Molecule Osteoblast cell	#
I _d	500
I _{f act}	0
$I_{f act} + FAK_{act}$	0
I _{act}	0
FAK _{act}	1000
If act + FAKact	1
$I_{f act} + FAK_{act} + RAS_{d}$	ī
FAK _d	1
RAS _d	1000
$I_{f act} + FAK_{act} + RAS_{d}$	0
RASact	0
RAS _{act} + RAF _d	0
RAF_d	32
$RAS_{act} + RAF_{d}$	0
RAFact	0
$RAF_{act} + MEK_{d}$	0
MEK _d	3400
$RAF_{act} + MEK_{d}$	0
MEKact	0
$MEK_{act} + ERK_{d}$	0
ERK _d	2300
$MEK_{act} + ERK_{d}$	0
ERKact	0
ERK _{act} + RUNX2 _d	0
$ERK_{act} + OTHER$	0
RUNX2 _d	24
$ERK_{act} + RUNX2_{d}$	0
RUNX2 _{act}	0
$RUNX2_{act} + DNA$	0
OSX_{mon}	8
$RUNX2_{act} + OSX_{mon}$	0
$OSX_{mon} + DNA$	5
$RUNX2_{act} + OSX_{mon} + DNA$	0
$RUNX2_{act} + OSX_{mon} + DNA + AP1$	0
OSX_{mul}	5
$RUNX2_{act} + OSX_{mul}$	0
$OSX_{mul} + DNA$	6
$RUNX2_{act} + OSX_{mul} + DNA$	0
AP1	0
$RUNX2_{act} + OSX_{mon} + DNA + AP1$	0
OPN _{RNA}	0
$Rib_{av} + OPN_{RNA}$	0
Rib _{n av} + OPN _{RNA}	0
OCN _{RNA}	0
Rib _{av} + OCN _{RNA}	0
$Rib_{n \text{ av}} + OCN_{RNA}$	0
ALPRNA	0
$Rib_{av} + ALP_{RNA}$	0
Rib _{n av} + ALP _{RNA}	0
BSP _{RNA}	0
Rib _{av} + BSP _{RNA}	0
Rib _{n av} + BSP _{RNA}	0
Rib _{n comp}	299
$Rib_{n \text{ comp}} + RNA$ Rib_{c}	0
KID	301
Rib _c + RNA	0

2 Supplementary table 1: Number of molecules at t₀

Parameter	Symbol	Value	Unit of measure
Mechanical min. magnitude	m	100	μPa
Mechanical phase	ϕ	0	rad
Integrin activation delay	T _{Id} →I _{f act}	0	S
I_d dissoc. time from $I + FAK$ comp.	T _{If act} +FAK _{act} →I _d	U[0, 80]	S
FAK _{act} activation delay	TFAKd → FAKact	5	S
FAK _d dissoc. time from I + FAK comp.	T _{If act} +FAK _{act} →FAK _d	30	S
$I_{act} + FAK$ dissoc. time	TI _{f act} +FAK _{act} +RAS _d →I _{f act} +FAK _{act}	7	S
RAS _{act} dissoc. time from I+ FAK+ RAS comp.	T _{If act} +FAK _{act} +RAS _d →RAS _{act}	7	S
RAS _{act} dissoc. form RAS + RAF comp.	$T_{\mathrm{RAS_{act}}+\mathrm{RAF_{d}} \to \mathrm{RAS_{act}}}$	14	S
RAS _{act} relaxation time	T _{RAS_{act}→RAS_d}	60	S
RAF _{act} dissoc. time	T _{RAS_{act}+RAF_d→RAF_{act}}	14	S
RAFact dissoc. time from RAF + MEK	TRAFact+MEK _d →RAFact	10	S
Relaxation of RAFact	T _{RAFact} →RAF _d	60	S
MEKact dissoc. time from RAF + MEK comp.	TRAFact+MEK _d →MEK _{act}	10	S
MEK _{act} dissoc. time from MEK + ERK comp.	TMEK _{act} +ERK _d →MEK _{act}	8	S
MEK relaxation time	T _{MEKact} →MEK _d →MEK _{act}	88	S
ERK activation time	TMEKact - MEKd	8	S
ERK relaxation time	T _{MEK_{act}+ERK_d→ERK_{act}}	50	S
ERK _d dissoc. time from RUNX2 + ERK comp.	$T_{\text{ERK}_{\text{act}} \to \text{ERK}_{\text{d}}}$	10	S
	$T_{\text{ERK}_{\text{act}}+\text{RUNX2}_{\text{d}} \to \text{ERK}_{\text{act}}}$	6	S
ERK _{act} dissoc time from ERK _{act} + OTHER comp.	Terk _{act} +Other→erk _{act}	10	S
RUNX2 _{act} dissoc. time from ERK _{act} + RUNX2 _d comp.	$T_{\text{ERK}_{\text{act}}+\text{RUNX2}_{\text{d}}\rightarrow\text{RUNX2}_{\text{act}}}$	30	
RUNX2 _{act} dissoc. time from RUNX2 _{act} + DNA comp.	$T_{\text{RUNX2}_{\text{act}}}$ +DNA \rightarrow RUNX2 _{act}	10	S
RUNX2 relaxation time	$T_{\text{RUNX2}_{\text{act}} \to \text{RUNX2}_{\text{d}}}$	60	S
OSX _{mon} dissoc. time from RUNX2 _{act} + OSX _{mon} comp.	$T_{\text{RUNX2}_{\text{act}} + \text{OSX}_{\text{mon}} \to \text{OSX}_{\text{mon}}}$	20	S
OSX _{mon} + DNA dissoc. time from RUNX2 _{act}	$T_{\text{RUNX2}_{\text{act}} + \text{OSX}_{\text{mon}} + \text{DNA} \rightarrow \text{OSX}_{\text{mon}} + \text{DNA}}$	30	S
OSX _{mon} + DNA dissoc. time from AP1	T _{RUNX2_{act}+OSX_{mon}+DNA+AP1→OSX_{mon}+DNA}	0	S
OSX _{mul} dissoc. time from RUNX2 _{act} + OSX _{mul} comp.	T _{RUNX2_{act}+OSX_{mul}→OSX_{mul}}	40	S
OSX _{mul} + DNA dissoc. time from RUNX2 _{act}	TRUNX2 _{act} +OSX _{mul} +DNA→OSX _{mul} +DNA	50	S
ribosome availability time from Rib _{n av} + OPN _{RNA}	TRibn av+OPNRNA→Ribav+OPNRNA	20	S
OPN _{RNA} dissociation time from available ribosome	$T_{\text{Rib}_{av}} + \text{OPN}_{RNA} \rightarrow \text{OPN}_{RNA}$	75	S
ribosome availability time from $\mathrm{Rib}_{\mathrm{n}\ \mathrm{av}} + \mathrm{OCN}_{\mathrm{RNA}}$	IRib _{n av} +OCN _{RNA} →Rib _{av} +OCN _{RNA}	20	S
OCN _{RNA} dissociation time from available ribosome	$T_{\text{Rib}_{av}} + \text{OCN}_{RNA} \rightarrow \text{OCN}_{RNA}$	75	S
ribosome availability time from $Rib_{n av} + ALP_{RNA}$	$T_{\text{Rib}_{n \text{ av}}} + \text{ALP}_{\text{RNA}} \rightarrow \text{Rib}_{\text{av}} + \text{ALP}_{\text{RNA}}$	20	S
ALP _{RNA} dissociation time from available ribosome	$T_{\text{Rib}_{av}} + \text{ALP}_{\text{RNA}} \rightarrow \text{ALP}_{\text{RNA}}$	75	S
ribosome availability time from $Rib_{n av} + BSP_{RNA}$	$T_{\text{Rib}_{\text{n av}} + \text{BSP}_{\text{RNA}} \to \text{Rib}_{\text{av}} + \text{BSP}_{\text{RNA}}}$	20	S
BSP _{RNA} dissociation time from available ribosome	$T_{\text{Rib}_{av}} + \text{BSP}_{\text{RNA}} \rightarrow \text{BSP}_{\text{RNA}}$	75	S
RNA dissociation time from Rib _{n comp}	T _{Rib_{n comp}+RNA→Rib_{n comp}}	100	S
RNA dissociation time from complete ribosome	$T_{\mathrm{Rib_c}+\mathrm{RNA} \to \mathrm{Rib_c}}$	100	S
force tag probability	$F_{ m tag}$	$P_{\{01,02\}} = \{0.9, 0.1\}$	
I _d interaction radius	$R_{ m I_d}$	50	nm
FAK _{act} interaction radius	R _{FAK_{act}}	50	nm
RAS _d interaction radius	$R_{ m RAS_d}$	80	nm
RAF _d interaction radius	$R_{\mathrm{RAF_d}}$	70	nm
MEK _d interaction radius	R_{MEK_d}	50	nm
ERK _d interaction radius	R _{ERKd}	30	nm
RUNX2 _d interaction radius	R _{RUNX2d}	30	nm
OSX _{mon} interaction radius	ROSX _{mon}	30	nm
Rib _{n comp} interaction radius	Rp:	30	nm
cell radius	R _{Rib_n comp}	1000	nm
nucleus radius	$R_{\rm cell}$	400	nm
	R _{nucl}		The second second
protein's average velocity	$\frac{\overline{v}_p}{\Delta}$	2	nm/s
protein's velocity variation	$\frac{\Delta v_p}{\Delta v_p}$	1	nm/s
protein's direction variation	$\Delta \varphi_p = \Delta \theta_p$	$\pi/10$	rad
protein translation delay	T_p	95	S
transcription delay per mRNA	$T_{ m RNA}$	600	S
Integrins θ angle on cell membrane distribution	I_{θ}	$U[0,\pi]$	1/rad
Integrins ϕ angle on cell membrane distribution	I_{ϕ}	$U[0,2\pi]$	1/rad

4

5 Supplementary table 2: Parameters' name, symbols and values.

Parameter	Symbol	List of values	Unit of measure
Mechanical max. magnitude	M	{1000, 10000}	μPa
Mechanical period	P	{10000, 50000, 2000000}	s
MEK_{act} dissoc. time from $RAF_{act} + MEK_d$ comp.	TRAFact+MEKd - MEKact	{10, 90, 300, 480, 1320}	s
MEK_{act} dissoc. time from $MEK_{act} + ERK_{d}$ comp.	TMEKact+ERKd→MEKact	{8, 90, 300, 480, 1320}	S
MEK _d relaxation time	TMEKact - MEKA	{60, 90, 300, 480, 1320}	S
ERK _{act} activation time	T _{MEKact} +ERK _d →ERK _{act}	{8, 90, 300, 480, 1320}	S
ERK _d relaxation time	$T_{\text{ERK}_{\text{act}} \to \text{ERK}_{\text{d}}}$	{90, 300, 480, 600, 1320}	S
ERK_{act} dissoc. time from $ERK_{act} + RUNX2_d$ comp.	TERKact+RUNX2d → ERKact	{10, 90, 300, 480, 1320}	S

7

8 Supplementary table 3: Parameter ranges

- 9 Names, symbols, unit of measures and list of values simulated. Bold quantities represent the
- baseline values. Where no baseline is present, then all possible combinations has been considered.
- 11 Each set of parameters has been independently repeated 10 times.