Supplementary Information for

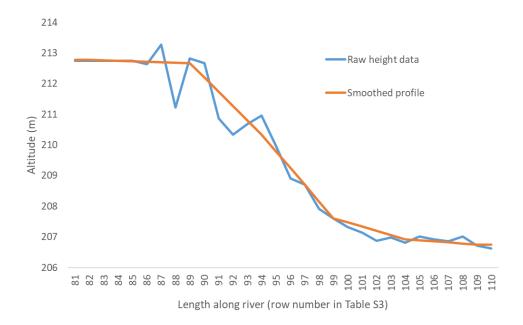
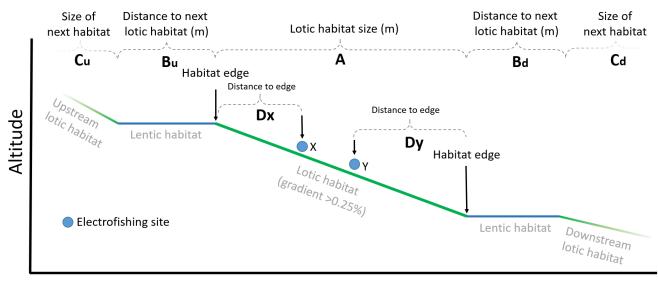
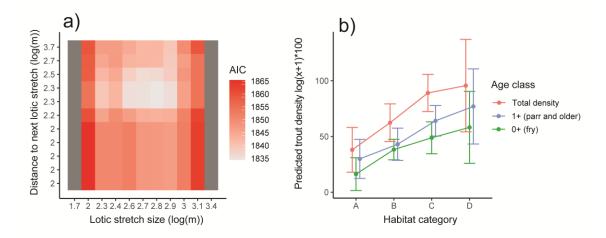
Size, connectivity and edge effects of stream habitats explain spatiotemporal variation in brown trout (*Salmo trutta*) density

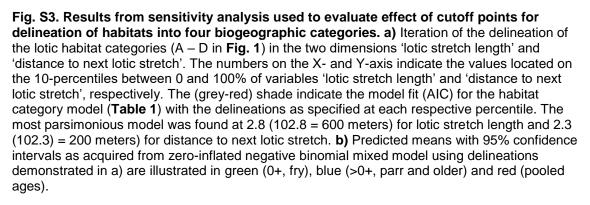
Carl Tamario*, Erik Degerman, Daniela Polic, Petter Tibblin, Anders Forsman*

*Corresponding authors Email: <u>Carl.Tamario@Inu.se</u> AND <u>Anders.Forsman@Inu.se</u>

This PDF file includes:

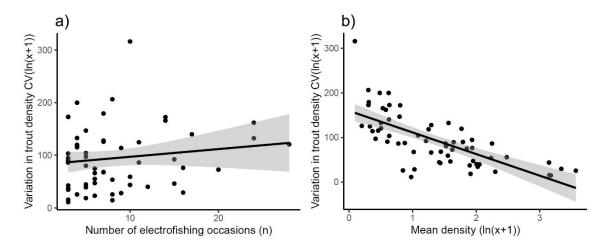
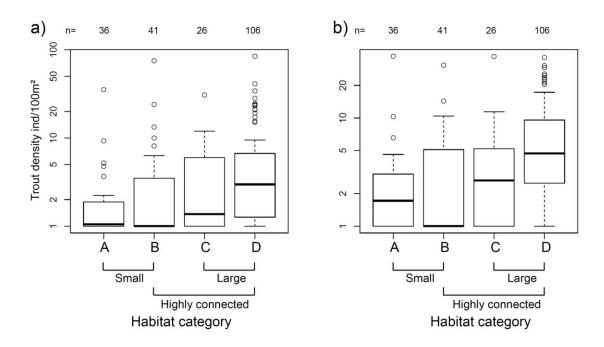
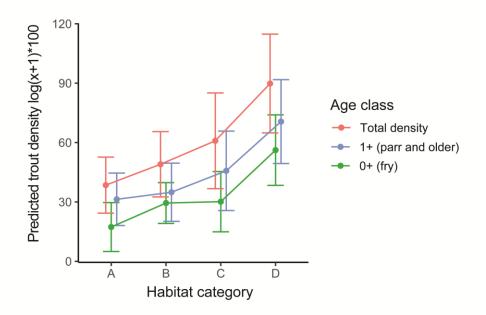
Figures S1 to S7 Tables S1 to S4


Fig. S1. An example of how the interpolating smoothing formula removed raw height data noise to facilitate calculation of location and lengths of lotic habitats. The formula is found in **Table S1**.

Length along river

Fig. S2. Schematic illustration of the data. Lotic habitats are identified by finding consecutive stretches of river with a gradient of at least 0.25%, the length of these are calculated as habitat size (**A**). From this habitat, the distance is measured to the next lotic habitat upstream (**B**_u) and downstream (**B**_d) – connectivity (or rather isolation) is measured as the distance to whichever of these is shortest. The size of the closest habitat is measured (**C**_u or **C**_d). Additionally, the distance to the closest edge is measured for each electrofishing site – for site X, the distance is shorter to the upstream edge (**D**_x). For site Y, the distance is shorter to the downstream edge (**D**_y). Measurements A, B and C are used for **Model 1**, while A, B, C, and D are used for the extended **Model 2** (see **Table 2** in main manuscript and **Tables S3** and **S4**).

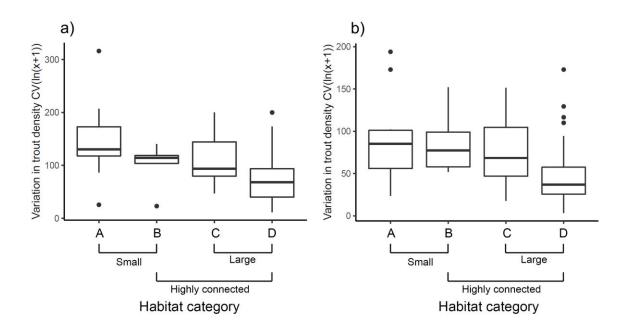

Fig. S4. The coefficient of variation in brown trout density was not associated with a) number of electrofishing occasions on a site but b) negatively related with the mean density.

Fig. S5. Boxplots showing mean brown trout density of age classes **a**) 0+, fry, and **b**) >0+, parr and older, per electrofishing site depending on habitat category (A = small, far; B = small, near; C = large, far; D = large, close, see **Fig. 1**). The data points represent raw data, not model outputs. Note the logarithmic scale on the y-axis. Values above represent sample sizes.

Fig. S6. Effect plot (predicted mean with 95 % CI) of island biogeographic categories (A = small, far; B = small, near; C = large, far; D = large, close, see **Fig. 1** for context) on brown trout density modelled by mixed zero-inflated negative binomial distribution models (**Table 1**). Green shows 0+, fry, blue shows 1+, parr and older, and red shows pooled data (as in **Fig. 1e** in main paper).

Fig. S7. Abundance fluctuations of brown trout vary according to length and isolation of lotic habitats. Coefficient of variation representing over-time sample variation in a) 0+, fry, and b) >0+, parr and older, brown trout density on electrofishing sites (with at least three sampling occasions) per island biography category.

Table S1. The Excel formula with which raw height data noise was removed to facilitatecalculation of location and lengths of lotic stretches. The raw height data and smoothed profile isillustrated in Fig S1.

	A	В	С
Row #	Raw height data	Smoothed profile	Formula
81	212.75	212.78	=B79-((B79-B84)/5)*2
82	212.75	212.77	=B79-((B79-B84)/5)*3
83	212.75	212.76	=B79-((B79-B84)/5)*4
			=IF(MEDIAN(A82:A86)>B79;IF((MEDIAN(B79;(MEDIAN(A82:A90))))>B79;B79;(ME
84	212.75	212.75	DIAN(B79;(MEDIAN(A82:A90))));MEDIAN(A82:A86))
85	212.75	212.73	=B84-((B84-B89)/5)*1
86	212.64	212.72	=B84-((B84-B89)/5)*2
87	213.27	212.70	=B84-((B84-B89)/5)*3
88	211.23	212.69	=B84-((B84-B89)/5)*4
			=IF(MEDIAN(A87:A91)>B84;IF((MEDIAN(B84;(MEDIAN(A87:A95))))>B84;B84;(ME
89	212.82	212.67	DIAN(B84;(MEDIAN(A87:A95))));MEDIAN(A87:A91))
90	212.67	212.20	=B89-((B89-B94)/5)*1
91	210.86	211.74	=B89-((B89-B94)/5)*2
92	210.34	211.27	=B89-((B89-B94)/5)*3
93	210.68	210.81	=B89-((B89-B94)/5)*4
94	210.96	210.34	=IF(MEDIAN(A92:A96)>B89;IF((MEDIAN(B89;(MEDIAN(A92:A100))))>B89;B89;(M EDIAN(B89;(MEDIAN(A92:A100)))));MEDIAN(A92:A96))
95	209.98	209.79	=B94-((B94-B99)/5)*1
96	208.91	209.25	=B94-((B94-B99)/5)*2
97	208.71	208.70	=B94-((B94-B99)/5)*3
98	207.92	208.16	=B94-((B94-B99)/5)*4
99	207.61	207.61	=IF(MEDIAN(A97:A101)>B94;IF((MEDIAN(B94;(MEDIAN(A97:A105))))>B94;B94;(MEDIAN(B94;(MEDIAN(A97:A105)))));MEDIAN(A97:A101))
100	207.32	207.47	=B99-((B99-B104)/5)*1
101	207.14	207.34	=B99-((B99-B104)/5)*2
102	206.87	207.20	=B99-((B99-B104)/5)*3
103	206.99	207.07	=B99-((B99-B104)/5)*4
104	206.81	206.93	=IF(MEDIAN(A102:A106)>B99;IF((MEDIAN(B99;(MEDIAN(A102:A110))))>B99;B99 ;(MEDIAN(B99;(MEDIAN(A102:A110)))));MEDIAN(A102:A106))
105	207.02	206.89	=B104-((B104-B109)/5)*1
106	206.93	206.86	=B104-((B104-B109)/5)*2
107	206.86	206.82	=B104-((B104-B109)/5)*3
108	207.02	206.79	=B104-((B104-B109)/5)*4
109	206.72	206.75	=IF(MEDIAN(A107:A111)>B104;IF((MEDIAN(B104;(MEDIAN(A107:A115))))>B104; B104;(MEDIAN(B104;(MEDIAN(A107:A115)))));MEDIAN(A107:A111))
110	206.62	206.75	=B109-((B109-B114)/5)*1

		A. Age clas	s: 0+ (fry)	B. Age class: 1+ (parr and older)				
Predictors	Estimate	std. Error	Z-value	р	Estimate	std. Error	Z-value	р
Count Part								
(Intercept)	3.57	0.19	19.14	<0.001	3.84	0.14	28.27	<0.001
Habitat category [B]	0.67	0.22	3.03	0.002	0.42	0.16	2.70	0.007
Habitat category [C]	0.50	0.24	2.11	0.035	0.36	0.16	2.22	0.027
Habitat category [D]	0.70	0.19	3.61	<0.001	0.51	0.13	3.79	<0.001
Zero-Inflated Part								
(Intercept)	0.06	0.46	0.12	0.904	-0.73	0.63	-1.16	0.247
Habitat category [B]	0.26	0.57	0.46	0.643	0.75	0.59	1.27	0.203
Habitat category [C]	-0.10	0.65	-0.15	0.879	-0.05	0.72	-0.07	0.946
Habitat category [D]	-1.35	0.53	-2.54	0.011	-1.62	0.68	-2.39	0.017

Table S2. Results from mixed zero-inflated binomial distribution model on the effects of the habitat categories (A = small, far; B = small, close; C = large, far, and D = large, close, see **Fig. 1**) on occurrence and density (count) of **a**) brown trout fry (0+) and **b**) brown trout parr and older (>0+).

Table S3. Associations of 0+ (fry) brown trout density with continuous variables lotic stretch size, distance to next lotic stretch, the direction (upstream or downstream) and the size of the next lotic stretch, distance to edge of nearest lentic stretch, and pike presence/absence. Results from mixed zero-inflated binomial distribution model of the effects of continuous data on size and isolation of lotic river habitats on occurrence and density of 0+ (fry) brown trout on the spatial only model (Model 1) or extended model with edge and predator effects (Model 2).

	Model	1: Only spat	ial variables	(AIC=1588)	Model 2: Added predator and edge effects (AIC=1581)				
Predictors	Estimate	std. Error	Z-value	р	Estimate	std. Error	Z-value	p	
Count Part									
(Intercept)	4.92	1.08	4.56	<0.001	5.01	1.07	4.69	<0.001	
Distance to next habitat	-0.19	0.17	-1.15	0.249	-0.21	0.16	-1.28	0.200	
Upstream	0.11	1.04	0.11	0.913	-0.66	1.04	-0.64	0.525	
Size of habitat	0.11	0.07	1.63	0.103	0.17	0.08	2.05	0.040	
Size of neighbouring habitat	-0.10	0.06	-1.71	0.087	-0.06	0.06	-1.05	0.294	
Distance to next habitat * Upstream	-0.01	0.20	-0.03	0.977	0.14	0.20	0.70	0.481	
Distance to edge					-0.10	0.06	-1.76	0.078	
Pike presence (1)					-0.98	0.37	-2.64	0.008	
Distance to edge * Pike presence (1)					0.13	0.08	1.71	0.087	
Zero-Inflated Part									
(Intercept)	0.56	2.16	0.26	0.796	0.55	2.16	0.26	0.799	
Size of habitat	-0.57	0.22	-2.62	0.009	-0.57	0.22	-2.61	0.009	
Distance to next habitat	0.45	0.28	1.62	0.106	0.45	0.28	1.62	0.105	

Table S4. Associations of >0+ (parr and older) brown trout abundance with continuous variables lotic stretch size, distance to next lotic stretch, the direction (upstream or downstream) and the size of the next lotic stretch, distance to edge of nearest lentic stretch, and pike presence/absence. Results from mixed zero-inflated binomial distribution model of the effects of continuous data on size and isolation of lotic river habitats on occurrence and density of 1+ (parr and older) brown trout on the spatial only model (Model 1) or extended model with edge and predator effects (Model 2).

	Model 1: (Only spatial var	1722)	Model 2: Added predator and edge effects (AIC=1719)				
Predictors	Estimate	std. Error	Z-value	р	Estimate	std. Error	Z-value	р
Count Model								
(Intercept)	4.52	0.79	5.69	<0.001	4.83	0.81	5.94	<0.001
Distance to next habitat	-0.18	0.11	-1.68	0.094	-0.20	0.11	-1.86	0.063
Upstream	-0.17	0.70	-0.24	0.811	-0.61	0.72	-0.84	0.403
Size of habitat	0.13	0.06	2.28	0.023	0.11	0.07	1.69	0.092
Size of neighbouring habitat	-0.04	0.04	-0.91	0.364	-0.02	0.04	-0.41	0.685
Distance to next habitat * Upstream	0.06	0.14	0.46	0.647	0.14	0.14	1.03	0.301
Distance to edge					-0.04	0.04	-0.97	0.330
Pike presence (1)					-0.73	0.30	-2.41	0.016
Distance to edge * Pike presence (1)					0.11	0.06	1.86	0.063
Zero-Inflated Model								
(Intercept)	5.01	2.77	1.80	0.071	5.00	2.77	1.80	0.071
Size of habitat	-0.96	0.29	-3.27	0.001	-0.96	0.29	-3.28	0.001
Distance to next habitat	-0.09	0.33	-0.28	0.777	-0.09	0.33	-0.28	0.779