishing Area). 

Given the coarseness of fish polygon data, we instead gathered georeferenced point data for all 

fishes in our dataset from the Global Biodiversity Information Facility (DOI: 

10.15468/DL.X55PZR) and checked for ecoregion overlap with these points. Mass specific 

production as described by (Hamilton et al., 2011) was calculated using adult body mass, 

birth/hatching weight, litter/clutch size, and number of litters/clutches per year.  

To account for potential effects on our models related to study effort, we used the wosr package 

(Baker, 2018) to determine the number of publications with each species name in their title or 

abstract in Web of Science. As this citation count could itself be biased towards species with 

recent name changes or a high degree of taxonomic uncertainty, we determined synonyms for 

each of our species using the backbone taxonomy from GBIF (GBIF Secretariat, 2019) and used 

a species’ name and all its synonyms to craft our queries. 

Following the results of initial structural modeling (described above), we observed that per-

residue energy decomposition analysis of HADDOCK scores for 29 species indicated that all 

species with strong predicted binding had in common a salt bridge between SARS-CoV-2 K417 
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and a negatively charged amino acid at position 30 in the ACE2 sequence (Rodrigues et al. 

2020). Given the apparent effect of amino acid 30 on overall binding strength, we constructed an 

additional feature to denote whether amino acid 30 is negatively charged (and therefore more 

likely to support strong binding) and included this feature as an additional trait in our models. 

We used a PROMALS3D (Pei et al., 2008) alignment of our ACE2 sequences to extract residue 

identity at position 30 and encode whether the residue at this position was negatively charged.  

To compare foraging strategy variables across birds and mammals and make these variables 

consistent across classes, we reclassified them from a continuous percentage to a binary variable. 

The bird specific EltonTraits variables of ForStrat-watbelowsurf and ForStrat-wataroundsurf 

were reclassified as ForStrat-ground to match with the definition given for this variable in the 

mammal EltonTraits data. Additionally, ForStrat-midhigh and ForStrat-canopy were merged 

with ForStrat-arboreal and ForStrat-pelagic with ForStrat-marine. For fishes, FAO Major Fishing 

Areas referencing inland and oceanic waters were used to determine values in ForStrat-ground 

(non-marine aquatic) and ForStrat-marine. As diet categories for fishes and terrestrial vertebrates 

did not match, the number of nonzero values in diet categories (e.g., fruit, seeds, invertebrates) 

for a species were counted and then divided by the total number of terrestrial or marine diet 

categories to enable comparison across classes. For any species without mean longevity 

information from the Amniote Life History Database, we added values for maximum longevity if 

they existed. Incubation and gestation time showed a bias in coverage related to class, so we 

merged the two variables, taking the mean in the event that values for both variables existed. We 

log transformed values for any variable with a heavily skewed distribution as shown by a density 

curve. For trait sources, units, coverage, and transformation information, see Supplementary 

Table 2. 

For prediction and imputation of missing values, the same trait variables mentioned in the main 

text for our mammal-only dataset (PanTHERIA traits, those from Amniote Life History 

Database, AnAge, EltonTraits, and those calculated for this study; traits with values reported in 

the “Coverage mammal (%)” column of Supplementary Table 2) were compiled for the 5,400 

mammal species in the EltonTraits dataset. We chose this set of species because they followed 

the taxonomy of the 2005 edition of Mammal Species of the World (Wilson and Reeder, 2005) 

and showed high coverage across their variables, making this dataset an ideal starting point to 

add variables from other trait databases. 

Given that cetaceans are the main taxonomic group in mammals with marine foraging strategies, 

we adjusted the ForStrat variables used with our mammal-only dataset to reduce possible bias. 

We condensed our foraging strategy variables into terrestrial and aquatic versions, with aquatic 

foraging strategies including those freshwater foraging species previously classified as 

ForStrat.ground (see Supplementary Table 2). 

Imputation of missing mammal trait values 

To boost the predictive power of our mammal dataset, we imputed missing values of variables. 

For variables with more than 1% and less than 95% coverage in the dataset of 5,400 mammals, 

we used boosted regression tree modeling to model each variable as a Gaussian outcome. As a 

relatively large sample size was typically present for training these models, parameterization 

explored learning rates of 0.001 and 0.01, maximum interaction depth of 1, 2, 3, and 4, and a 
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minimum number of observations in the terminal nodes of 2, 5, and 10. Combinations of 

parameters were compared using pseudo-R2. Those parameter combinations with the best 

performance were then evaluated through 10 rounds of bootstrapping. For this model evaluation, 

bootstrapping used different seeds to partition training and test datasets for each iteration (for 

more detailed information on the bootstrapping process we used, see the “Bootstrapping to 

describe precision and accuracy of models and predictions” subsection below). After model 

evaluation with all predictors and those with importance over one percent, we applied two filters 

to determine which variables to impute missing values for: 1) corrected mean test pseudo-R2 

over 0.75 for either set of bootstrap runs, and 2) correlation over 0.8 between original values and 

mean values predicted by these same bootstrap iterations. We built models of the variables that 

passed these filters using the full dataset and used them to predict missing values in our mammal 

specific dataset. 

A small number of imputed data values were biologically impossible: 107 data points (0.6% of 

all data), across 3 variables (female_maturity_d, mass_specific_production, and longevity_y) had 

negative values. We retained these values to avoid introducing bias associated with constraining 

values (Rodwell et al., 2014). 

Domesticated mammals 

Many of the mammals for which we found the strongest evidence of zoonotic capacity are 

domesticated to some degree (pets, farmed or traded animals, lab models; Oude Munnink et al. 

2020, Schlottau et al. 2020, Shi et al. 2020). Relative to their ancestors or wild conspecifics, 

domesticated animals often have distinctive traits (Wilkins et al. 2014) that are likely to 

influence the number of zoonoses found in these species (Cleaveland et al. 2001). To account for 

trait variation due to domestication in certain species, we modeled mammals in two ways. First, 

we incorporated a variable indicating whether the source populations from which trait data were 

collected are wild or non-wild (e.g., farmed, pets, laboratory animals; non-wild status confirmed 

by the Mammal Diversity Database [Mammal Diversity Database 2020]). Trait data collected 

from both wild and non-wild individuals were considered to represent non-wild species for the 

purposes of this model. In a second approach, we used only the wild species for model training 

and evaluation. The latter approach resulted in higher model accuracy, thus we used this 

approach in making predictions for mammals. For both approaches, pre-imputation trait values 

were used for all non-wild mammals during model training, evaluation, and prediction.  

  

Modeling: 

We used generalized boosted regression to generate predictions using species’ trait data as 

predictors of the following labels: 1) HADDOCK score (with a continuous distribution), 2) 

zoonotic capacity (a binary label based on a HADDOCK score threshold, described in detail 

below under Modeling), and 3) the charge at amino acid position 30 (a binary label, also 

described below under Modeling). Generalized boosted regression is an ensemble machine 

learning approach that accommodates non-random patterns of missing data, nonlinear 

relationships and interacting effects among predictors. In a boosted regression model, a sequence 

of regression models are fit by recursive binary splits, with each additional regression modelling 

https://paperpile.com/c/aI9Qxl/IBGw
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those instances that were poorly accounted for by the previous regression iterations in the tree 

(Elith et al. 2008). Although we created models using both vertebrate and mammal-only datasets, 

this study focuses on the results and predictions made from mammal-only models 

(Supplementary Table 3). Variables used for each model can be seen in Supplementary Table 2. 

Before modeling, we removed variables with near zero variation using the nearZeroVar function 

in the caret R package (Kuhn 2020). All variables with near zero variation were ordinal level 

taxonomic variables (specifically, Afrosoricida, Artiodactyla, Cingulata, Dasyuromorphia, 

Didelphimorphia, Diprotodontia, Erinaceomorpha, Lagomorpha, Macroscelidea, Monotremata, 

Perissodactyla, Pholidota, Proboscidea, Sirenia, Soricomorpha, and Tubulidentata). 

Grid search for selecting hyperparameters 

For all models, we applied a grid search to select optimal hyperparameters. This parameter 

search included fitting models with all possible combinations of learning rates of 0.0001, 0.001, 

0.01, and 0.1, maximum interaction depths among variables of 2, 3, and 4, and minimum number 

of observations in a terminal node in the decision tree (n.minobsinnode) of 2, 3, 4, or 5. We 

chose values for the minimum number of observations in terminal nodes smaller than the default 

of 10 due to the small size of the dataset. Each model included a maximum of 100,000 trees. For 

each set of hyperparameters, we graphed the training and test deviance by number of trees. For 

some hyperparameters, the optimal number of trees, with the lowest test deviance, was reached 

rapidly, followed by rapid increase in deviance with increasing number of trees. Based on visual 

inspection, we selected the set of hyperparameters that had the highest test accuracy and stably 

decreasing deviance curves. 

We produced three generalized boosted regression models. For the zoonotic capacity model (the 

main model described in this paper) and the amino acid 30 charge model, a Bernoulli error 

distribution was used for binary classification. We measured performance by the area under the 

receiver operating characteristic curve (AUC) on a hold-out test dataset (20% of the labelled 

data). For the continuous binding strength model, which used a Gaussian error distribution, 

performance was measured using pseudo-R2. 

Modeling 

We began by modeling HADDOCK score for all vertebrates using boosted regression. When we 

found a relatively low pseudo-R2 for this model (Supplementary Table 3), we designed two 

simpler models. One simpler model classified whether a species’ HADDOCK score is at or 

below -129. This value is between two HADDOCK scores: the domestic cat (Felis catus), which 

is currently the species with weakest predicted binding among animals with confirmed 

conspecific transmission (Bosco-Lauth et al., 2020), and the pig / wild boar (Sus scrofa), which 

shows the strongest predicted binding among species for which experimental inoculation failed 

to cause detectable infection (Shi et al., 2020). A second simpler model classified whether a 

species has a negative charge at amino acid residue 30 in ACE2, which appeared to be a useful 

proxy for susceptibility based on previous computational and empirical results suggesting that a 

negative charge at this residue is an important shared feature of species with strong binding to 

SARS-CoV-2 (Rodrigues et al., 2020). We fit amino acid 30 charge models including 

HADDOCK score as a predictor. Our trait-based models predicted nearly all mammal species to 

have a negative charge at amino acid 30, thus the results of this model were relatively 

https://paperpile.com/c/aI9Qxl/jWo5u
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uninformative except to identify a few species with particularly low risk of binding SARS-CoV-

2. For full model results, see Supplementary Table 3. 

Bootstrapping to describe precision and accuracy of models and predictions 

Applying the set of hyperparameters selected by grid search, we performed model fitting 50 

times for the zoonotic capacity model and 10 times for all other models, using different seeds 

each time for partitioning training and test datasets. Across these bootstrapping runs, we 

computed the mean training and test accuracy measure, AUC for binary classification and 

pseudo-R2 for models of the continuous HADDOCK score. 

To gain a more realistic measure of accuracy, we completed a second set of bootstrapping runs to 

develop a null distribution of accuracy scores. Patterns in the structure of the predictor data, 

independent of their relationship to the label, have the potential to influence apparent model 

accuracy. To account for this possibility in a null model, we randomly permuted labels prior to 

modeling. We repeated this procedure 50 times (for the zoonotic capacity model) or 10 times (for 

the other models) to produce a null distribution of accuracy statistics. For binary classification 

models, we corrected the test AUC by the difference between the null model test AUC mean 

(across bootstrap runs) and 0.5, the latter being the performance expected by a model that 

performed no better than chance. For models with Gaussian distribution (for HADDOCK 

scores), we reached a corrected pseudo-R2 by subtracting the absolute value of the null model 

pseudo-R2 mean, which was in some cases negative, from the observed model pseudo-R2 mean. 

We used all available data to train one model of zoonotic capacity that we used to make 

predictions for each of 5,400 mammal species. To develop confidence estimates around these 

zoonotic capacity predictions, each of the 50 bootstrap iterations were also used to make 

predictions on the full mammal dataset. Zoonotic capacity results for the full data predictions and 

50 bootstrap predictions can be found in Supplementary File 1. 

  

Standardizing species susceptibility predictions across studies: 

To place our methods and predictions in context with the variety of existing approaches used to 

predict species susceptibility to SARS-CoV-2, we collated the results of previous studies that 

made predictions on multiple animal species. These studies made predictions through sequence-

based methods (e.g., comparing species’ ACE2 amino acid sequence similarity with human 

ACE2), structure-based methods (e.g., creating three-dimensional representations of ACE2 

orthologs), and laboratory experiments (e.g., characterizing cell entry using pseudotyped 

viruses). We collated the predictions made by the following studies: Ahmed et al., 2021, Damas 

et al., 2020, Huang et al., 2020, Kumar et al., 2020, Lam et al., 2020, Li et al., 2020, Y. Liu et al., 

2020, Z. Liu et al., 2020, Luan et al., 2020, Mathavarajah et al., 2021, Melin et al., 2020, 

Rodrigues et al., 2020, Yan et al., 2020, and Zhao et al., 2020. 

Some of these studies categorized species susceptibility as a gradient. For instance, Damas et al., 

2020 ranked species as a series of five categories from very high to very low, and Mathavarajah 

et al., 2020 ranked species as high, medium and low. Other studies categorized species 
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susceptibility as a binary measure. For example, Huang et al., 2020 report whether each species 

is predicted to be susceptible or not. For those studies that did not assign species into explicit 

categories, we assigned categories based on the context of conclusions discussed by the authors 

of each study. For example, Rodrigues et al. 2020 discuss their species predictions by comparing 

each species’ HADDOCK score relative to empirical studies that confirm species as either 

positive or negative for SARS-CoV-2 infection. Based on the context of this discussion, we 

binned all of the species predictions from Rodrigues et al. 2020 into high (e.g., orangutan) and 

low (e.g., hedgehog) categories. For ease of comparison (Figure 1), we used three categories 

(low, medium, high) to organize predictions of species susceptibility across studies. Damas et al. 

2020 was the only study that used categories outside of these. Very low and very high 

predictions from Damas et al. 2020 were recategorized as low and high, respectively. All other 

categorizations made by study authors were retained. 

For the alluvial plot comparing species predictions by study method (Supplementary Figure 1), 

all species predictions were transformed from a character value to a numeric value (e.g., low 

susceptibility translates to a 1 and high susceptibility translates to a 3). For species with multiple 

predictions generated for a single method, predictions were averaged together and then rounded 

to the nearest whole number to create a single value for each species-method combination (e.g., 

predictions of high [3] and low [1] for Sciurus niger from sequence-based prediction would be 

translated to an overall prediction of medium [2] for this species-method pairing). 

Mapping: 

To identify areas for future surveillance work, we mapped the top 10% of predictions from the 

zoonotic capacity threshold model (min probability = 0.748, mean = 0.889, max = 0.988).  For 

representations of each species’ distribution, we used species range polygons from the IUCN 

Red List (IUCN 2020). Additionally, we focused on species found in human occupied or human 

modified landscapes because co-occurrence with humans may increase risk of spillback or 

secondary spillover. We used the IUCN API and the rredlist package in R version 4.0.0 to gather 

habitat associations for our subset of species predictions (Chamberlain, 2020; IUCN, 2020; R 

Core Team, 2020), and subset to species listed by IUCN as having artificial terrestrial habitat 

associations (e.g., urban areas, crops or pastures, heavily degraded landscapes, etc.). We filtered 

these species distributions to only those areas overlapping with areas classified as ‘artificial 

terrestrial’ (according to classifications created by Jung et al., 2020). 

Due to known issues matching high resolution environmental data with the much coarser 

resolution of range polygons (see Jetz et al., 2012 for a good explanation of the issue), we 

resampled the artificial terrestrial habitat raster from ~1 km2 to ~100 km2 in resolution using the 

resample function in the raster package in R (Hijmans, 2020). Polygons of species distribution 

data were rasterized at a resolution of ~100 km2 to match these data using the fasterize package 

in R (Ross, 2020). Small polygons may not be rasterized correctly using this method, so any 

polygon that produced an empty raster was converted to point data and rasterized using the 

rasterize function in the raster package (Hijmans, 2020). Any cells for rasterized species 

distributions that did not overlap a cell classified as artificial terrestrial were changed to NA. 

Regions with higher numbers of human COVID-19 cases may pose a higher risk of spillback 

transmission to co-occurring animals. We gathered cumulative case count data from the COVID-
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19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns 

Hopkins University (Dong et al., 2020). These data are mostly at the country level with the 

exception of state or province information for Australia, Brazil, Canada, Chile, Colombia, 

France, Germany, India, Italy, Japan, Mexico, the Netherlands, Pakistan, Peru, Russia, Spain, 

Sweden, Ukraine, the United Kingdom, and the United States of America. We considered 

hotspots as those administrative units (i.e., countries or states/provinces) with 100,000 or more 

cumulative COVID-19 cases. Species distributions were further restricted to areas within regions 

designated as hotspots to determine a final map of highest spillback risk (panel C of Figure 4 in 

the main text). 
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