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1 Landfast ice data
Since the start of its regular satellite monitoring in 1979, the Antarctic sea ice cover has shown regionally contrasted variations as well as
considerable inter-annual variability [1]. The sea ice zone consists in three broad habitat types, from south to north [2]: (i) the landfast ice
(described above), (ii) the inner pack ice zone, which comprises large and/or consolidated floes separated by flaw leads, and (iii) the highly
dynamic marginal ice zone, which typically extends hundreds of kilometres south of the ice edge and has a sea ice concentration of 15–80%. The
latter habitat is generally made up of small floes in the presence of (and attenuating) waves and diffuse ice conditions, and, in the first two habitats,
the presence of grounded icebergs is an important feature (e.g., [3]) that could affect the pack and landfast icescape. Given the complexity of the
marginal ice zone, trends in sea ice cover are likely independent of changes in landfast ice. For instance, altered winds may lead to more extensive
large-scale sea ice, but possibly reduced landfast ice [4]. Nevertheless, at large scale, sea ice loss will ultimately affect landfast ice and thus the
breeding areas and breeding success of polar species. Therefore, landfast ice is a key element to monitor in order to assess how polar marine
populations will respond to sea ice habitat changes.

Three sources of satellite imagery were used to cover the 1979-2017 period and aggregate landfast ice data:

1. From 1979 to 1991, we used visible (when available) or thermal infrared images from AVHRR’s Global Area Coverage (GAC) mode, with a
spatial resolution of 4 kilometres per pixel (km/px). Images were downloaded on the National Oceanic and Atmospheric Administration
website (https://www.avl.class.noaa.gov/saa/products/search?datatype_family=AVHRR), sorted based on their cloud coverage, and the
images with the clearest sky were selected;

2. From 1992 to 1999, visible (when available) or thermal infrared images were obtained from the AVHRR Coastal Atlas of East Antarctica [5],
with a spatial resolution of 1.1 km/px. Data in this Atlas are presented for five selected areas along the East Antarctic coastline and named
according to the main Antarctic station in the region. In this study, we used the data from the Adélie Land area. The Atlas provides one
image per month over this 8‐year period, and given that the months of July, August, and September 1994 were missing in the Atlas, we
instead used original AVHRR images from the GAC as described above for this year only;

3. From 2000 to 2017, we used the landfast ice maps classified from [6] from Moderate-Resolution Imaging Spectroradiometer (MODIS)
images with a resolution of 1 km.

For the first two sets of images (i.e. 1979–1991 and 1992–1999), landfast ice contours were drawn on each image using the function locator in the
R package graphics. Landfast ice polygons between 136° E and 146° E were created using the functions Polygon, Polygons, and SpatialPolygons
from the R package sp. The spatial extent for determining the landfast ice region was chosen from the extent of breeding emperor penguin
foraging areas from Pointe Géologie in 1996 and 1997 [7]. Occasionally, thermal infrared images indicated that the landfast ice was warmer
(i.e. thinner) than in previous/upcoming images, suggesting some recent open water regions within the given month. We decided to exclude these
regions to be as conservative as possible, that is, open regions were categorized as ‘not landfast ice’. Distances between the penguin colony
location and the nearest landfast ice edge (i.e. proxy for open water and the access to the ocean) were then computed using the function
spDistsN1 of the R package sp. Finally, landfast ice areas were calculated from the landfast ice polygons, using the function gArea from the R
package rgeos. From 1979 to 1991 and for the year 1994 with missing data, a total of 33,713 images were sorted.

The fundamental techniques for detecting and mapping landfast ice from MODIS data are detailed in [6,8–10]. Here, we used the new dataset of
MODIS-derived landfast ice maps from 2000 to 2017 [6], rather than manually delineating from imagery as we did for the AVHRR data (1979-
1991). In this dataset, landfast ice was retrieved at a high spatio-temporal resolution (1 km, 15 d) by means of a hybrid manual/automated
algorithm which was able to retrieve the landfast ice edge automatically in 58 % of cases. Nearest distance between the emperor penguin colony
and the landfast ice edge was calculated by Haversine formulae [11], assuming a sphere of radius 6,356.75 km.

Fig. 1 Examples of landfast ice conditions for the three types of satellite images. The left, center and right columns correspond to AVHRR images
with a resolution of 4 km for 1980, AVHRR images with a resolution of 1 km for 1996, and MODIS images with a resolution of 1km, respectively;
from May to November from top to bottom, respectively. Red contours are delineating the landfast ice, blue dots represent the emperor penguin
colony and the green open circles correspond to the nearest landfast ice edge from the colony. These years were chosen as examples as they
represent intermediate breeding success just below 50% for 1980, low breeding success (below 25%) for 1996 and high breeding success (above
75%) for 2015.

2 Reproductive data
The data we used are the same as those used by Refs. [12,13] with updated estimates. The number of breeding pairs was estimated using the
count-back method: each year, counts of dead eggs (Nde) and dead chicks (Ndc) were made during the entire breeding period from laying to
fledging, and a direct count of live chicks (Nc) was made just before their departure at-sea. Dead chicks and dead eggs remain frozen on sea ice
around the colony and are collected and counted daily during the entire breeding season. The results of the count-back were added to the number
of fledged chicks counted in December just before fledging. The number of fledged chicks was estimated by direct counts and/or photograph
counts. The number of breeding pairs was estimated as Nde + Ndc + Nc.

In order to test and estimate trends over time, we fitted generalised additive mixed models (GAMM) for each component of the reproductive data
following Ref. [14]. We accounted for temporal autocorrelations using the AR-1 model, i.e. an auto-regressive model of order 1 that models
residuals at time t as a function of residuals at time t – 1, along with noise. For each component, we built a model with and without AR-1 and
compared Akaike Information Criterion (AIC; [15]), the model with the lowest AIC being selected. Models were fitted in R using the gamm function
with the package mgcv and nlme using a Gaussian distribution and identity link.

3 Climate window analysis
We performed a ‘climate window analysis’ using the R package climwin, following the steps described in Ref. [16]. Climate window analysis allows
to determine without any a priori hypothesis the best climate window(s) that identify potential climate signals. Indeed, the method compares, via the
slidingwin function, different models to determine the best window or group of best windows: AICs are used for ranking and comparing different
climate windows (i.e. candidate models), and then assess the models’ uncertainty and allow multi-model inferencing.

Two datasets were inputted in the slidingwin function: one that contained our monthly climate data, i.e. landfast ice or meteorological data covering
the 1979—2017 period, and one that contained information on the response variable, i.e. breeding, hatching, and fledging success. For each
climate window, a model was computed, and we then subtracted this model’s AICc (i.e. ‘corrected AIC’ for small sample sizes) from the AICc value
of the baseline model (i.e. a model containing no climate variable). This resulted in the delta AICc metric, which we then used to i) compare
individual climate windows, and ii) assess the explanatory power of a climate factor in all climate windows compared with the baseline model.
Using this slidingwin function, we compared all possible climate windows for our dataset, only considering the months during which emperor
penguins were incubating their egg or rearing their chick, i.e. May to November [17].

In order to account for over-fitting and the risk of incorrectly identifying suitable climate windows by statistical chance, we used the function
randwin, which computes the climate window analyses on a dataset where the climate signal has been removed. To do so, the time variable
(“date”) in the original dataset is randomly re-ordered so as to remove existing associations between climate and biological responses. The
slidingwin function is then ran on this new, randomised dataset, which enables us to estimate the p-value probability of randomly finding the
original result. We used this p-value to determine whether the climate signal had a significant influence on the breeding, hatching, and fledging
success.

Importantly, we used only one image per month, as one image per day was not available. Therefore, we selected the most precise and informative
image for each month for the time-series from 1979 to 1999. For the 2000–2017 period, we selected the image composite from all images acquired
within the first consecutive 15-days of the month. A total of 268 images were used for the climate window analysis.

Finally, long term time-series allowed us to test for nonlinear relationships. We first tested for linear relationships. Then, based on a visual
inspection of the relationships between breeding, hatching and fledging successes and the landfast ice and meteorological variables, we tested for
quadratic relationships when it was appropriate. When both relationships were significant, we determined the best fit between the two functions
based on the lowest AIC. The best fit was then used for the climate window analysis.

Below, we provide details on these analyses, which support the figures and statistics discussed in the main paper. We detail each step, plot and
result for the first response variable, i.e. ‘breeding success’, and ‘climate signal’, i.e. ‘nearest distance to the landfast ice edge’.

For significant climate signals, we only presented the best fit between the quadratic and linear functions based on the AIC. For non significant
climate signals, we presented the linear function by default.

3.1 Breeding success – 1979-2017
First, we tested the nearest distance to the landfast ice edge, then the landfast ice area, the number of days per month with
temperatures under -10°C, the number of days per month with winds above 28 m/s and the number of days per month with snow. The
effect of these climate variables on breeding success were tested between May and November.

3.1.1 Nearest distance to the landfast ice edge

fastice$NOW=as.numeric(as.character(fastice$NOW)) 
EmpClim <- slidingwin(xvar = list(openwater = fastice$NOW), 
                          cdate = fastice$Date, 
                          bdate = demo$Date, 
                          baseline = lm(demo$bs~1, data = demo), 
                          cinterval = "month", 
                          range = c(6, 0),#back to May=6, 0=November 
                          type = "absolute", # the climate window is calculated from an absolute start date,novem
ber 1st. Relative window is useful when different individuals with different phenology 
                          refday = c(01,11),  
                          stat = "mean", 
                          func = "lin", 
                          cmissing='method1')

EmpClim$combos

##   response   climate     type stat func DeltaAICc WindowOpen WindowClose 
## 1  demo$bs openwater absolute mean  lin    -17.68          3           0

head(EmpClim[[1]]$Dataset)

##    deltaAICc WindowOpen WindowClose    ModelBeta   Std.Error ModelBetaQ 
## 10 -17.68148          3           0 -0.007005203 0.001405447         NA 
## 9  -14.65462          3           1 -0.006503634 0.001446137         NA 
## 15 -14.17815          4           0 -0.007006402 0.001585404         NA 
## 28 -13.30966          6           0 -0.008186789 0.001914527         NA 
## 21 -12.90998          5           0 -0.007273108 0.001727695         NA 
## 1  -12.75636          0           0 -0.004840747 0.001156942         NA 
##    ModelBetaC  ModelInt Function Furthest Closest Statistics     Type K 
## 10         NA 0.8148469      lin        6       0       mean absolute 0 
## 9          NA 0.8035375      lin        6       0       mean absolute 0 
## 15         NA 0.8048836      lin        6       0       mean absolute 0 
## 28         NA 0.8131733      lin        6       0       mean absolute 0 
## 21         NA 0.8048443      lin        6       0       mean absolute 0 
## 1          NA 0.7076733      lin        6       0       mean absolute 0 
##     ModWeight sample.size Reference.day Reference.month Randomised 
## 10 0.51314168          39             1              11         no 
## 9  0.11296988          39             1              11         no 
## 15 0.08902206          39             1              11         no 
## 28 0.05766427          39             1              11         no 
## 21 0.04721926          39             1              11         no 
## 1  0.04372804          39             1              11         no

slidingwin provides a data frame containing information on all the sets of models reflecting all fitted climate windows. Models are ranked by ΔAICc
and the best model (i.e. the one with the smallest ΔAICc value) corresponds to the first row. slidingwin also returs the best model and the
associated climate vector used to fit this model.

Knowing this, we determined that the best climate window (i.e. first row of the data frame above) was 3 to 0 months before November,
i.e. climate values (in that case the nearest distance to the landfast ice edge) between August (3) and November (0). N.B. As can be seen
in the model weights (column ModWeight in the data frame above), there is no uncertainty in the exact best model, i.e. there is a drop in
the model weight between the first and the second model.

summary(EmpClim[[1]]$BestModel)

##  
## Call: 
## lm(formula = yvar ~ climate, data = modeldat) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.38600 -0.14768  0.02784  0.10091  0.40660  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  0.814847   0.064639  12.606 5.84e-15 *** 
## climate     -0.007005   0.001405  -4.984 1.48e-05 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.1942 on 37 degrees of freedom 
## Multiple R-squared:  0.4017, Adjusted R-squared:  0.3855  
## F-statistic: 24.84 on 1 and 37 DF,  p-value: 1.481e-05

The breeding success is higher for shorter distance to the landlandfast ice edge between August and November. The significance of the
relation will be tested using the function randwin.

Figure 3.1: Relation between the breeding success and the distance to the nearest landfast ice edge from 1979 to 2017 from the best model
considering a window from August to November.

IMPORTANT NOTE:

The slidingwin approach uses Akaike model weights in order to deal with uncertainty. This gives the probability that a given model is the best
model within the model set. However, it remains difficult to ascertain that the model with the lowest ΔAICc is, in fact, the best model, as several top
models can have very similar values of Akaike model weights.

As an alternative, it is possible to use a group of models making up a cumulative sum of Akaike model weights. Here, we followed Bailey and van
de Pol (2016) and we grouped all the models that include the top 95% of Akaike model weights. With such a subset, we can be 95%
confident that the best model is located within our new model set.

medwin(EmpClim[[1]]$Dataset)

## $`Median Window Open` 
## [1] 3.5 
##  
## $`Median Window Close` 
## [1] 0

Median window size from the 95% confidence set is slightly wider than our best window, mid-July (3.5) to November (0) instead of
August (3) to November (0).

In order to account for over-fitting and the risk of incorrectly identifying suitable climate windows by statistical chance, we used the function
randwin, which computes the climate window analyses on a dataset where the climate signal has been removed. To do so, the time variable
(‘date’) in the original dataset is randomly re-ordered so as to remove existing associations between climate and biological responses. The
slidingwin function is then ran on this new, randomised dataset, which enables us to estimate the p-value probability of randomly finding the
original result. We used this p-value to determine whether the climate signal had a significant influence on the breeding, hatching, and fledging
success:

EmpClim.RAND<-randwin(repeats=5, 
                          xvar = list(openwater = fastice$NOW), 
                          cdate = fastice$Date, 
                          bdate = demo$Date, 
                          baseline = lm(demo$bs~1, data = demo), 
                          cinterval = "month", 
                          range = c(6, 0), 
                          type = "absolute", 
                          refday = c(01,11),  
                          stat = "mean", 
                          func = "lin", 
                          cmissing='method1')

EmpClim.RAND[[1]]

##     deltaAICc WindowOpen WindowClose    ModelBeta   Std.Error ModelBetaQ 
## 23  1.1435702          6           5 -0.002148100 0.001990366         NA 
## 2  -0.2680616          1           1 -0.002274100 0.001418135         NA 
## 18 -1.1120200          5           3 -0.003282556 0.001770571         NA 
## 26 -2.3218320          6           2 -0.004743168 0.002185259         NA 
## 11  0.2566930          4           4  0.001992263 0.001393973         NA 
##    ModelBetaC  ModelInt Function Furthest Closest Statistics     Type K 
## 23         NA 0.5813963      lin        6       0       mean absolute 0 
## 2          NA 0.6220026      lin        6       0       mean absolute 0 
## 18         NA 0.6491440      lin        6       0       mean absolute 0 
## 26         NA 0.6884145      lin        6       0       mean absolute 0 
## 11         NA 0.4663071      lin        6       0       mean absolute 0 
##     ModWeight sample.size Reference.day Reference.month Randomised Repeat 
## 23 0.05494920          39             1              11        yes      1 
## 2  0.06847542          39             1              11        yes      2 
## 18 0.09707554          39             1              11        yes      3 
## 26 0.10738666          39             1              11        yes      4 
## 11 0.07280730          39             1              11        yes      5 
##    WeightDist 
## 23  0.9285714 
## 2   0.8928571 
## 18  0.8928571 
## 26  0.8214286 
## 11  0.9285714

Rows in the randwin output show each of the top models from the five repeats used. We can see that the ΔAICc values from the randwin output
are much larger (i.e. less negative) than those in our slidingwin analysis, pointing out that the large negative values we observed in our slidingwin
analysis are unlikely to have occurred by chance. However, to make this conclusion with more certainty we need to use the pvalue function.

pvalue(dataset=EmpClim[[1]]$Dataset, datasetrand=EmpClim.RAND[[1]],metric='C',sample.size=39) 

## [1] 0.006271682

The p-value above is lower than 0.05, we can conclude that the likelihood of observing such a climate signal by chance is very low.
Therefore, distance to foraging grounds (landfast ice edge) does have a significant effect on the breeding success.

We can visualise this result using the plothist function, from which we obtain an histogram of the ΔAICc values extracted from randwin and a
dashed line to show the ΔAICc of the observed result from slidingwin.

Figure 3.2: Histogram of the ΔAICc. The value of ΔAICc from the real data represented by the dashed line is very different to those values obtained
from randomised data represented by the pink bars. At the top of the graph we can see the outcome of the pvalue calculated.

For all fitted climate windows, we can also plot a heat map of all ΔAICc values using the function plotdelta. This plot allows to determine if multiple
peaks representing different climate windows may be present in the data.

Figure 3.3: Distribution of ΔAICc values across all tested climate windows. Blue regions represent climate windows with limited strength (AICc
values similar to the null model) while red regions show strong windows.

In this case, there is only a single clear ΔAICc peak (red), which is mirrored in the small size of the confidence set (C). We can therefore
discount the possibility of multiple peaks.

Another way to measure confidence in a given climate signal is to measure the percentage of windows included within a confidence set (C). If the
models within the set represent a small percentage of the total models tested (i.e. C is low), there is confidence in observing a real climate signal.
However, when no climate signal occurs, the confidence set is likely to be much larger (i.e. C is high). climwin includes the plotting function
plotweights allowing to visualise different confidence sets for a sliding window analysis and calculates the percentage of models within the 95%
confidence set:

Figure 3.4: Model weights plot. All models within the top 95% of model weights are shaded (the 95% confidence set).

We observe that the top 95% of model weights is within a small region roughly corresponding to the peak seen in ΔAICc above. We can
be 95% confident that the best climate window corresponds to 36% of the total fitted models. This gives us further confidence in our
results.

Regarding the strength of the detected climate signal, R^2 estimates using slidingwin can be biased at low sample size and/or effect size. A k-fold
cross-validation allows to improve the accuracy of the R^2 estimate.

EmpClim_k <- slidingwin(xvar = list(openwater = fastice$NOW), 
                        cdate = fastice$Date, 
                        bdate = demo$Date, 
                        baseline = lm(demo$bs~1, data = demo), 
                        cinterval = "month", 
                        range = c(6, 0), 
                        type = "absolute",  
                        refday = c(01,11),  
                        stat = "mean", 
                        func = "lin", 
                        cmissing='method1', 
                        k=10)

EmpClim_k$combos

##   response   climate     type stat func DeltaAICc WindowOpen WindowClose 
## 1  demo$bs openwater absolute mean  lin     -4.16          3           0

summary(EmpClim_k[[1]]$BestModel) 

##  
## Call: 
## lm(formula = yvar ~ climate, data = modeldat) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.38600 -0.14768  0.02784  0.10091  0.40660  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  0.814847   0.064639  12.606 5.84e-15 *** 
## climate     -0.007005   0.001405  -4.984 1.48e-05 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.1942 on 37 degrees of freedom 
## Multiple R-squared:  0.4017, Adjusted R-squared:  0.3855  
## F-statistic: 24.84 on 1 and 37 DF,  p-value: 1.481e-05

This shows that the best model selected using cross-validation has the same window duration and slope to the one calculated in our
first sliding window analysis.

Two more plots can be found in the general plot summary:

Figure 3.5: Model coefficients plot. The plotbeta function represents the spread of model coefficients across all fitted climate windows.

We observe that windows around our best model show a negative relationship between distance to nearest landfast ice edge and
breeding success (red), while other models show little response (blue).

Figure 3.6: Median window plot. The functon plotwin displays boxplots of the start and end point of all climate windows of the 95% confidence set.
The values above each boxplot represent the median start and end time for these models.

The median start and end point of the top models correspond almost exactly with our best window determined using ΔAICc. In cases
where model weights are more spread, this match would be less likely.

3.1.2 Landfast ice area (136 – 146 °E)

fastice$FIA=as.numeric(as.character(fastice$FIA)) 
 
EmpClim <- slidingwin(xvar = list(openwater = fastice$FIA), 
                          cdate = fastice$Date, 
                          bdate = demo$Date, 
                          baseline = lm(demo$bs~1, data = demo), 
                          cinterval = "month", 
                          range = c(6, 0),#back to May=6, 0=November 
                          type = "absolute",  
                          refday = c(01,11),  
                          stat = "mean", 
                          func = "lin", 
                          cmissing='method1')

EmpClim$combos

##   response   climate     type stat func DeltaAICc WindowOpen WindowClose 
## 1  demo$bs openwater absolute mean  lin     -7.07          4           3

head(EmpClim[[1]]$Dataset)

##    deltaAICc WindowOpen WindowClose     ModelBeta    Std.Error ModelBetaQ 
## 12 -7.070827          4           3 -1.692844e-05 5.323380e-06         NA 
## 15 -6.844125          4           0 -1.946193e-05 6.204412e-06         NA 
## 21 -5.984194          5           0 -1.881990e-05 6.337722e-06         NA 
## 10 -5.710153          3           0 -1.763326e-05 6.049173e-06         NA 
## 14 -5.563214          4           1 -1.821142e-05 6.311379e-06         NA 
## 13 -5.481474          4           2 -1.767072e-05 6.159196e-06         NA 
##    ModelBetaC  ModelInt Function Furthest Closest Statistics     Type K 
## 12         NA 0.9213265      lin        6       0       mean absolute 0 
## 15         NA 0.9726322      lin        6       0       mean absolute 0 
## 21         NA 0.9500521      lin        6       0       mean absolute 0 
## 10         NA 0.9309184      lin        6       0       mean absolute 0 
## 14         NA 0.9549486      lin        6       0       mean absolute 0 
## 13         NA 0.9412080      lin        6       0       mean absolute 0 
##     ModWeight sample.size Reference.day Reference.month Randomised 
## 12 0.12713040          39             1              11         no 
## 15 0.11350670          39             1              11         no 
## 21 0.07383971          39             1              11         no 
## 10 0.06438472          39             1              11         no 
## 14 0.05982398          39             1              11         no 
## 13 0.05742826          39             1              11         no

summary(EmpClim[[1]]$BestModel)

##  
## Call: 
## lm(formula = yvar ~ climate, data = modeldat) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.44765 -0.15348  0.00104  0.15794  0.38384  
##  
## Coefficients: 
##               Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  9.213e-01  1.274e-01   7.232 1.39e-08 *** 
## climate     -1.693e-05  5.323e-06  -3.180  0.00298 **  
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.2225 on 37 degrees of freedom 
## Multiple R-squared:  0.2146, Adjusted R-squared:  0.1934  
## F-statistic: 10.11 on 1 and 37 DF,  p-value: 0.002976

We determined that the best climate window (i.e. first row of the data frame above) was 4 to 3 months before November, i.e. climate
values (in that case the landfast ice area) between July (4) and August (3). N.B. As can be seen in the model weights (column ModWeight
in the data frame above), there is some uncertainty in the exact best model, i.e. the two first models are very closed in their model
weight values.

From this first step, we can draw the conclusion that the breeding success is higher for smaller landfast ice area between July and
August. The significance of this relation will be tested later on (see below) using the function randwin.

medwin(EmpClim[[1]]$Dataset)

## $`Median Window Open` 
## [1] 4 
##  
## $`Median Window Close` 
## [1] 1

Median window size from the 95% confidence set is wider than our best window, July (4) to October (1) instead of July(4) to August(3).

EmpClim.RAND<-randwin(repeats=5, 
                      xvar = list(openwater = fastice$FIA), 
                      cdate = fastice$Date, 
                      bdate = demo$Date, 
                      baseline = lm(demo$bs~1, data = demo), 
                      cinterval = "month", 
                      range = c(6, 0), 
                      type = "absolute",  
                      refday = c(01,11),  
                      stat = "mean", 
                      func = "lin", 
                      cmissing='method1')

pvalue(dataset=EmpClim[[1]]$Dataset, datasetrand=EmpClim.RAND[[1]],metric='C',sample.size=39) 

## [1] 0.4994297

The p-value above is higher than 0.05, we can conclude that the likelihood of observing such a climate signal by chance is high.
Therefore, the landfast ice area has no significant effect on the breeding success.

Figure 3.7: Summary of the climate window analysis linking the breeding success to the landfast ice area from May to November. For details of
each panel, please refer to the description of each panel above.The best model presented on the bottom right panel considered a time window
between July and August.

3.1.3 Number of days per month with temperatures under -10°C

MTO$JINF10=as.numeric(as.character(MTO$JINF10)) 
EmpClim <- slidingwin(xvar = list(openwater = MTO$JINF10), 
                          cdate = MTO$Date, 
                          bdate = demo$Date, 
                          baseline = lm(demo$bs~1, data = demo), 
                          cinterval = "month", 
                          range = c(6, 0), 
                          type = "absolute", 
                          refday = c(01,11),  
                          stat = "mean", 
                          func = "lin", 
                          cmissing='method1')

EmpClim$combos

##   response   climate     type stat func DeltaAICc WindowOpen WindowClose 
## 1  demo$bs openwater absolute mean  lin      0.75          2           0

head(EmpClim[[1]]$Dataset)

##    deltaAICc WindowOpen WindowClose  ModelBeta Std.Error ModelBetaQ ModelBetaC 
## 6  0.7524914          2           0 -0.8304494 0.6671606         NA         NA 
## 5  0.8740249          2           1 -0.9197253 0.7692569         NA         NA 
## 7  0.8944063          3           3  0.9094824 0.7660889         NA         NA 
## 12 0.9396857          4           3  1.0425906 0.8924343         NA         NA 
## 25 1.2178316          6           3  1.1423397 1.0930722         NA         NA 
## 22 1.2519899          6           6  0.6288531 0.6111341         NA         NA 
##       ModelInt Function Furthest Closest Statistics     Type K  ModWeight 
## 6   1.18512093      lin        6       0       mean absolute 0 0.05876575 
## 5   1.39505803      lin        6       0       mean absolute 0 0.05530108 
## 7  -0.34022129      lin        6       0       mean absolute 0 0.05474038 
## 12 -0.46965944      lin        6       0       mean absolute 0 0.05351500 
## 25 -0.56328673      lin        6       0       mean absolute 0 0.04656685 
## 22 -0.06680461      lin        6       0       mean absolute 0 0.04577828 
##    sample.size Reference.day Reference.month Randomised 
## 6           39             1              11         no 
## 5           39             1              11         no 
## 7           39             1              11         no 
## 12          39             1              11         no 
## 25          39             1              11         no 
## 22          39             1              11         no

summary(EmpClim[[1]]$BestModel)

##  
## Call: 
## lm(formula = yvar ~ climate, data = modeldat) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.52239 -0.17389  0.08412  0.18896  0.30639  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   1.1851     0.5259   2.254   0.0302 * 
## climate      -0.8304     0.6672  -1.245   0.2210   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.246 on 37 degrees of freedom 
## Multiple R-squared:  0.04019,    Adjusted R-squared:  0.01425  
## F-statistic: 1.549 on 1 and 37 DF,  p-value: 0.221

The number of days per month with temperatures under -10°C does not have a significant influence on the breeding success before
even testing it by randomization so we stop the analysis here.

3.1.4 Number of days per month with winds above 28m/s

MTO$JSUP28=as.numeric(as.character(MTO$JSUP28)) 
EmpClim <- slidingwin(xvar = list(openwater = MTO$JSUP28), 
                          cdate = MTO$Date, 
                          bdate = demo$Date, 
                          baseline = lm(demo$bs~1, data = demo), 
                          cinterval = "month", 
                          range = c(6, 0), 
                          type = "absolute", 
                          refday = c(01,11),  
                          stat = "mean", 
                          func = "lin", 
                          cmissing='method1')

EmpClim$combos

##   response   climate     type stat func DeltaAICc WindowOpen WindowClose 
## 1  demo$bs openwater absolute mean  lin     -0.65          1           0

head(EmpClim[[1]]$Dataset)

##        deltaAICc WindowOpen WindowClose  ModelBeta Std.Error ModelBetaQ 
## 3  -0.6458960348          1           0  0.6998384 0.4069985         NA 
## 2  -0.0008210545          1           1  0.4653848 0.3067821         NA 
## 11  0.5507617740          4           4 -0.4526411 0.3422307         NA 
## 4   0.6943297841          2           2 -0.3733725 0.2945388         NA 
## 13  0.7139202076          4           2 -0.6638093 0.5268408         NA 
## 1   1.0660296688          0           0  0.3788008 0.3400725         NA 
##    ModelBetaC  ModelInt Function Furthest Closest Statistics     Type K 
## 3          NA 0.3413871      lin        6       0       mean absolute 0 
## 2          NA 0.3972886      lin        6       0       mean absolute 0 
## 11         NA 0.6791624      lin        6       0       mean absolute 0 
## 4          NA 0.6951524      lin        6       0       mean absolute 0 
## 13         NA 0.7780116      lin        6       0       mean absolute 0 
## 1          NA 0.4355957      lin        6       0       mean absolute 0 
##     ModWeight sample.size Reference.day Reference.month Randomised 
## 3  0.10885745          39             1              11         no 
## 2  0.07884641          39             1              11         no 
## 11 0.05984216          39             1              11         no 
## 4  0.05569700          39             1              11         no 
## 13 0.05515410          39             1              11         no 
## 1  0.04625069          39             1              11         no

summary(EmpClim[[1]]$BestModel)

##  
## Call: 
## lm(formula = yvar ~ climate, data = modeldat) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.53565 -0.18618  0.08531  0.19878  0.33433  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.3414     0.1176   2.902  0.00621 ** 
## climate       0.6998     0.4070   1.720  0.09388 .  
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.2416 on 37 degrees of freedom 
## Multiple R-squared:  0.074,  Adjusted R-squared:  0.04897  
## F-statistic: 2.957 on 1 and 37 DF,  p-value: 0.09388

The number of days per month with with winds above 28m/s does not have a significant influence on the breeding success before even
testing it by randomization so we stop the analysis here.

3.1.5 Number of days per month with snow

MTO$JNeige=as.numeric(as.character(MTO$JNeige)) 
    EmpClim <- slidingwin(xvar = list(openwater = MTO$JNeige), 
                          cdate = MTO$Date, 
                          bdate = demo$Date, 
                          baseline = lm(demo$bs~1, data = demo), 
                          cinterval = "month", 
                          range = c(6, 0), 
                          type = "absolute",  
                          refday = c(01,11),  
                          stat = "mean", 
                          func = "lin", 
                          cmissing='method1')

EmpClim$combos

##   response   climate     type stat func DeltaAICc WindowOpen WindowClose 
## 1  demo$bs openwater absolute mean  lin        -2          3           1

head(EmpClim[[1]]$Dataset)

##     deltaAICc WindowOpen WindowClose ModelBeta Std.Error ModelBetaQ ModelBetaC 
## 9  -2.0022734          3           1 0.9468212 0.4528837         NA         NA 
## 7  -1.5938601          3           3 0.5310927 0.2675662         NA         NA 
## 10 -1.2217710          3           0 0.9764681 0.5181754         NA         NA 
## 8  -0.6782880          3           2 0.6534571 0.3779092         NA         NA 
## 14 -0.2326260          4           1 0.9131014 0.5734339         NA         NA 
## 27 -0.2143873          6           1 1.2674979 0.7989148         NA         NA 
##     ModelInt Function Furthest Closest Statistics     Type K  ModWeight 
## 9  0.2524263      lin        6       0       mean absolute 0 0.12051569 
## 7  0.3452659      lin        6       0       mean absolute 0 0.09825570 
## 10 0.2691080      lin        6       0       mean absolute 0 0.08157548 
## 8  0.3125544      lin        6       0       mean absolute 0 0.06216470 
## 14 0.2581489      lin        6       0       mean absolute 0 0.04974730 
## 27 0.1619650      lin        6       0       mean absolute 0 0.04929570 
##    sample.size Reference.day Reference.month Randomised 
## 9           39             1              11         no 
## 7           39             1              11         no 
## 10          39             1              11         no 
## 8           39             1              11         no 
## 14          39             1              11         no 
## 27          39             1              11         no

summary(EmpClim[[1]]$BestModel)

##  
## Call: 
## lm(formula = yvar ~ climate, data = modeldat) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -0.5036 -0.1047  0.0299  0.1886  0.3288  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   0.2524     0.1392   1.813   0.0779 . 
## climate       0.9468     0.4529   2.091   0.0435 * 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.2374 on 37 degrees of freedom 
## Multiple R-squared:  0.1056, Adjusted R-squared:  0.08148  
## F-statistic: 4.371 on 1 and 37 DF,  p-value: 0.04349

We determined that the best climate window (i.e. first row of the data frame above) was 3 to 1 months before November, i.e. climate
values (in that case the number of days per month with snow) between August (3) and October (1). N.B. As can be seen in the model
weights (column ModWeight in the data frame above), there is no uncertainty in the exact best model, i.e. there is a drop in the model
weight between the first and the second model.

The breeding success is higher for more number of days with snow per month between August and October. The significance of the
relation will be tested using the function randwin.

medwin(EmpClim[[1]]$Dataset)

## $`Median Window Open` 
## [1] 4 
##  
## $`Median Window Close` 
## [1] 1.5

Median window size from the 95% confidence set is different than our best window, July (4) to mid-September (1.5) instead of August (3)
to October (1).

EmpClim.RAND<-randwin(repeats=5, 
                          xvar = list(openwater = MTO$JNeige), 
                          cdate = MTO$Date, 
                          bdate = demo$Date, 
                          baseline = lm(demo$bs~1, data = demo), 
                          cinterval = "month", 
                          range = c(6, 0), 
                          type = "absolute",  
                          refday = c(01,11),  
                          stat = "mean", 
                          func = "lin", 
                          cmissing='method1')

pvalue(dataset=EmpClim[[1]]$Dataset, datasetrand=EmpClim.RAND[[1]],metric='C',sample.size=39)

## [1] 0.8200462

The p-value above is higher than 0.05, we can conclude that the likelihood of observing such a climate signal by chance is high.
Therefore, the number of days per month with snow has no significant effect on the breeding success.

Figure 3.8: Summary of the climate window analysis linking the breeding success to the number of days per month with snow from May to
November. For details of each panel, please refer to the description of each panel above. The best model presented on the bottom right panel
considered a time window between August and October.

3.2 Hatching success – 1983-2017
First, we tested the landfast ice area, the number of days per month with temperatures under -10°C, the number of days per month with
winds above 28 m/s and the number of days per month with snow. The effect of these climate variables on hatching success were tested
between May and August.

3.2.1 Landfast ice area (136 – 146 °E)

fastice$FIA=as.numeric(as.character(fastice$FIA)) 
EmpClim <- slidingwin(xvar = list(openwater = fastice$FIA), 
                        cdate = fastice$Date, 
                        bdate = demo_hs$Date, 
                        baseline = lm(demo_hs$hs~1, data = demo_hs), 
                        cinterval = "month", 
                        range = c(6, 3),#back to May=6, 0=November, 3=august 
                        type = "absolute", 
                        refday = c(01,11),  
                        stat = "mean", 
                        func = "lin", 
                        cmissing='method1')

EmpClim$combos

##     response   climate     type stat func DeltaAICc WindowOpen WindowClose 
## 1 demo_hs$hs openwater absolute mean  lin     -5.45          6           4

head(EmpClim[[1]]$Dataset)

##    deltaAICc WindowOpen WindowClose    ModelBeta    Std.Error ModelBetaQ 
## 9  -5.450296          6           4 4.572561e-06 1.587490e-06         NA 
## 10 -4.661981          6           3 4.733836e-06 1.742927e-06         NA 
## 8  -4.638940          6           5 3.972394e-06 1.465217e-06         NA 
## 5  -3.931044          5           4 3.882683e-06 1.517980e-06         NA 
## 6  -3.377451          5           3 4.234387e-06 1.740057e-06         NA 
## 2  -2.913183          4           4 3.512217e-06 1.510171e-06         NA 
##    ModelBetaC  ModelInt Function Furthest Closest Statistics     Type K 
## 9          NA 0.7311446      lin        6       3       mean absolute 0 
## 10         NA 0.7228011      lin        6       3       mean absolute 0 
## 8          NA 0.7504567      lin        6       3       mean absolute 0 
## 5          NA 0.7358103      lin        6       3       mean absolute 0 
## 6          NA 0.7251574      lin        6       3       mean absolute 0 
## 2          NA 0.7388907      lin        6       3       mean absolute 0 
##     ModWeight sample.size Reference.day Reference.month Randomised 
## 9  0.24011900          35             1              11         no 
## 10 0.16189972          35             1              11         no 
## 8  0.16004526          35             1              11         no 
## 5  0.11233757          35             1              11         no 
## 6  0.08517536          35             1              11         no 
## 2  0.06753042          35             1              11         no

summary(EmpClim[[1]]$BestModel)

##  
## Call: 
## lm(formula = yvar ~ climate, data = modeldat) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.14219 -0.03700  0.01321  0.05206  0.08797  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)     
## (Intercept) 7.311e-01  3.304e-02   22.13  < 2e-16 *** 
## climate     4.573e-06  1.587e-06    2.88  0.00693 **  
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.06172 on 33 degrees of freedom 
## Multiple R-squared:  0.2009, Adjusted R-squared:  0.1767  
## F-statistic: 8.297 on 1 and 33 DF,  p-value: 0.006927

We determined that the best climate window (i.e. first row of the data frame above) was 6 to 4 months before November, i.e. climate
values (in that case the landfast ice area) between May (6) and July (4). N.B. As can be seen in the model weights (column ModWeight in
the data frame above), there is uncertainty in the exact best model, i.e. model weights are close between the first few models.

The hatching success is higher for larger landfast ice area between May and July. The significance of the relation will be tested using the
function randwin.

medwin(EmpClim[[1]]$Dataset)

## $`Median Window Open` 
## [1] 5.5 
##  
## $`Median Window Close` 
## [1] 4

Median window size from the 95% confidence set is slightly shorter than our best window, mid-May (5.5) to July (4) instead of May (6) to
July (4).

EmpClim.RAND<-randwin(repeats=5, 
                        xvar = list(openwater = fastice$FIA), 
                        cdate = fastice$Date, 
                        bdate = demo_hs$Date, 
                        baseline = lm(demo_hs$hs~1, data = demo_hs), 
                        cinterval = "month", 
                        range = c(6, 3), 
                        type = "absolute",  
                        refday = c(01,11),  
                        stat = "mean", 
                        func = "lin", 
                        cmissing='method1')

pvalue(dataset=EmpClim[[1]]$Dataset, datasetrand=EmpClim.RAND[[1]],metric='C',sample.size=35)

## [1] 0.715491

The p-value above is higher than 0.05, we can conclude that the likelihood of observing such a climate signal by chance is high.
Therefore, the landfast ice area has no significant effect on the hatching success.

Figure 3.9: Summary of the climate window analysis linking the hatching success to the landfast ice area from May to August. For details of each
panel, please refer to the description of each panel above. The best model presented on the bottom right panel considered a time window between
May and July.

3.2.2 Number of days per month with temperatures under -10°C

MTO$JINF10=as.numeric(as.character(MTO$JINF10)) 
EmpClim <- slidingwin(xvar = list(openwater = MTO$JINF10), 
                        cdate = MTO$Date, 
                        bdate = demo_hs$Date, 
                        baseline = lm(demo_hs$hs~1, data = demo_hs), 
                        cinterval = "month", 
                        range = c(6, 3), 
                        type = "absolute",  
                        refday = c(01,11),  
                        stat = "mean", 
                        func = "lin", 
                        cmissing='method1')

EmpClim$combos

##     response   climate     type stat func DeltaAICc WindowOpen WindowClose 
## 1 demo_hs$hs openwater absolute mean  lin      1.13          4           4

head(EmpClim[[1]]$Dataset)

##   deltaAICc WindowOpen WindowClose  ModelBeta Std.Error ModelBetaQ ModelBetaC 
## 2  1.127817          4           4  0.1992167 0.1803058         NA         NA 
## 7  1.176368          6           6 -0.2586287 0.2387630         NA         NA 
## 5  1.577800          5           4  0.2552776 0.2883774         NA         NA 
## 8  1.936269          6           5 -0.2019900 0.3047293         NA         NA 
## 3  2.129615          4           3  0.1380084 0.2732143         NA         NA 
## 1  2.135189          3           3 -0.1107104 0.2214829         NA         NA 
##    ModelInt Function Furthest Closest Statistics     Type K  ModWeight 
## 2 0.6282819      lin        6       3       mean absolute 0 0.14623169 
## 7 1.0700567      lin        6       3       mean absolute 0 0.14272461 
## 5 0.5736907      lin        6       3       mean absolute 0 0.11676938 
## 8 1.0166344      lin        6       3       mean absolute 0 0.09760868 
## 3 0.6883281      lin        6       3       mean absolute 0 0.08861430 
## 1 0.9276602      lin        6       3       mean absolute 0 0.08836770 
##   sample.size Reference.day Reference.month Randomised 
## 2          35             1              11         no 
## 7          35             1              11         no 
## 5          35             1              11         no 
## 8          35             1              11         no 
## 3          35             1              11         no 
## 1          35             1              11         no

summary(EmpClim[[1]]$BestModel)

##  
## Call: 
## lm(formula = yvar ~ climate, data = modeldat) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.15745 -0.04059  0.01196  0.03981  0.11455  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.6283     0.1752   3.586  0.00107 ** 
## climate       0.1992     0.1803   1.105  0.27720    
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.0678 on 33 degrees of freedom 
## Multiple R-squared:  0.03567,    Adjusted R-squared:  0.006451  
## F-statistic: 1.221 on 1 and 33 DF,  p-value: 0.2772

The number of days per month with with temperatures under -10°C does not have a significant influence on the hatching success before
even testing it by randomization so we stop the analysis here.

3.2.3 Number of days per month with winds above 28m/s

MTO$JSUP28=as.numeric(as.character(MTO$JSUP28)) 
EmpClim <- slidingwin(xvar = list(openwater = MTO$JSUP28), 
                        cdate = MTO$Date, 
                        bdate = demo_hs$Date, 
                        baseline = lm(demo_hs$hs~1, data = demo_hs), 
                        cinterval = "month", 
                        range = c(6, 3), 
                        type = "absolute",  
                        refday = c(01,11),  
                        stat = "mean", 
                        func = "lin", 
                        cmissing='method1')

EmpClim$combos

##     response   climate     type stat func DeltaAICc WindowOpen WindowClose 
## 1 demo_hs$hs openwater absolute mean  lin      0.08          6           6

head(EmpClim[[1]]$Dataset)

##     deltaAICc WindowOpen WindowClose   ModelBeta  Std.Error ModelBetaQ 
## 7  0.08451487          6           6 -0.13259220 0.08827337         NA 
## 8  1.44470002          6           5 -0.14068212 0.14728611         NA 
## 10 2.03453593          6           3 -0.10666879 0.18144274         NA 
## 9  2.16223984          6           4 -0.07224813 0.15259364         NA 
## 5  2.21595194          5           4  0.05158084 0.12393236         NA 
## 4  2.27995152          5           5  0.03395063 0.10116731         NA 
##    ModelBetaC  ModelInt Function Furthest Closest Statistics     Type K 
## 7          NA 0.8678773      lin        6       3       mean absolute 0 
## 8          NA 0.8717349      lin        6       3       mean absolute 0 
## 10         NA 0.8581541      lin        6       3       mean absolute 0 
## 9          NA 0.8465831      lin        6       3       mean absolute 0 
## 5          NA 0.8035454      lin        6       3       mean absolute 0 
## 4          NA 0.8090545      lin        6       3       mean absolute 0 
##     ModWeight sample.size Reference.day Reference.month Randomised 
## 7  0.23735599          35             1              11         no 
## 8  0.12023745          35             1              11         no 
## 10 0.08952792          35             1              11         no 
## 9  0.08399007          35             1              11         no 
## 5  0.08176445          35             1              11         no 
## 4  0.07918942          35             1              11         no

summary(EmpClim[[1]]$BestModel)

##  
## Call: 
## lm(formula = yvar ~ climate, data = modeldat) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.15112 -0.03254  0.01144  0.04000  0.11267  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  0.86788    0.03291  26.369   <2e-16 *** 
## climate     -0.13259    0.08827  -1.502    0.143     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.0668 on 33 degrees of freedom 
## Multiple R-squared:  0.06399,    Adjusted R-squared:  0.03563  
## F-statistic: 2.256 on 1 and 33 DF,  p-value: 0.1426

The number of days per month with winds above 28m/s does not have a significant influence on the hatching success before even
testing it by randomization so we stop the analysis here.

3.2.4 Number of days per month with snow

MTO$JNeige=as.numeric(as.character(MTO$JNeige)) 
EmpClim <- slidingwin(xvar = list(openwater = MTO$JNeige), 
                        cdate = MTO$Date, 
                        bdate = demo_hs$Date, 
                        baseline = lm(demo_hs$hs~1, data = demo_hs), 
                        cinterval = "month", 
                        range = c(6, 3), 
                        type = "absolute",  
                        refday = c(01,11),  
                        stat = "mean", 
                        func = "quad", 
                        cmissing='method1')

EmpClim$combos

##     response   climate     type stat func DeltaAICc WindowOpen WindowClose 
## 1 demo_hs$hs openwater absolute mean quad    -10.71          6           6

head(EmpClim[[1]]$Dataset)

##      deltaAICc WindowOpen WindowClose   ModelBeta Std.Error ModelBetaQ 
## 7  -10.7144440          6           6  1.12304852 0.3494645 -1.4151163 
## 8   -2.5535045          6           5  0.83313406 0.8690960 -0.7597796 
## 10   0.5242314          6           3 -1.95926401 1.5851845  3.5898648 
## 3    1.2166443          4           3 -1.23850054 0.6538549  1.7278601 
## 5    2.3370826          5           4  0.99895694 1.0124085 -2.1519787 
## 2    2.3970944          4           4 -0.02224292 0.4336250 -0.1787694 
##    Std.ErrorQ ModelBetaC  ModelInt Function Furthest Closest Statistics 
## 7   0.5629871         NA 0.6385674     quad        6       3       mean 
## 8   1.4569822         NA 0.6571291     quad        6       3       mean 
## 10  2.5142445         NA 1.0734131     quad        6       3       mean 
## 3   0.9138719         NA 1.0264996     quad        6       3       mean 
## 5   1.8528376         NA 0.7231364     quad        6       3       mean 
## 2   0.6454003         NA 0.8486551     quad        6       3       mean 
##        Type K   ModWeight sample.size Reference.day Reference.month Randomised 
## 7  absolute 0 0.971559900          35             1              11         no 
## 8  absolute 0 0.016418901          35             1              11         no 
## 10 absolute 0 0.003523889          35             1              11         no 
## 3  absolute 0 0.002492681          35             1              11         no 
## 5  absolute 0 0.001423530          35             1              11         no 
## 2  absolute 0 0.001381450          35             1              11         no

summary(EmpClim[[1]]$BestModel)

##  
## Call: 
## lm(formula = yvar ~ climate + I(climate^2), data = modeldat) 
##  
## Residuals: 
##       Min        1Q    Median        3Q       Max  
## -0.116666 -0.023552  0.007046  0.041785  0.096715  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)     
## (Intercept)    0.6386     0.0491  13.006 2.56e-14 *** 
## climate        1.1231     0.3495   3.214  0.00299 **  
## I(climate^2)  -1.4151     0.5630  -2.514  0.01718 *   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.05605 on 32 degrees of freedom 
## Multiple R-squared:  0.361,  Adjusted R-squared:  0.321  
## F-statistic: 9.038 on 2 and 32 DF,  p-value: 0.0007734

Knowing this, we determined that the best climate window (i.e. first row of the data frame above) was 6 to 6 months before November,
i.e. climate values (in that case the number of days per month with snow) in May (6). N.B. As can be seen in the model weights (column
ModWeight in the data frame above), there is no uncertainty in the exact best model, i.e. there is a drop in the model weight between the
first and the second model.

The hatching success is higher for more number of days with snow in May. The significance of the relation will be tested using the
function randwin.

Median window size from the 95% confidence set is identical to our best window.

EmpClim.RAND<-randwin(repeats=5, 
                        xvar = list(openwater = MTO$JNeige), 
                        cdate = MTO$Date, 
                        bdate = demo_hs$Date, 
                        baseline = lm(demo_hs$hs~1, data = demo_hs), 
                        cinterval = "month", 
                        range = c(6, 3), 
                        type = "absolute",  
                        refday = c(01,11),  
                        stat = "mean", 
                        func = "quad", 
                        cmissing='method1')

pvalue(dataset=EmpClim[[1]]$Dataset, datasetrand=EmpClim.RAND[[1]],metric='C',sample.size=35) 

## [1] 0.0002963837

The p-value above is lower than 0.05, we can conclude that the likelihood of observing such a climate signal by chance is very low.
Therefore, the number of days per month with snow has a significant effect on the hatching success.

Regarding the strength of the detected climate signal, R^2 estimates using slidingwin can be biased at low sample size and/or effect size. A k-fold
cross-validation allows to improve the accuracy of the R^2 estimate.

EmpClim_k <- slidingwin(xvar = list(openwater = MTO$JNeige), 
                          cdate = MTO$Date, 
                          bdate = demo_hs$Date, 
                          baseline = lm(demo_hs$hs~1, data = demo_hs), 
                          cinterval = "month", 
                          range = c(6, 3), 
                          type = "absolute",  
                          refday = c(01,11),  
                          stat = "mean", 
                          func = "quad", 
                          cmissing='method1', 
                          k=10)

EmpClim_k$combos 

##     response   climate     type stat func DeltaAICc WindowOpen WindowClose 
## 1 demo_hs$hs openwater absolute mean quad     -4.62          4           4

 summary(EmpClim_k[[1]]$BestModel) 

##  
## Call: 
## lm(formula = yvar ~ climate + I(climate^2), data = modeldat) 
##  
## Residuals: 
##       Min        1Q    Median        3Q       Max  
## -0.145816 -0.033448  0.007429  0.038778  0.111043  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)     
## (Intercept)   0.84866    0.06675  12.713 4.72e-14 *** 
## climate      -0.02224    0.43362  -0.051    0.959     
## I(climate^2) -0.17877    0.64540  -0.277    0.784     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.06759 on 32 degrees of freedom 
## Multiple R-squared:  0.07056,    Adjusted R-squared:  0.01248  
## F-statistic: 1.215 on 2 and 32 DF,  p-value: 0.3101

The best model selected using cross-validation has the same window duration and slope to that the one calculated in our first sliding
window analysis.

Figure 3.10: Summary of the climate window analysis linking the hatching success to the number of days per month with snow from May to August.
For details of each panel, please refer to the description of each panel above. The best model presented on the bottom right panel considered a
time window in May.

3.3 Fledging success – 1983-2017
First, we tested the nearest distance to the landfast ice edge, then the landfast ice area, the number of days per month with
temperatures under -10°C, the number of days per month with winds above 28 m/s and the number of days per month with snow. The
effect of these climate variables on fledging success were tested between May and November.

3.3.1 Nearest distance to the landfast ice edge

fastice$NOW=as.numeric(as.character(fastice$NOW)) 
EmpClim <- slidingwin(xvar = list(openwater = fastice$NOW), 
                          cdate = fastice$Date, 
                          bdate = demo_fs$Date, 
                          baseline = lm(demo_fs$fs~1, data = demo_fs), 
                          cinterval = "month", 
                          range = c(6, 0),#back to May=6, 0= November 
                          type = "absolute", # the climate window is calculated from an absolute start date,Novem
ber 1st. Relative window is useful when different individuals with different phenology 
                          refday = c(01,11),  
                          stat = "mean", 
                          func = "quad", 
                          cmissing='method1')

EmpClim$combos

##     response   climate     type stat func DeltaAICc WindowOpen WindowClose 
## 1 demo_fs$fs openwater absolute mean quad     -23.6          0           0

head(EmpClim[[1]]$Dataset)

##    deltaAICc WindowOpen WindowClose    ModelBeta   Std.Error    ModelBetaQ 
## 1  -23.60126          0           0  0.003147185 0.004577167 -1.261318e-04 
## 10 -20.24618          3           0 -0.003215338 0.006566507 -7.404405e-05 
## 3  -18.86893          1           0  0.001383862 0.005588020 -1.110274e-04 
## 6  -17.13094          2           0 -0.004444100 0.006487486 -4.722385e-05 
## 28 -16.38092          6           0 -0.012064203 0.009478441  9.421217e-06 
## 15 -15.69737          4           0 -0.006873198 0.009292089 -3.342981e-05 
##      Std.ErrorQ ModelBetaC  ModelInt Function Furthest Closest Statistics 
## 1  5.377761e-05         NA 0.8047875     quad        6       0       mean 
## 10 7.767299e-05         NA 0.9434121     quad        6       0       mean 
## 3  6.889266e-05         NA 0.8345378     quad        6       0       mean 
## 6  7.717946e-05         NA 0.9301140     quad        6       0       mean 
## 28 1.241644e-04         NA 1.0587846     quad        6       0       mean 
## 15 1.151660e-04         NA 0.9917578     quad        6       0       mean 
##        Type K  ModWeight sample.size Reference.day Reference.month Randomised 
## 1  absolute 0 0.71492829          35             1              11         no 
## 10 absolute 0 0.13357223          35             1              11         no 
## 3  absolute 0 0.06708863          35             1              11         no 
## 6  absolute 0 0.02813515          35             1              11         no 
## 28 absolute 0 0.01933679          35             1              11         no 
## 15 absolute 0 0.01373900          35             1              11         no

summary(EmpClim[[1]]$BestModel)

##  
## Call: 
## lm(formula = yvar ~ climate + I(climate^2), data = modeldat) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.50528 -0.09110  0.06859  0.12749  0.31726  
##  
## Coefficients: 
##                Estimate Std. Error t value Pr(>|t|)     
## (Intercept)   8.048e-01  7.263e-02  11.081 1.74e-12 *** 
## climate       3.147e-03  4.577e-03   0.688   0.4967     
## I(climate^2) -1.261e-04  5.378e-05  -2.345   0.0254 *   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.2063 on 32 degrees of freedom 
## Multiple R-squared:  0.5578, Adjusted R-squared:  0.5302  
## F-statistic: 20.18 on 2 and 32 DF,  p-value: 2.138e-06

We determined that the best climate window (i.e. first row of the data frame above) was 0 to 0 months before November, i.e. climate
values (in that case the nearest distance to the landfast ice edge) in November (0). N.B. As can be seen in the model weights (column
ModWeight in the data frame above), there is no uncertainty in the exact best model, i.e. there is a drop in the model weight between the
first and the second model.

The fledging success is higher for shorter distance to the landfast ice edge (i.e. foraging grounds) in November. The significance of the
relation will be tested using the function randwin.

medwin(EmpClim[[1]]$Dataset)

## $`Median Window Open` 
## [1] 1.5 
##  
## $`Median Window Close` 
## [1] 0

Interestingly, the median window size from the 95% confidence set is slightly wider than our best window, mid-September (1.5) to
November (0) instead of just November (0).

EmpClim.RAND<-randwin(repeats=5, 
                          xvar = list(openwater = fastice$NOW), 
                          cdate = fastice$Date, 
                          bdate = demo_fs$Date, 
                          baseline = lm(demo_fs$fs~1, data = demo_fs), 
                          cinterval = "month", 
                          range = c(6, 0), 
                          type = "absolute",  
                          refday = c(01,11),  
                          stat = "mean", 
                          func = "quad", 
                          cmissing='method1')

pvalue(dataset=EmpClim[[1]]$Dataset, datasetrand=EmpClim.RAND[[1]],metric='C',sample.size=35)

## [1] 0.001421818

The p-value above is lower than 0.05, we can conclude that the likelihood of observing such a climate signal by chance is very low.
Therefore, the nearest distance to the landfast ice edge has a significant effect on the fledging success.

Regarding the strength of the detected climate signal, R^2 estimates using slidingwin can be biased at low sample size and/or effect size. A k-fold
cross-validation allows to improve the accuracy of the R^2 estimate.

EmpClim_k <- slidingwin(xvar = list(openwater = fastice$NOW), 
                        cdate = fastice$Date, 
                        bdate = demo_fs$Date, 
                        baseline = lm(demo_fs$fs~1, data = demo_fs), 
                        cinterval = "month", 
                        range = c(6, 0), 
                        type = "absolute", 
                        refday = c(01,11),  
                        stat = "mean", 
                        func = "quad", 
                        cmissing='method1', 
                        k=10)

EmpClim_k$combos 

##     response   climate     type stat func DeltaAICc WindowOpen WindowClose 
## 1 demo_fs$fs openwater absolute mean quad     -7.54          0           0

summary(EmpClim_k[[1]]$BestModel) 

##  
## Call: 
## lm(formula = yvar ~ climate + I(climate^2), data = modeldat) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.50528 -0.09110  0.06859  0.12749  0.31726  
##  
## Coefficients: 
##                Estimate Std. Error t value Pr(>|t|)     
## (Intercept)   8.048e-01  7.263e-02  11.081 1.74e-12 *** 
## climate       3.147e-03  4.577e-03   0.688   0.4967     
## I(climate^2) -1.261e-04  5.378e-05  -2.345   0.0254 *   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.2063 on 32 degrees of freedom 
## Multiple R-squared:  0.5578, Adjusted R-squared:  0.5302  
## F-statistic: 20.18 on 2 and 32 DF,  p-value: 2.138e-06

The best model selected using cross-validation has the same window duration and a similar slope to that the one calculated in our first
sliding window analysis.

Figure 3.11: Summary of the climate window analysis linking the fledging success to the nearest distance to the landfast ice edge from May to
November. For details of each panel, please refer to the description of each panel above. The best model presented on the bottom right panel
considered a time window in November.

3.3.2 Landfast ice area (136 – 146 °E)

fastice$FIA=as.numeric(as.character(fastice$FIA)) 
EmpClim <- slidingwin(xvar = list(openwater = fastice$FIA), 
                          cdate = fastice$Date, 
                          bdate = demo_fs$Date, 
                          baseline = lm(demo_fs$fs~1, data = demo_fs), 
                          cinterval = "month", 
                          range = c(6, 0), 
                          type = "absolute",  
                          refday = c(01,11),  
                          stat = "mean", 
                          func = "lin", 
                          cmissing='method1')

EmpClim$combos

##     response   climate     type stat func DeltaAICc WindowOpen WindowClose 
## 1 demo_fs$fs openwater absolute mean  lin    -13.67          4           0

head(EmpClim[[1]]$Dataset)

##    deltaAICc WindowOpen WindowClose     ModelBeta    Std.Error ModelBetaQ 
## 15 -13.67024          4           0 -3.232192e-05 7.370909e-06         NA 
## 10 -12.60859          3           0 -3.004865e-05 7.148699e-06         NA 
## 14 -11.66158          4           1 -3.085694e-05 7.639220e-06         NA 
## 21 -11.63353          5           0 -3.070865e-05 7.611729e-06         NA 
## 28 -11.01331          6           0 -2.971436e-05 7.569281e-06         NA 
## 13 -10.80850          4           2 -3.027594e-05 7.783997e-06         NA 
##    ModelBetaC ModelInt Function Furthest Closest Statistics     Type K 
## 15         NA 1.400949      lin        6       0       mean absolute 0 
## 10         NA 1.346439      lin        6       0       mean absolute 0 
## 14         NA 1.385406      lin        6       0       mean absolute 0 
## 21         NA 1.349587      lin        6       0       mean absolute 0 
## 28         NA 1.294119      lin        6       0       mean absolute 0 
## 13         NA 1.373445      lin        6       0       mean absolute 0 
##     ModWeight sample.size Reference.day Reference.month Randomised 
## 15 0.23265180          35             1              11         no 
## 10 0.13682738          35             1              11         no 
## 14 0.08521837          35             1              11         no 
## 21 0.08403153          35             1              11         no 
## 28 0.06162562          35             1              11         no 
## 13 0.05562726          35             1              11         no

summary(EmpClim[[1]]$BestModel)

##  
## Call: 
## lm(formula = yvar ~ climate, data = modeldat) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.51356 -0.16853  0.01472  0.21772  0.37897  
##  
## Coefficients: 
##               Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  1.401e+00  1.766e-01   7.935 3.76e-09 *** 
## climate     -3.232e-05  7.371e-06  -4.385 0.000111 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.2428 on 33 degrees of freedom 
## Multiple R-squared:  0.3682, Adjusted R-squared:  0.349  
## F-statistic: 19.23 on 1 and 33 DF,  p-value: 0.0001114

We determined that the best climate window (i.e. first row of the data frame above) was 4 to 0 months before November, i.e. climate
values (in that case the landfast ice area) between July (4) and November (0). N.B. As can be seen in the model weights (column
ModWeight in the data frame above), there is uncertainty in the exact best model, i.e. model weights are close between the first two
models.

The fledging success is lower for larger landfast ice area between July and November. The significance of the relation will be tested
using the function randwin.

medwin(EmpClim[[1]]$Dataset)

## $`Median Window Open` 
## [1] 4 
##  
## $`Median Window Close` 
## [1] 1

The median window size from the 95% confidence set is slightly shorter than our best window, July (4) to October (1) instead of July (4)
to November (0).

EmpClim.RAND<-randwin(repeats=5, 
                        xvar = list(openwater = fastice$FIA), 
                        cdate = fastice$Date, 
                        bdate = demo_fs$Date, 
                        baseline = lm(demo_fs$fs~1, data = demo_hs), 
                        cinterval = "month", 
                        range = c(6, 3), 
                        type = "absolute",  
                        refday = c(01,11),  
                        stat = "mean", 
                        func = "lin", 
                        cmissing='method1')

pvalue(dataset=EmpClim[[1]]$Dataset, datasetrand=EmpClim.RAND[[1]],metric='C',sample.size=35)

## [1] 0.1159336

The p-value above is higher than 0.05, we can conclude that the likelihood of observing such a climate signal by chance is high.
Therefore, the landfast ice area has no significant effect on the fledging success.

Figure 3.12: Summary of the climate window analysis linking the fledging success to the landfast ice area from May to November. For details of
each panel, please refer to the description of each panel above. The best model presented on the bottom right panel considered a time window
between July and November.

3.3.3 Number of days per month with temperatures under -10°C

MTO$JINF10=as.numeric(as.character(MTO$JINF10)) 
EmpClim <- slidingwin(xvar = list(openwater = MTO$JINF10), 
                          cdate = MTO$Date, 
                          bdate = demo_fs$Date, 
                          baseline = lm(demo_fs$fs~1, data = demo_fs), 
                          cinterval = "month", 
                          range = c(6, 0), 
                          type = "absolute", 
                          refday = c(01,11),  
                          stat = "mean", 
                          func = "lin", 
                          cmissing='method1')

EmpClim$combos

##     response   climate     type stat func DeltaAICc WindowOpen WindowClose 
## 1 demo_fs$fs openwater absolute mean  lin      -0.1          3           3

head(EmpClim[[1]]$Dataset)

##      deltaAICc WindowOpen WindowClose ModelBeta Std.Error ModelBetaQ ModelBetaC 
## 7  -0.09701948          3           3  1.482278 0.9490220         NA         NA 
## 5   0.41830583          2           1 -1.694785 1.2226094         NA         NA 
## 12  0.47401791          4           3  1.612406 1.1803664         NA         NA 
## 25  0.62523138          6           3  2.338958 1.7856695         NA         NA 
## 6   0.73303585          2           0 -1.202208 0.9477843         NA         NA 
## 18  1.02080525          5           3  1.728334 1.5011673         NA         NA 
##      ModelInt Function Furthest Closest Statistics     Type K  ModWeight 
## 7  -0.7742197      lin        6       0       mean absolute 0 0.08330156 
## 5   2.2501825      lin        6       0       mean absolute 0 0.06438011 
## 12 -0.9072446      lin        6       0       mean absolute 0 0.06261148 
## 25 -1.6101715      lin        6       0       mean absolute 0 0.05805216 
## 6   1.6006770      lin        6       0       mean absolute 0 0.05500586 
## 18 -1.0230415      lin        6       0       mean absolute 0 0.04763439 
##    sample.size Reference.day Reference.month Randomised 
## 7           35             1              11         no 
## 5           35             1              11         no 
## 12          35             1              11         no 
## 25          35             1              11         no 
## 6           35             1              11         no 
## 18          35             1              11         no

summary(EmpClim[[1]]$BestModel)

##  
## Call: 
## lm(formula = yvar ~ climate, data = modeldat) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.67936 -0.17580  0.08935  0.21839  0.38470  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|) 
## (Intercept)  -0.7742     0.9119  -0.849    0.402 
## climate       1.4823     0.9490   1.562    0.128 
##  
## Residual standard error: 0.2947 on 33 degrees of freedom 
## Multiple R-squared:  0.06884,    Adjusted R-squared:  0.04062  
## F-statistic:  2.44 on 1 and 33 DF,  p-value: 0.1279

The number of days per month with temperatures under -10°C does not have a significant influence on the fledging success before even
testing it by randomization so we stop the analysis here.

3.3.4 Number of days per month with winds above 28m/s

MTO$JSUP28=as.numeric(as.character(MTO$JSUP28)) 
EmpClim <- slidingwin(xvar = list(openwater = MTO$JSUP28), 
                          cdate = MTO$Date, 
                          bdate = demo_fs$Date, 
                          baseline = lm(demo_fs$fs~1, data = demo_fs), 
                          cinterval = "month", 
                          range = c(6, 0), 
                          type = "absolute", 
                          refday = c(01,11),  
                          stat = "mean", 
                          func = "lin", 
                          cmissing='method1')

EmpClim$combos

##     response   climate     type stat func DeltaAICc WindowOpen WindowClose 
## 1 demo_fs$fs openwater absolute mean  lin     -0.98          4           2

head(EmpClim[[1]]$Dataset)

##     deltaAICc WindowOpen WindowClose  ModelBeta Std.Error ModelBetaQ ModelBetaC 
## 13 -0.9764013          4           2 -1.2649621 0.6920282         NA         NA 
## 3  -0.4480116          1           0  0.8678009 0.5189142         NA         NA 
## 11  0.3188402          4           4 -0.6003905 0.4223348         NA         NA 
## 2   0.4102970          1           1  0.5774099 0.4156772         NA         NA 
## 4   0.4238437          2           2 -0.5219050 0.3770422         NA         NA 
## 19  0.7803444          5           2 -0.9691842 0.7754235         NA         NA 
##     ModelInt Function Furthest Closest Statistics     Type K  ModWeight 
## 13 1.1064814      lin        6       0       mean absolute 0 0.11292987 
## 3  0.4148407      lin        6       0       mean absolute 0 0.08671025 
## 11 0.8454950      lin        6       0       mean absolute 0 0.05909499 
## 2  0.4845695      lin        6       0       mean absolute 0 0.05645353 
## 4  0.8701296      lin        6       0       mean absolute 0 0.05607244 
## 19 0.9998236      lin        6       0       mean absolute 0 0.04691766 
##    sample.size Reference.day Reference.month Randomised 
## 13          35             1              11         no 
## 3           35             1              11         no 
## 11          35             1              11         no 
## 2           35             1              11         no 
## 4           35             1              11         no 
## 19          35             1              11         no

summary(EmpClim[[1]]$BestModel)

##  
## Call: 
## lm(formula = yvar ~ climate, data = modeldat) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -0.7311 -0.1780  0.0890  0.2365  0.3500  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)   1.1065     0.2556   4.328 0.000131 *** 
## climate      -1.2650     0.6920  -1.828 0.076617 .   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.291 on 33 degrees of freedom 
## Multiple R-squared:  0.09194,    Adjusted R-squared:  0.06442  
## F-statistic: 3.341 on 1 and 33 DF,  p-value: 0.07662

The number of days per month with with winds above 28m/s does not have a significant influence on the fledging success before even
testing it by randomization so we stop the analysis here.

3.3.5 Number of days per month with snow

MTO$JNeige=as.numeric(as.character(MTO$JNeige)) 
    EmpClim <- slidingwin(xvar = list(openwater = MTO$JNeige), 
                          cdate = MTO$Date, 
                          bdate = demo_fs$Date, 
                          baseline = lm(demo_fs$fs~1, data = demo_fs), 
                          cinterval = "month", 
                          range = c(6, 0), 
                          type = "absolute",  
                          refday = c(01,11),  
                          stat = "mean", 
                          func = "lin", 
                          cmissing='method1')

EmpClim$combos

##     response   climate     type stat func DeltaAICc WindowOpen WindowClose 
## 1 demo_fs$fs openwater absolute mean  lin     -0.87          3           1

head(EmpClim[[1]]$Dataset)

##      deltaAICc WindowOpen WindowClose ModelBeta Std.Error ModelBetaQ ModelBetaC 
## 9  -0.86594849          3           1 1.0602016 0.5902105         NA         NA 
## 10 -0.07077956          3           0 1.0377923 0.6680888         NA         NA 
## 8   0.14367366          3           2 0.7098793 0.4789650         NA         NA 
## 7   0.28976388          3           3 0.5068312 0.3539821         NA         NA 
## 27  0.43781692          6           1 1.4041797 1.0181375         NA         NA 
## 20  0.63278122          5           1 1.1958227 0.9149454         NA         NA 
##     ModelInt Function Furthest Closest Statistics     Type K  ModWeight 
## 9  0.3309398      lin        6       0       mean absolute 0 0.09649409 
## 10 0.3660455      lin        6       0       mean absolute 0 0.06483835 
## 8  0.4054542      lin        6       0       mean absolute 0 0.05824572 
## 7  0.4648340      lin        6       0       mean absolute 0 0.05414283 
## 27 0.2395991      lin        6       0       mean absolute 0 0.05027958 
## 20 0.2978705      lin        6       0       mean absolute 0 0.04560954 
##    sample.size Reference.day Reference.month Randomised 
## 9           35             1              11         no 
## 10          35             1              11         no 
## 8           35             1              11         no 
## 7           35             1              11         no 
## 27          35             1              11         no 
## 20          35             1              11         no

summary(EmpClim[[1]]$BestModel)

##  
## Call: 
## lm(formula = yvar ~ climate, data = modeldat) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -0.6059 -0.1305  0.1063  0.2211  0.3707  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   0.3309     0.1832   1.806   0.0800 . 
## climate       1.0602     0.5902   1.796   0.0816 . 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.2915 on 33 degrees of freedom 
## Multiple R-squared:  0.08907,    Adjusted R-squared:  0.06147  
## F-statistic: 3.227 on 1 and 33 DF,  p-value: 0.08161

The number of days per month with with snow does not have a significant influence on the fledging success before even testing it by
randomization so we stop the analysis here.
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