Improving environment drives dynamical change in social game structure

Authors: Erika Chiba, Diane Carmeliza N. Cuaresma, Jomar F. Rabajante, Jerrold M. Tubay, Maica Krizna Areja Gavina, Tatsuki Yamamoto, Jin Yoshimura, Satoru Morita, Hiromu Ito and Takuya Okabe

Supplementary Materials

Supplementary Text

In the main text, we adopted a simple form $p\left(E, n_{c}\right)=E^{\delta^{n_{c}-1}}$ for the success
probability. In order to show that the results are robust and general, here we present the corresponding results for another functional forms. The necessary conditions for the success probability $p\left(E, n_{c}\right)$ are as follows: it is a monotonically increasing function of the number of cooperators n_{c} and environmental value E, and moreover $p\left(0, n_{c}\right)=0$ and $p\left(1, n_{c}\right)=1$.

Model S1

As in the main text, we assume an exponential function of E,

$$
p\left(E, n_{c}\right)=E^{\epsilon} .
$$

According to the above conditions, the exponent ϵ should be a decreasing function of n_{c}. Let it vary between $1 / \delta$ and δ, where δ is an arbitrary small number $(0 \leq \delta \leq$ 1). In other words, the smaller δ is, the stronger the n_{c} dependence of $p\left(E, n_{c}\right)$.

For instance, we may write

$$
\epsilon=\frac{1}{x+\frac{1}{x+\frac{1}{\delta}-\delta}}+\delta,
$$

where

$$
x=\tan \left(\frac{\pi n_{c}}{4}\right)
$$

is an increasing function of n_{c}. Note that ϵ varies from $1 / \delta$ to δ as n_{c} changes from 0 to 2 . First, we assume $\delta=1 / 3$ for figures S1 and S2. In figure $\mathrm{S} 1 a$, the probability $p\left(E, n_{c}\right)$ is plotted against n_{c} for $E=0,0.25,0.5$ and 0.75 . In figure S1b, the probabilities for $n_{c}=0,1$ and 2 are shown on a line of unit length for $E=$ $0,0.25,0.5,0.75$ and 1 . This figure S 1 should be compared with figure 2 in the main text. Figure S2a and b show the trajectories in the $\Delta p_{1}-\Delta p_{2}$ plane for $c / b=1 / 2$ and $1 / 3$, respectively. Figure $\mathrm{S} 2 c$ shows the trajectories in the $E-c / b$ plane for $c / b=1 / 2$ (solid arrows) and $1 / 3$ (dashed arrows). The figure S 2 should be compared with figure 3 in the main text. It is remarked that the course of change in game structure is
essentially the same. Similarly, the panels in figures S3 and S4 are drawn for $\delta=1 / 5$.

(a)
(b)

Figure S1
(a)

(b)
(C)

Figure S2

(a)
(b)

Figure S3

Figure S4

Model S2

As another example, let us use

$$
p\left(E, n_{c}\right)=\sqrt{E}\left(\frac{1+n_{c}}{3}\right)^{2(1-E)} .
$$

In figure $\mathrm{S} 5 a$, the probability $p\left(E, n_{c}\right)$ is plotted against n_{c} for $E=0,0.25,0.5$ and 0.75. In figure $\mathrm{S} 5 b$, the values of $p\left(E, n_{c}\right)$ for $n_{c}=0,1$ and 2 are shown on a line of unit length for $E=0,0.25,0.5,0.75$ and 1 .

Figures S6a and b show the trajectories in the $\Delta p_{1}-\Delta p_{2}$ plane for $c / b=1 / 3$ and $1 / 5$, respectively. Figure $\mathrm{S} 6 c$ shows the trajectories in the $E-c / b$ plane for $c / b=$ $1 / 3$ (solid arrows) and $1 / 5$ (dashed arrows).

(a)
(b)

Figure $\mathbf{S 5}$

(c)

Figure S6

