
Supplementary Note C 

Kin-selection model for the intergenerational common-pool resource game 

The niche-construction models of Lehmann (2007) and Lehmann and Rousset (2010) can be 

adapted to model an ICPR scenario. The starting point is Wright’s infinite islands model (Wright 

1931). We consider a landscape with an infinite number of common-pool resources (“islands”), 

each with the capacity to support 𝑁𝑁 adults. Adults harvest the resource, which they use to produce 

clonal offspring, and then they die (non-overlapping generations). It is assumed that the number of 

juveniles produced per adult is large. Juveniles may stay at their natal resource pool or disperse to 

another pool with probability 𝑚𝑚. Each juvenile that settled at a pool has an equal chance of 

becoming one of the 𝑁𝑁 adults who obtain a territory and produce the next generation. Juveniles that 

miss out on a territory die. 

We consider a baseline scenario where the resource-use strategy 𝑦𝑦 is sustainable, and we consider a 

mutant strategy 𝑧𝑧 that over-exploits the resource pool and harms future generations. We ask, under 

what conditions can the over-exploiting strategy invade? 

Relative fecundity and fitness function 

Because 1 − 𝑚𝑚 proportion of juveniles do not disperse, relatedness builds up between individuals at 

a pool, and therefore individuals’ resource-use strategies are also related. Let 𝑧𝑧• be the phenotype of 

the focal individual (the mutant), 𝑧𝑧𝑅𝑅 be the average phenotype of all individuals at the pool 

including the focal individual, and 𝑧𝑧𝑡𝑡 be the average phenotype of individuals at the pool 𝑡𝑡 

generations ago. 

Over-exploitation of the pool benefits the individual but has a cost to future generations at the pool. 
Let 𝐵𝐵 be the incremental benefit of over-exploiting the pool, and 𝐶𝐶𝑡𝑡 be the cost of over-exploitation 

that occurred 𝑡𝑡 generations ago. In contrast to the niche-construction models in Lehmann (2007) 

and Lehmann and Rousset (2010), this model assumes that over-exploitation has no direct effects on 

other individuals sharing the pool in the current generation. The relative fecundity of the focal 

individual is 

𝑓𝑓• = 1 + 𝐵𝐵𝑧𝑧• − ∑ 𝐶𝐶𝑡𝑡∞
𝑡𝑡=1 𝑧𝑧𝑡𝑡, (SI A.1) 

where 𝐵𝐵𝑧𝑧• represents the benefit of over-exploiting the pool, and −𝐶𝐶𝑧𝑧𝑡𝑡 is the cost of 

overexploitation that occurred 𝑡𝑡 generations ago on the current generation. 



The relative fecundity in the landscape is 

𝑓𝑓𝑦𝑦 = 1 + 𝐵𝐵𝑦𝑦 + �𝐶𝐶𝑡𝑡

∞

𝑡𝑡=1

𝑦𝑦𝑡𝑡 
(SI A.2) 

where 𝑦𝑦 is the average phenotype in the landscape. 

The relative fecundity in the focal deme — including the focal individual’s fecundity — is 

𝑓𝑓𝑅𝑅 = 1 + 𝐵𝐵𝑧𝑧𝑅𝑅 −�𝐶𝐶𝑡𝑡

∞

𝑡𝑡=1

𝑧𝑧𝑡𝑡. 
(SI A.3) 

The non-dispersing portion of the locally produced juveniles will compete with the focal 

individual’s offspring for territories at the pool. 

The fitness of the focal individual is therefore (A-30 Lehmann and Rousset 2010) 

𝑤𝑤 =
(1 −𝑚𝑚)𝑓𝑓•

(1 −𝑚𝑚)𝑓𝑓𝑅𝑅 + 𝑚𝑚𝑓𝑓𝑦𝑦
+
𝑚𝑚𝑓𝑓•
𝑓𝑓𝑦𝑦

. 
(SI A.4) 

The first term is for offspring who stay at the natal pool, and the second term is for offspring who 

disperse. Each term is the proportion of offspring in each scenario (staying home, 1 −𝑚𝑚; or 

dispersing, 𝑚𝑚) multiplied by the chance of winning a territory in that scenario. 

Relatedness calculations 

Expressions for three different types of relatedness are needed before we can evaluate the inclusive 

fitness effect (in the next subsection). Relatedness is calculated as the probability that two 

individuals are identical by descent. Rousset (2013, p. 23–28) provides the general approach to 

relatedness calculations; here, we will focus on our particular scenario. 

Let 𝑅𝑅 be the relatedness between two different adults randomly chosen from the same pool (i.e. 

chosen without replacement). Let 𝑅𝑅𝑅𝑅 be the relatedness between any two adults randomly chosen 

from the same pool, including the possibility of choosing the same individual twice (i.e. chosen 

with replacement). Then 

𝑅𝑅𝑅𝑅 =
1
𝑁𝑁

+ �
𝑁𝑁 − 1
𝑁𝑁

�𝑅𝑅, (SI A.5) 

where the first term is when the same individual is chosen again (an individual has relatedness 1 to 

itself), and the second term is when a different individual is chosen. 



To obtain an expression for 𝑅𝑅, we follow the lineages of two adults backwards in time. In an infinite 

landscape, two adults will only have have non-zero relatedness if their current pool is also their 

natal pool, i.e. both did not disperse, which has probability (1 −𝑚𝑚)2. Therefore the relatedness 

between two pre-dispersal juveniles at the same pool is 

𝑅𝑅𝐽𝐽𝐽𝐽 =
1
𝑁𝑁

+ �
𝑁𝑁 − 1
𝑁𝑁

�𝑅𝑅,  

where the first term is when both juveniles have the same parent, and the second term is when they 

have different parents. 𝑅𝑅𝐽𝐽𝐽𝐽 is also equal to 𝑅𝑅𝑅𝑅 so 

𝑅𝑅 = (1 −𝑚𝑚)2𝑅𝑅𝑅𝑅 . (SI A.6) 

Let 𝑅𝑅𝑡𝑡 be the relatedness between an adult in the present generation and an adult residing at the 

same pool 𝑡𝑡 generations ago. To find 𝑅𝑅𝑡𝑡, we follow the lineage of the present-generation individual 

back in time. In an infinite landscape, the present-generation adult will only have non-zero 

relatedness to the −𝑡𝑡-generation adult if the lineage of the present-generation adult resided at the 

current pool for 𝑡𝑡 generations, which has probability (1 −𝑚𝑚)𝑡𝑡. This calculation takes us back in 

time to a particular pre-dispersal juvenile who is the offspring of some adult 𝑡𝑡 generations ago. The 

relatedness between a pre-dispersal juvenile and an adult is 

𝑅𝑅𝐽𝐽𝐽𝐽 =
1
𝑁𝑁

+ �
𝑁𝑁 − 1
𝑁𝑁

�𝑅𝑅,  

where the first term is when the target adult is the parent (reproduction is clonal so relatedness to 

parents is 1), and the second term is when a different individual is the parent. 𝑅𝑅𝐽𝐽𝐽𝐽 is also equal to 𝑅𝑅𝑅𝑅 

so 

𝑅𝑅𝑡𝑡 = (1 −𝑚𝑚)𝑡𝑡𝑅𝑅𝑅𝑅 . (SI A.7) 

Inclusive fitness effect 

Following Lehmann and Rousset (2010), the inclusive fitness effect is calculated 

𝑆𝑆𝐼𝐼𝐼𝐼 =
𝜕𝜕𝑤𝑤
𝜕𝜕𝑧𝑧•

+
𝜕𝜕𝑤𝑤
𝜕𝜕𝑧𝑧𝑅𝑅

𝑅𝑅𝑅𝑅 + �
𝜕𝜕𝑤𝑤
𝜕𝜕𝑧𝑧𝑡𝑡

∞

𝑡𝑡=1

𝑅𝑅𝑡𝑡 . 
(SI A.8) 

The invasion fitness of the mutant strategy is found by evaluating 𝑆𝑆𝐼𝐼𝐼𝐼 at the resident steady-state, 

which is the strategy of sustainable resource use, 𝑧𝑧• = 𝑧𝑧𝑅𝑅 = 𝑧𝑧𝑡𝑡 = 𝑦𝑦 = 𝑦𝑦𝑡𝑡 = 0. The partial derivative 



terms are 

𝜕𝜕𝑤𝑤
𝜕𝜕𝑧𝑧•

�
0

= 𝐵𝐵, 
𝜕𝜕𝑤𝑤
𝜕𝜕𝑧𝑧𝑅𝑅

�
0

= −𝐵𝐵(1 −𝑚𝑚)2, 
𝜕𝜕𝑤𝑤
𝜕𝜕𝑧𝑧𝑡𝑡

�
0

= −(1 − (𝑚𝑚− 1)2)𝐶𝐶𝑡𝑡. 
(SI A.9) 

Substituting into Eq. SI A.8 

𝑆𝑆𝐼𝐼𝐼𝐼 = 𝐵𝐵 − 𝐵𝐵𝑅𝑅𝑅𝑅(1 −𝑚𝑚)2 −�(1 − (1 −𝑚𝑚)2)
∞

𝑡𝑡=1

𝐶𝐶𝑡𝑡𝑅𝑅𝑡𝑡. 
(SI A.10) 

Substituting in expressions for 𝑅𝑅𝑅𝑅 (Eq. SI A.5), 𝑅𝑅 (Eq. SI A.6), and 𝑅𝑅𝑡𝑡 (Eq. SI A.7), and 

rearranging, 

𝑆𝑆𝐼𝐼𝐼𝐼 = (1 − 𝑅𝑅)�𝐵𝐵 −�
𝐶𝐶𝑡𝑡(1 −𝑚𝑚)𝑡𝑡

𝑁𝑁

∞

𝑡𝑡=1

�. 
(SI A.11) 

Following Lehmann (2007), we assume that the effects of over-exploitation decay at a constant rate 

with time 

𝐶𝐶𝑡𝑡 = 𝜆𝜆𝑡𝑡𝐶𝐶. (SI A.12) 

Substituting into Eq. SI A.8 

𝑆𝑆𝐼𝐼𝐼𝐼 = (1 − 𝑅𝑅)�𝐵𝐵 −
𝐶𝐶
𝑁𝑁
�(𝜆𝜆(1 −𝑚𝑚))𝑡𝑡
∞

𝑡𝑡=1

�, 
(SI A.13) 

which gives the following condition for the invasion of over-exploitation: 

𝐵𝐵
𝐶𝐶

>
1
𝑁𝑁
�(𝜆𝜆(1 −𝑚𝑚))𝑡𝑡
∞

𝑡𝑡=1

. 
(SI A.14) 

Given that 𝜆𝜆(1 −𝑚𝑚) < 1, then Eq. SI A.14 can be simplified 

𝐵𝐵
𝐶𝐶

>
𝜆𝜆(1 −𝑚𝑚)

𝑁𝑁(1 − 𝜆𝜆(1 −𝑚𝑚)). 
(SI A.15) 

Interpretation 

From Eq. SI A.15, over-exploitation of the common-pool resource is promoted by: high individual 

benefits to over-exploitation (high 𝐵𝐵), a low impact on the pool (low 𝐶𝐶) that is short-lasting (low 𝜆𝜆), 

a low probability that one’s own offspring will inherit the pool (high 𝑚𝑚), and a large number of 



individuals sharing the pool (high 𝑁𝑁). 
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