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Abstract

Eigenfunctions and their asymptotic behaviour at large distances for the Laplace operator with
singular potential, the support of which is on a circular conical surface in three-dimensional space,
are studied. Within the framework of incomplete separation of variables an integral representation of
the Kontorovich-Lebedev type for the eigenfunctions is obtained in terms of solution of an auxiliary
functional difference equation with a meromorphic potential. Solutions of the functional difference
equation are studied by reducing it to an integral equation with a bounded selfadjoint integral
operator. To calculate the leading term of the asymptotics of eigenfunctions the Kontorovich-
Lebedev integral representation is transformed to a Sommerfeld-type integral which is well adapted
to application of the saddle point technique. Outside a small angular vicinity of the so called singular
directions the asymptotic expression takes on an elementary form of exponent decreasing in distance.
However, in an asymptotically small neighbourhood of singular directions the leading term of the
asymptotics also depends on a special function closely related to the function of parabolic cylinder
(Weber function).

Key words. Functional difference equations, Robin Laplacians, δ′−interaction, eigenfunctions,
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1 Introduction and motivation

Model problems for a Laplacian with a singular potential having its support on some surfaces arise in
quantum physics [1] (approximate atomic Hamiltonians in strong homogeneous magnetic fields), see also
[2], in quantum optics and acoustics [3] (photonic crystals with high contrast) as well as in the classical
scattering of acoustic or electromagnetic waves on semi-transparent canonical surfaces (cone, wedge),
[4],[5], [6] Chapter 4 and [7]. In the works [4], [5], [6], Chapter 4 and [7], solutions are constructed
within the framework of incomplete separation of variables and, in essence, are represented with the
aid of the decomposition by ‘generalized’ eigenfunctions of the positive essential (absolutely continuous)
spectrum.

Traditionally, spectrum of the Laplacian with singular potential is studied in the framework of general
methods [8],[9], [10] for selfadjoint operators in a Hilbert space. In particular, this requires additional
meaningful affords and reductions, including splitting of the operator and incomplete separation of
variables [8], [11], see also [12] for elasticity. Similar approaches are used to describe spectra of Robin
Laplacians in a cone [13] or in an infinite sector (wedge) [14], see also [15]. It is possible to obtain
estimates for their eigenfunctions, to prove their exponential decrease [13] or, in some cases, even to
determine them explicitly, e.g. for the Robin Laplacian in a wedge [15].

However, if one needs to find out more detailed information about the behavior of eigenfunctions,
to calculate their asymptotics and, to this end, to obtain useful integral representations, it is usually
possible only for some special cases, for example, for model problems with symmetry. For instance,

∗Dept. Mathematics and Mathematical Physics, Saint-Petersburg University, Universitetskaya nab. 7/9, 199034,
S.-Petersburg, Russia; lyalinov@yandex.ru, m.lyalinov@spbu.ru

1



in our case, this is the axial symmetry of a circular cone. However, even in this case, the problem
of description of asymptotic behaviour of the eigenfunctions remains cumbersome and requiring use
of special approaches. In our case incomplete separation of variables exploits integral representations
and reduces the problem to study of a functional difference equation with a meromorphic potential.
Calculation of the asymptotics of the Sommerfeld integral representation for an eigenfunction is carried
out in the framework of the steepest descent method and its modifications in the situation when a
singularity of the integrand may be located near a saddle point.

In the following section we introduce basic notations and describe the Laplacian at hand. The
corresponding selfadjoint operator, conventionally denoted Aγ := −△ − γδ′C , is uniquely specified by
means of a densely defined semibounded sesquilinear form [8] which is closable in a Hilbert space. We
also give the classical formulation of the boundary-value problem corresponding to the operator. The
corresponding differential equation with the spectral parameter E is supplemented by the boundary
conditions consisting of two correlations which are the condition of continuity of the normal derivative
of solution across the conical boundary C and a Robin type condition linking the normal derivative with
the jump of the unknown solution on the boundary. A positive constant γ > 0 is a Robin parameter
in this boundary condition. It is worth noticing that our approach, used in this work, can be
also applied to the singular potential with δ−interaction.

Actually the equation for the eigenfunctions U of the operator Aγ can be formally written as

Aγ U = E U ,

where E is the spectral parameter. Herein we consider negative spectrum (E < 0) of the operator.
Recall that the spectrum of the operator Aγ consists of the essential spectrum σess(Aγ) = [−4γ2,∞)
and of the infinite discrete part σd(Aγ) that belongs to the interval (−∞,−4γ2) and accumulates at the
end −4γ2 of the essential spectrum, see [8], [11].

We then make use of the Kontorovich-Lebedev (KL) integral representation for a solution of the
spectral problem which separates radial and angular variables. The unknown function in the integrand
solves a problem for the spherical Laplacian on the unit sphere. By means of further separation of the
angular variables the unknown function in the integrand is represented as a product of the spherical
functions and of a solution of some homogeneous functional difference equation of the second order with
a meromorphic potential depending on the spectral parameter E, see also [16]. Analysis of solutions to
this equation plays a crucial role for construction of the eigenfunctions and their asymptotics.

It is worth commenting on the functional difference equations that have recently appeared in various
applications. Malyuzhinets has solved some functional difference equations of the first order in order to
treat the problem of diffraction by an impedance wedge, [17], see also [18] and [19],[20]. He has con-
structed a solution of the functional equations by means of the special meromorphic function which is
now refered to as the Malyuzhinets function. It is worth noticing that, together with our studies in this
work, the use of functional difference equations of the first and second order has also become a common
place in some problems of spectral theory [21],[22], in diffraction [23],[16],[6],[19],[7] in water-wave prob-
lems [24],[18] and in quantum theory [25]. In particular, some analogues of the special Malyuzhinets
function have been used in these works, [26].

The abovementioned functional difference equation can be efficiently studied by means of reduction
to an integral equation. The corresponding integral operator is bounded and selfadjoint, whereas its
spectrum is directly connected with the spectrum of Aγ . It is possible to describe some useful properties
of the eigenfunctions of the integral operator, which enables one to use this information in order to
describe asymptotics of the eigenfunctions of Aγ .

To this end, it is convenient to reduce the KL integral representation for the eigenfunctions to
a Sommerfeld-type integral. The latter integral is well adapted for application of the saddle point
technique to asymptotic evaluations. It turns out that the leading singularities of the integrand in
the Sommerfeld integral can be efficiently described. For some directions exactly these singularities
are responsible for the leading terms of the asymptotics in the framework of asymptotic evaluation of
the integral. However, for some other angular directions the singularities can be close to the saddle
points of the Sommerfeld integral, i.e. belong to some angular vicinities of the so called singular
directions (see also [27]). In this case, the asymptotics has a more complex form and is described by
means of a special function being a close relative of the parabolic cylinder functions (Weber functions).
Actually, this special function is responsible for switching of asymptotic regims, i.e. of one rate of
decay of an eigenfunction, that is valid for some range of directions, to another rate corresponding to a
supplementary range of angles. The asymptotics obtained is one of the main results of this work.
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Figure 1: The domains Ω± and the conical boundary C

2 Formulation and reduction

A circular conical surface C separates two conical domains Ω+ and Ω− of R3, Fig. 1. The Cartesian
coordinates (X,Y, Z) are connected with the spherical ones,

X = r cosφ sinϑ, Y = r sinφ sinϑ, Z = r cosϑ.

The domains Ω± are defined in the spherical coordinates as Ω+ = {(r, ϑ, φ) : r > 0, 0 6 ϑ <
ϑ1, 0 < φ 6 2π} and Ω− = {(r, ϑ, φ) : r > 0, ϑ1 < ϑ < π, 0 < φ 6 2π}, C is their common boundary,
C = {(r, ϑ, φ) : r > 0, ϑ = ϑ1, 0 < φ 6 2π}, 0 < ϑ1 < π/2.

The symmetric sesquilinear form (γ > 0)

aγ [u, v] = (∇u+,∇v+)L2(Ω+) + (∇u−,∇v−)L2(Ω−) − 2γ(u+|C − u−|C , v+|C − v−|C)L2(C), (1)

where Dom[aγ ] = H1(Ω+)⊕H1(Ω−) and (u, v)L2(B) =
∫
B
u(x)v̄(x)dx, is closed and semibounded from

below so that it uniquely specifies a selfadjoint operator, denoted Aγ (for some additional details see
[8]).

In order to study eigenfunctions of this operator it is useful to write down spectral problem Aγ U =
E U for the operator Aγ defined by (1) in the ‘classical’ terms of differential equations and boundary
conditions,

−△u+(r, ω)− Eu+(r, ω) = 0, (r, ω) ∈ Ω+ ,

−△u−(r, ω)− Eu−(r, ω) = 0, (r, ω) ∈ Ω−,
(2)

ω := (ϑ, φ) and △ = 1
r

∂
∂r r

∂
∂r + 1

r2△ω, △ω is the Laplacian on the unit sphere S2. The boundary
conditions read

∂u+

∂n

∣∣∣∣
C
= γ(u+|C − u−|C) ,

∂u+

∂n

∣∣∣∣
C
=
∂u−

∂n

∣∣∣∣
C
,

(3)

where the normal n is directed from Ω+ to Ω− and ∂
∂n = 1

r
∂
∂ϑ . It is worth commenting on that, in view

of the elliptic regularity of solutions and smoothness of the surface C as r ̸= 0, the equations (2) and
boundary conditions (3) can be understood in classical sense. In physics of wave phenomena the con-
ditions (3) are traditionally called conditions of semitransparency [4]. Actually, applications of the



boundary conditions of semitransparency in physics motivated our study of δ′−interaction
in this work, see [4], [5]. It should be noticed, however, that the same approach with
appropriate modifications enables one to consider singular potential with δ−interaction.

We consider negative spectrum E < 0 of Aγ and construct classical solutions of (2), (3) which
additionally satisfy the so called Meixner’s condition at the vertex O, i.e. as r → 0,

|u±(r, ω)| < c±

rδ
±
0

,

|r∇u±(r, ω)| < c±

rδ
±
0

,
(4)

(δ±0 > −1/2) uniformly1 w.r.t. (with respect to) the direction ω ∈ Σ±, where Σ+ = Ω+ ∩ S2, Σ− =
Ω− ∩ S2 and σ = C ∩ S2. The conditions (4) are sufficient for local summability of u± and also for
u± ∈ H1

loc(Ω±).
Provided E < −4γ2 the spectrum of the operator Aγ is discrete, so that in order to find the corre-

sponding eigenfunctions and to prove their exponential decreasing we require the following conditions:
let there exist such δ± > 0 that the estimates hold∫

Ω±

|u±(r, ω)|2 exp(2δ±r)dx <∞, (5)

dx = r2drdω, dω = sinϑdϑdφ. However, provided 0 > E > −4γ2, i.e E belongs to the negative
essential spectrum, the corresponding ‘generalized’ eigenfunctions do not vanish at infinity and the
conditions (5) fail for them.

2.1 Kontorovich-Lebedev integral representation and separation of the ra-
dial variable

Consider negative E and introduce κ =
√
−E > 0. Solutions u± in Ω± are sought in the form of KL

integral representation2

u±(r, ω) =
4

i
√
2π

i∞∫
−i∞

Kν(κr)√
κr

ν sin(πν)u±ν (ω)dν , (6)

where Kν(z) is the Macdonald (modified Bessel) function and the unknown u±ν (ω) (ω ∈ Σ± ) should
be chosen from an appropriate class of functions and such that the representations (6) would satisfy
(2),(3) in classical sense, see also [31]. (Some background information about the complex form
of the KL transform can be found in Sect. 1.4.4 of [6].)

To this end, consider meromorphic w.r.t. ν functions u±ν (ω) of the complex variable ν that take on
their values in Banach spaces C2(Σ±) as functions of ω, (see [29], where meromorphic functions taking
their values in a Banach are defined). Additionally, we require that these functions meet the following
conditions

• u±ν (ω) = u±−ν(ω) is even.

• There exists such ϵ > 0 that u±ν (ω) are holomorphic in the strip

Πϵ = {ν ∈ C : |ℜ(ν)| < ϵ}

with the values in the space C2(Σ±).

• ∂u±
ν (ω)
∂ϑ

∣∣∣
σ
are meromorphic w.r.t. ν functions with the values in the space of continuous func-

tions C(σ) and are holomorphic in Π1+ϵ.

• As ν → i∞ and ℜ(ν) = 0 the functions
√
ν cos(πν/2)u±ν (ω) of ν are absolutely integrable uniformly

w.r.t. ω ∈ Σ±.

1 The upper or lower signs in (4) and further are only simultaneously taken.
2 We cannot assert that any eigenfunction is represented this way, however, we believe in this.



The last condition is sufficient to ensure absolute and uniform convergence of the integral in (6) because
the Macdonald function can be estimated as

Kν(z) ∼ Const
ν−1/2 cos(ν[π/2 + | arg(z)|])

sin(πν)
,

ν → i∞ and ℜ(ν) = 0 for | arg z| 6 π/2, |z| is arbitrarily fixed. More precise estimates for u±ν (ω) as
ν → i∞ will be discussed below. Let M be the class of functions u±ν (ω) described above. Usage of this
class is motivated by verification of the following Lemma.

Lemma 2.1 Let the functions u±ν (ω) belong to M and satisfy the equations

(△ω + (ν2 − 1/4))u±ν (ω) = 0 , ω ∈ Σ±, (7)

and the boundary conditions

∂u+ν+1

∂ϑ

∣∣∣∣∣
σ

−
∂u+ν−1

∂ϑ

∣∣∣∣∣
σ

− 2γν

κ
(u+ν |σ − u−ν |σ) = 0 ,

∂u+ν
∂ϑ

∣∣∣∣
σ

=
∂u−ν
∂ϑ

∣∣∣∣
σ

.

(8)

Then the integral representations (6) satisfy the equations (2) and the boundary conditions (3) in classical
sense.

Remark that the first boundary condition in (8) is nonlocal (w.r.t. ν), which is a manifestation of
the incomplete separation of the radial variable in the first boundary condition in (3).

The equations (2) are verified from (7) by the direct substitution and differentiation taking into ac-

count that
{

d2

dz2 + 1
z

d
dz −

(
1 + ν2

z2

)}
Kν(z) = 0. We make use of the identity Kν(z)

z = Kν+1(z)−Kν−1(z)
2ν

from 8.486(10) in [30] and from the boundary conditions (8) thus have

1

κr

∂u+

∂ϑ

∣∣∣∣
C
− γ

κ
(u+|C − u−|C) =

4

i
√
2π

i∞∫
−i∞

(
Kν+1(κr)−Kν−1(κr)

2
√
κr

sin(πν)
∂u+ν
∂ϑ

∣∣∣∣
σ

− γ

κ

Kν(κr)√
κr

ν sin(πν) (u+ν |σ − u−ν |σ)
)
dν =

4

i
√
2π

i∞+1∫
−i∞+1

Kν(κr)

2
√
κr

sin(π[ν − 1])
∂u+ν−1

∂ϑ

∣∣∣∣∣
σ

dν − 4

i
√
2π

i∞−1∫
−i∞−1

Kν(κr)

2
√
κr

sin(π[ν + 1])
∂u+ν+1

∂ϑ

∣∣∣∣∣
σ

dν−

4

i
√
2π

i∞∫
−i∞

ν sin(πν)
γ

κ

Kν(κr)√
κr

(u+ν |σ − u−ν |σ)dν =

4

i
√
2π

i∞∫
−i∞

Kν(κr)

2
√
κr

sin(πν)

(
∂

∂ϑ

(
u+ν+1 − u+ν−1

)∣∣∣∣
σ

− 2γν

κ
(u+ν |σ − u−ν |σ)

)
dν = 0 .

It is obvious that the formal reductions above are easily justified for the functions u±ν (ω) from M. The
second boundary condition in (3) is similarly verified.

Remark 2.1 Together with the KL integral representation (6) it is also useful to exploit other repesen-
tations for solutions, e.g. so called Watson-Bessel (WB) integral,

u±(r, ω) = 2i
√
2π

∫
ΓΦ

Jν(iκr)√
κr

ν exp(−iπν/2)u±ν (ω)dν , (9)

where the contour Γϕ = (∞ e−iΦ,∞ eiΦ), Φ ∈ [0, π/2] so that the contour of integration (see also [31]
for details) comprises the positive part of real axis, in particular, as Φ = π/2 and it coincides with iR
as Φ = 0. The functions u±ν (ω) are also proved to be holomorphic w.r.t. ν outside some



vicinity of the real axis for any ω. The latter means, in particular, that in the process of
deformation of the contour ΓΦ, as Φ varies from π/2 to 0, no singularities of the integrand
are crossed.

The WB integral representation (9) can be applied in order to verify the estimates (4) in a similar
way as it is shown in [6], Sect. 5.2.2. It is assumed (and can be shown) that

|u±ν (ω)| 6 c±
| exp(iνθ̂±(ω))|√

|ν|

for some θ̂±(ω) and ν ∈ ΓΦ as ν = |ν| e±iΦ → ∞ e±iΦ. As a result, the integrand is then estimated as

|Jν(iκr) ν exp(−iπν/2)u±ν (ω)| 6

c
√
|ν| exp{−|ν| log |ν| cosΦ− |ν|(sinΦ[arg(κr)− Φ] + | sinΦ|θ̂±(ω)− cosΦ[1 + log(κr/2)])} ,

where the asymptotic formula for Jν(z) ∼
(
z
2

)ν 1
Γ(ν+1) and Stirling asymptotics for Γ(ν + 1) are used.

Some additional information about use of the W.-B. intgeral representation can be found
in [31].

The homogeneous problem (7),(8) for the Laplacian △ω on the unit sphere should be solved by
further separation of the angular variables ω = (ϑ, φ) by means of spherical functions.

3 Spherical functions and a functional difference equation

We are looking for solutions of the equations (7) in the form of spherical functions

u+ν (ω) = C+
n (ν) e−inφ

P
−|n|
ν−1/2(cosϑ)

dϑ1P
−|n|
ν−1/2(cosϑ1)

, 0 6 ϑ 6 ϑ1

u−ν (ω) = C−
n (ν) e−inφ

P
−|n|
ν−1/2(− cosϑ)

dϑ1
P
−|n|
ν−1/2(− cosϑ1)

, π > ϑ > ϑ1 ,

(10)

where n = 0,±1,±2, . . . , P
−|n|
ν−1/2(− cosϑ) is the associated Legendre function [30] and C±

n are still

unknown, dϑ1 := ∂
∂ϑ1

. It is worth mentioning that we could also take some linear combinations of
spherical functions in the right-hand side of (10).

Substitute (10) into the boundary conditions (9), thus obtain

C+
n (ν + 1)− C+

n (ν − 1) − 2νγ

κ

 P
−|n|
ν−1/2(cosϑ1)

dϑ1P
−|n|
ν−1/2(cosϑ1)

C+
n (ν) −

P
−|n|
ν−1/2(− cosϑ1)

dϑ1P
−|n|
ν−1/2(− cosϑ1)

C−
n (ν)

 = 0 ,

C+
n (ν) = C−

n (ν).
(11)

We can eliminate C−
n (ν) from the first equation in (11) and arrive at a key object of our study, i.e. to

the functional difference equation of the second order

C+
n (ν + 1)− C+

n (ν − 1) − 2i ΛWn(ν)C
+
n (ν) = 0 , (12)

where

Λ =
2γ

κ
,

Wn(ν) =
1

2
[wn(ν)−Wn(ν)] ,

with

wn(ν) = −iν
P
−|n|
ν−1/2(cosϑ1)

dϑ1P
−|n|
ν−1/2(cosϑ1)

, Wn(ν) = −iν
P
−|n|
ν−1/2(− cosϑ1)

dϑ1P
−|n|
ν−1/2(− cosϑ1)

.
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Figure 2: Characteristic behaviour of the potentials Wn(ν) on the imaginary axis, ν = it, as
n = 0 and n = 2 , ϑ1 = 150◦

Wn(ν) is the meromorphic coefficient (potential) in (12). Difference equations of the second order with
entire or meromorphic potentials have been recently considered in various applications [21],[16],[23],[22],
see also [20].

For any fixed n and ϑ1 the potential Wn(ν) is meromorphic and is holomorphic in some strip
Πϵ, ϵ > 0. It is odd, Wn(ν) > 0 as ν ∈ iR+ (see also appeindix D in [16]), has the asymptotics

Wn(ν) = 1 +O(1/ν), ν ∈ Πϵ, ν → i∞.

The latter asymptotics follows from 8.721(3) in [30]. The poles of the potential are on the real axis

because the zeros of dϑ1P
−|n|
ν−1/2(± cosϑ1) are on the real axis. These properties are actually

verified by means of known results dealing with the associated Legendre function [30]. It is then it is
verified that for n = 0 the potential W0(ν) is such that W ∗

0 = supν∈iR+
W0(ν) > 1 and there exists

such N∗ > 0 that W0(ν) > 1 as ν ∈ iR+ and |ν| > N∗. On the other hand, 0 6 Wn(ν) < 1 for
n = ±1,±2, . . . . Fig. 2 shows characteristic behaviour of the potentail Wn. It is important
to notice that only for n = 0 the value of the potential on the imaginary axis can exceed
unity.3

The following section is devoted to study of solutions for the functional difference equations having
potentials from a class that includesW0(ν). Reduction to an integral equation with a bounded selfadjoint
operator forms a basis of our study there. The equation with the potentials Wn(ν) for n = 1, 2, . . . are
studied similarly. However, contrary to the equation with the potential W0(ν), they have no ‘discrete
spectrum’ solutions i.e those which correspond to the eigenfunctions of the operator Aγ .

4 Solutions of an auxiliary functional difference equation with
meromorphic potential

Consider a class V of meromorphic potentials V such that each of them is holomorphic in the strip Πϵ,
for some small ϵ > 0, V (ν) = −V (−ν), V (ν) > 0 as ν ∈ iR+. The asymptotics of the potentials reads

V (ν) = 1 +O(1/ν), ν ∈ Πϵ, ν → i∞ .

We also assume that the potentials are such that V ∗ = supV (ν) > 1 as ν ∈ iR+ and for any small
δ∗ > 0 there exists such positive N(δ∗) that for |ν| > N(δ∗) (ν ∈ iR+) one has V (ν) > 1 + δ∗. Poles of
each function V are located in some strip parallel to the real axis. Zero of V at ν = 0 is assumed to
be simple. We study meromorphic even solutions χ of the homogeneous equation

χ(ν + 1)− χ(ν − 1) − 2i ΛV (ν)χ(ν) = 0 (13)

as Λ ∈ [0,∞). The desired solutions are to be holomorphic in a vicinity of the imaginary axis and
exponentially vanish there at infinity, χ(ν) = χ(−ν).

3The numerical tests have been carried out by Dr. Eng. Ning Yan Zhu from Stuttgart University.



In order to motivate and prove a main result of this section we, first, reduce the equation (13) to an
integral equation. We apply Fourier transform with integration along the imaginary axis (see e.g. Sect.
7.3 in [20]). We exploit a simple Lemma which follows from the known technique developed
for a class of functional equations [20], Chapter 7. Namely, we make use of

Lemma 4.1 Let H(ν) be holomorphic as ν ∈ Πδ and |H(ν)| 6 cHe−κ|ν| , |ν| → ∞ ,κ > 0 in this
strip, H(ν) = −H(−ν). Then an even solution s(ν) of the equations

s(ν ± 1)− s(−ν ± 1) = ∓2iH(ν) ,

which is regular (holomorphic) in the strip ν ∈ Π1+δ and exponentially vanishes as |ν| → ∞
there, is given by

s(ν) =
1

4

i∞∫
−i∞

dτ H(τ)

(
sin(πτ/2)

cos(πτ/2)− sin(πν/2)
+

sin(πτ/2)

cos(πτ/2) + sin(πν/2)

)
=

1

4

i∞∫
−i∞

dτ H(τ)
sinπτ

cosπτ + cosπν
, ν ∈ Π1+δ .

Actually, proof of this Lemma is a direct consequence of application of the so-called
S−integrals (see some details in Sect. 7.3.2 in [20], formula (7.24)), which is equivalent to
the Fourier transform along the imaginary axis. The Lemma describes ‘inversion’ of the
difference operator in the left-hand side of the functional difference equation.

As a result, from Lemma 4.1 and (13) we arrive at the integral representation

χ(ν) = −Λ

2

i∞∫
−i∞

dt
sin(πt)V (t)

cos(πt) + cos(πν)
χ(t) (14)

as ν ∈ Π1+ϵ . Provided χ(·) is known and holomorphic in Πϵ in the integrand of the right-hand side of
(14), the left-hand side is then defined by the integral and is holomorphic in Π1+ϵ. Remark that, having
specified χ(·) in the strip Π1+ϵ, one can continue χ(·) onto the whole complex plane as a meromorphic
function by means of the functional equation (13).

However, if ν ∈ iR, the representation (14) becomes an integral equation to determine χ(·) on the
imaginary axis, written as

χ(ν) = −Λ

i∞∫
0

dt
sin(πt)V (t)

cos(πt) + cos(πν)
χ(t) , (15)

ν ∈ iR+. We reduce the equation (15) to a more convenient form by means of introduction of new
variables

x =
1

cosπν
, y =

1

cosπt
,

dy

π
=

sinπt

cos2 πt
dt,

and new unknown
h(x) = cosπν χ(ν)|x= 1

cosπν
,

x, y ∈ [0, 1],

h(x)− Λ

π

1∫
0

dy
v(y)

x+ y
h(y) = 0 , (16)

where v(y) = V (t)|y= 1
cosπt

and v(y) = 1 + O( 1
log(2/y) ) as y → 0. Finally, from (16) the desired form of

the integral equation with a symmetric integral operator reads

ρ(x)− Λ

π

1∫
0

dy

√
v(x)v(y)

x+ y
ρ(y) = 0 , (17)

where ρ(x) =
√
v(x)h(x).



4.1 Study of the integral operator in (17)

The positive operator K : L2(0, 1) → L2(0, 1) is defined by4

(Kρ)(x) =
1

π

1∫
0

dy

√
v(x)v(y)

x+ y
ρ(y)

and the integral equation in (17)5 is written in the form

(Kρ)(x) = λρ(x), (18)

λ = Λ−1 . The operator K is selfadjoint and bounded (compare the estimate with that analogous in
Sect. 2.10, [9]),

|(Kh, g)L2(0,1)| 6 V ∗∥h∥∥g∥ ,

V ∗ = sup[0,1] v(y) > 1.
We turn to study of the spectrum σ(K) ⊂ [0, V ∗] of the operator K in (18). To this end, it is useful

to represent it in the form
K = D + [K −D],

where

(Dρ)(x) =
1

π

1∫
0

dy

x+ y
ρ(y)

is the so called Dixon’s operator (see Sect. 11.18 in [32]) and

([K −D]ρ)(x) =
1

π

1∫
0

dy

√
v(x)v(y)− 1

x+ y
ρ(y)

is of the Hilbert-Schmidt class in view of the estimate |v(x)v(y)− 1| 6 const
(

1
log(2/y) +

1
log(2/x)

)
.

The selfadjoint Dixon’s operator is bounded and admits explicit characterization. In particular, its
spectrum is purely essential coinciding with the segment [0, 1], which follows, e.g. from Sect. 11.17 in
[32], see also the Appendix.6 Indeed, it is possible to reduce the equation (Dρ)(x) = λρ(x) to that
specified by a convolution-type operator on the semi-axis. The latter equation has nontrivial solutions
for each λ ∈ [0, 1]. The operator K = D+ [K −D] is a compact pertubation of the Dixon’s operator so
that its essential spectrum σess(K) also coincides with [0, 1].

However, the operator K may also have the discrete component σd(K) of the spectrum. Indeed,
the operator K is positive so that its discrete spectrum, if exists, is located on the interval (1, V ∗], i.e.
σd(K) ⊂ (1, V ∗]. We can also expect that σd(K) is not empty in view of the properties of the potential v
which follow from those of the potentials V ∈ V. In order to prove this it is sufficient to find a nontrivial
ρ ∈ L2(0, 1) and a positive d such that

(Kρ, ρ)

(ρ, ρ)
> 1 + d,

which follows from the variational (minimaximal) principle [9].
Indeed, in order to get the latter estimate we take the following testing function h(x) =

[v(x)]−1/2 . Then we consider the normalized function

ρ(x) =
h(x)

∥h(x)∥
, where ∥h(x)∥2 =

1∫
0

dx

v(x)
.

4Remark that x = 0 plays the role of the singular end of the interval [0, 1] for the operator K by analogy with the
differential operators.

5 This operator belongs to a class of weighted Hankel operators that are considered in the corresponding literature.
6 Making use of the spectral measure for the Dixon’s operator discussed in the Appendix, one could

compute singular sequences corresponding to any point from the segment [0, 1], i.e. from the essential
spectrum.



(Remark that, in view of our assumptions for V (ν), one has v(x) = O(
√
1− x) as x → 1 − 0

and then h ∈ L2(0, 1).) We have

(Kρ, ρ) =
1

π

1∫
0

dx

1∫
0

dy

√
v(x)v(y)

x+ y
ρ(y) ρ(x) =

1

π∥h(x)∥2

1∫
0

dx

1∫
0

dy
1

x+ y
=

2 log 2

π
∫ 1

0
dx
v(x)

.

Now, impose an additional restriction to the potential v assuming that

2 log 2

π
>

1∫
0

dx

v(x)
(19)

and conclude
(Kρ, ρ) > 1.

The latter inequality means that the discrete spectrum of K is then nonempty. The
sufficient condition (19) can be written in terms of the potential V (ν) of the functional
equation (13)

∞∫
0

dt

cosh2(πt)

π sinh(πt)

V (it)
<

2 log 2

π
. (20)

Below we consider validity of this sufficient condition as V (ν) =Wn(ν), i.e. for the problem
at hand.

Remark 4.1 It is worth remarking that the condition (19) has simple geometrical inter-
pretation. Namely, the square under the curve y = 1

π log(1 + 1/x) and above y = 0 on the

segment (0, 1], which is equal to 2 log 2
π , must be greater than the square under the curve

y = 1/v(x) and above y = 0 on the same interval.

It is also possible that finitely or infinitely many members of a sequence {hn} ⊂ L2(0, 1)
satisfy the estimate (Kρ, ρ) > (ρ, ρ) as ρ = hn. In our case we can take ρn = hn/∥hn∥, where

hn(x) =

{
[v(x)]−1/2 , x ∈ [ 1n , 1]
0 , x ∈ [0, 1

n )
.

It is assumed that the inequality (19) is valid, then (Kρn, ρn) > 1 is also true for any
sufficiently large n because

(Kρn, ρn) =
2 log 2 + 2

n log 2
n − 2

(
1 + 1

n

)
log
(
1 + 1

n

)
π
∫ 1

1/n
dx
v(x)

→ 2 log 2

π
∫ 1

0
dx
v(x)

> 1

as n→ ∞. (Remark that {ρn} are linear independent.) In this case, i.e. for V ∈ V satisfying
(20), the discrete spectrum is nonempty and infinite.

Let us denote the correspoding eigenvalues λm, m ∈M = {1, 2, 3 . . . } counting7 them in the order
of their decreasing and taking into account their multiplicity then

σd(K) = ∪m∈M λm .

The corresponding eigenfunctions are denoted ρm. These eigenfunctions are not only from L2(0, 1) but
are also continuous on (0+, 1] in view of the continuity of the kernel in (17).

It worth commenting that in this work we are interested in behaviour of some ‘individual’ eigenfinc-
tion u±m i.e. assume that m is fixed. On the other hand, complete description of the negative spectrum
of the operator Aγ is closely related with the following Lemma.

Lemma 4.2 The spectrum σ(K) of the operator K consists of the essential spectrum σess(K) = [0, 1]
and, provided (19) is valid, of the infinite discrete part σd(K) = ∪m∈M λm.

Now we return to the equation (13).

7We notice that the set M of natural numbers may be also finite for some other classes of potentials.



4.2 Existence and asymptotic behaviour of the eigensolutions for the func-
tional difference equation

In this section we prove the following statement

Theorem 4.1 Let the potential V in the equation (13) belong to the class V and satisfy the condition
(20). Then there exists an infinite number of even solutions χm (see (21)) of the equation (13)
corresponding to Λ = Λm = λ−1

m , m ∈M such that these solutions are meromorphic, holomorphic in a
vicinity of the imaginary axis and exponentially vanish at infinity,

χm(ν) = O

(
1

cos(ν[π − τm])

)
, ν → i∞ , ν ∈ Πϵ , τm ∈ (0, π/2)

so that the integral in (22) converges.

The proof makes use of the Lemma 4.2. We reduce the functional equation (13) to
the integral equation. We can assert that this integral equation (15) has a number of
continuous (on (0, 1]) solutions χm(ν),

χm(ν) =
ρm(x)|x=1/ cosπν

cosπν
, ρm ∈ L2(0, 1) , (21)

corresponding to Λm, m ∈M ,

Λm =
1

λm
,

where λm is an eigenvalue of the operator K and ρm(x) is an eigenfunction. The solutions
χm(ν) are continuous and such that the integral

i∞∫
0

|χm(ν) |2 | sin(πν)| dν| < ∞ (22)

converges, which is equivalent to the estimate
∫ 1

0
|ρm(x)|2dx <∞.

Taking into account that χm(ν) is continued onto the whole imaginary axis due to
evenness, we can assert that, in view of the representation (14), the left-hand side in (14)
is holomorphic as ν ∈ Π1+ϵ . Meromorphic continuation of χm(ν) from this strip onto the
whole complex plane is performed by use of the functional equation.

It is now convenient to introduce the parameter τ in accordace with

sin τ = Λ

and τ ∈ (0, π/2) as Λ ∈ (0, 1) and, otherwise, τ = π/2+it, t ∈ [0,∞) as Λ ∈ [1,∞), i.e. Λ−1 ∈ σess(K).
In particular,

sin τm = Λm ,

where Λm = λ−1
m , λm ∈ σd(K). (Recall that λ−1 = Λ = 2γ

κ , see (12).)
Actually, we have already shown existence of the desired solutions and now we turn to discussion

of the estimate in the Theorem 4.1 as ν → i∞ , ν ∈ Πϵ. The idea of such verification is rather natural.
It is well established in the Fourier analysis of functions on the axis that the behaviour of a function at
infinity is closely related to the regularity domain of its Fourier transform. As a result, it is sometimes
more efficient to identify positions of singularities of the Fourier transform on the complex plane in order
to terminate its regularity domain. Then the asymptotics of the function at infinity is specified by the
position of singularities. Indeed, consider the Fourier transform of χm along the imaginary
axis

Fm(α) =
1

i

∫
iR

χm(ν)eiνα dν ,

where, in view of the estimate (22), Fm(α) is holomorphic in the strip Ππ/2 and is even.
We apply the transform to the functional equation (13) with Λm = sin τm and after some
calculations obtain

Fm(α) =
(−2i) sin τm
sinα+ sin τm

1

i

∫
iR

[V (ν)− 1]χm(ν)eiνα dν .



ϑ1 H(ϑ1)

29π/30 0.294404
28π/30 0.153376
9π/10 0.020672
26π/30 -.102446
25π/30 -.215296
8π/10 -.317517
23π/30 -.408935
π/2 -.751230

Table 1: The values of H(ϑ1). Positive values of H(ϑ1) correspond to that the sufficient condition for
existence of the discrete spectrum is satisfied.

Simple analysis of the latter representation enables us to assert that Fm(α) is holomorphic
as α ∈ Ππ−τm and the nearest to the imaginary axis singularities are on the real axis at
α = −(π − τm) and also at α = π − τm by parity. Taking into account the inverse Fourier
transform and position of the leading singularities, we arrive at the estimate χm(ν) =

O

(
1

cos(ν[π − τm])

)
, ν → i∞ . We omitted some simple calculations.

Remark 4.2 It is worth commenting on the case when Λ−1 = λ ∈ σess(K) and then τ = π/2 + it, t ∈
[0,∞). The corresponding solutions χ of the equation (13) still exist, however, the estimate (22) for

them fails. Nevertheless, one has χ(ν) = O

(
1

cos(ν[π − τ ])

)
, ν → i∞ on the imaginary axis.

5 The eigenfunctions of the operator Aγ

We can use the Theorem 4.1 for the functional equation (13) taking V (ν) = Wn(ν). It is verified that
for n = 0 the conditions Wn ∈ V and (20) can be satisfied. Indeed, in view of the explicit
formula for W0(ν), since

dϑ1Pν−1/2(cosϑ1) = − sinϑ1
d

dx
Pν−1/2(x)

∣∣∣∣
x=cosϑ1

,

we find that (W0(ν))
−1 = sinϑ1ψ(ν, ϑ1) with some meromorphic ψ which is bounded as sinϑ1

and ψ(·, ϑ1) is integrable. As a result, at least for a sufficiently small sinϑ1 the condition
(20) is satisfied as V (ν) = W0(ν). However, it is not the case for V (ν) = W0(ν) as ϑ1 = π/2.8

The Table 1 shows dependence of

H(ϑ1) =
2 log 2

π
−

∞∫
0

dt

cosh2(πt)

π sinh(πt)

w0(t, ϑ1)

on the cone’s opening ϑ1, w0(t, ϑ1) :=W0(ν), ν = it,

w0(t, ϑ1) =
t

2

(
Pit−1/2(cosϑ1)

dϑ1Pit−1/2(cosϑ1)
−

Pit−1/2(− cosϑ1)

dϑ1Pit−1/2(− cosϑ1)

)
.

We can verify that, as |n| ̸= 0, the sufficient condition (20) fails for V (ν) =Wn(ν) including
also small sinϑ1. This can be expected considering the graphs for Wn(ν) (see e.g. Fig. 2)
and taking into account the remark 4.1.

We can assert that for some range of parameters ϑ1 ∈ (π/2, π) and n = 0 the equation (12) has the
nontrivial solution C0(ν, τ) of (12) (the lower index 0 is omitted below) as Λ = Λm, τ = τm in (12). For
these solutions we shall use notations C(ν, τm) with Λm = sin τm = λ−1

m . (Recall that λm ∈ σd(K)).
One can expect that the discrete spectrum exists for all ϑ1 ∈ (π/2, π), however, the sufficient
condition (20) is too rough in order to prove this.

8 It is known that for the degenerate cone i.e as ϑ1 = π/2 the dicrete spectrum of the operator Aγ is empty.
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Figure 3: The Sommerfeld double-loop contour γ0 = γ+0 ∪ γ−0 .

The KL intergal representations for the eigenfunctions take on the form9

u±m(r, ω) =
4

i
√
2π

i∞∫
−i∞

dν ν sin(πν)C(ν, τm)
Kν(κmr)√

κmr

Pν−1/2(± cosϑ)

dϑ1Pν−1/2(± cosϑ1)
, (23)

where we wrote C(ν, τm) instead of C±
0 (ν) because n = 0, κm = 2γλm. We take the upper signs + as

ω = (ϑ, φ) ∈ Σ+ i.e. 0 6 ϑ 6 ϑ1 the lower signs − as ω = (ϑ, φ) ∈ Σ− i.e. ϑ1 6 ϑ 6 π in (23).

5.1 Sommerfeld integral representations for the eigenfunctions and their
asymptotics, r → ∞

It is worth remarking that, in order to obtain the asymptotics, it is not possible to make use of Kν(κr) =√
π
2

exp(−κr)√
κr

(1 +O(1/[κr])) in (23) because, otherwise, the integrals in (23) would diverge. However,

it is useful to transform the KL integral representation to that of the Sommerfeld type (see Chapter 5
in [6], [31]) which is well adapted to calculation of the asymptotics as κr → ∞. To this end, we exploit
Sommerfeld integral representation for the Macdonald function that takes the form

Kν(z) =
1

4i

∫
γ0

ez cosα sin(να)

sin(πν)
dα

as Rez > 0, whereas the integration contour γ0 is shown in Fig. 3. The latter integral rapidly converges
due to vanishing of the exponent in the integrand at the ends of γ. We substitute the latter representation
of the Macdonald function into (23), change the orders of integration, which is justified (see also Sect.
5.6 in [6] and [31]), and arrive at

u±m(r, ω) =
1

2πi

∫
γ0

dα
eκmr cosα

√
κmr

Φ±
m(α, ϑ) (24)

with

Φ±(α, ϑ) := Φ±
m(α, ϑ) =

√
2π

i

i∞∫
−i∞

dν ν sin(αν)
Pν−1/2(± cosϑ)

dϑ1Pν−1/2(± cosϑ1)
C±(ν, τm) . (25)

For breivity we omit the lower index m for Φ±
m(α, ϑ). From the asymptotic behaviour of C± and of the

Legendre functions (as ν → i∞) we have∣∣∣∣ Pν−1/2(± cosϑ)

dϑ1Pν−1/2(± cosϑ1)
C±(ν, τm)

∣∣∣∣ 6 Const

| cos(ν[π − τm ± (ϑ1 − ϑ)])|

9 The corresponding eigenvalues E = Em are specified as Em = − 4γ2

sin2 τm
and the eigenfunctions are rotationally

symmetric.



as ν → i∞ in the integrand of (25). From this estimate one concludes that Φ±(·, ϑ) (Sommerfeld
transformants) are holomorphic in the strips Πϑ̂± correspondingly, where

ϑ̂±(ϑ) := ϑ̂±m(ϑ) = π − τm ± (ϑ1 − ϑ)

assuming that 0 6 ϑ 6 ϑ1 for ϑ̂+ and ϑ1 6 ϑ 6 π for ϑ̂−. The functions Φ±(·, ϑ) are odd. So,
provided one could prove that these functions are holomorphic in upper P+ halfplane,
then the same is valid for the lower P− halfplane of the complex variable α. It can be
verified that the functions Φ±(·, ϑ) are also continued as holomorphic functions into upper
P+ halfplane (see, e.g., [31]). The corresponding proof requires some work, however, it is
conducted in the line of derivations described in Sect. 6.2 in [31], see also Sect. 6.6.2 in
[6]. As a result, the following Lemma is true.

Lemma 5.1 The Sommerfeld transformants Φ±(·, ϑ) are odd and holomorphic in P+ ∪ P− ∪Πϑ̂± cor-
respondingly as τm ∈ (0, π/2), exponentially vanish as α→ ±i∞ on the imaginary axis.

In particular, the Lemma 5.1 implies that singularities of the analytic functions Φ±(·, ϑ) can be located

on the real axis in the exterior of the strip Πϑ̂± . The singularities at α = ϑ̂± are located on the
boundary of this strip. In calculation of the asymptotics for eigenfunctions study of Φ±(·, ϑ) at
these singularities plays a crucial role.

It is also useful to introduce the analytic function Ψ±(·, ϑ) by the equalities

Φ±(α, ϑ) =
∂

∂α
Ψ±(α, ϑ) ,

implying that

Ψ±(α, ϑ) = −
√
2π

i

i∞∫
−i∞

dν cos(αν)
Pν−1/2(± cosϑ)

dϑ1Pν−1/2(± cosϑ1)
C±(ν, τm) (26)

and

u±(r, ω) =

√
κr

2πi

∫
γ0

dα eκr cosα sinαΨ±(α, ϑ) . (27)

The transformants Ψ±(α, ϑ) have similar analytic propreties as those of Φ±(α, ϑ) which are described
by the Lemma 5.1, however, Ψ±(−α, ϑ) = Ψ±(α, ϑ) are even.

5.2 Singularities of the Sommerfeld transformants and singular expansions

In order to account for position and character of the leading singularities10 of the Sommerfeld transfor-
mants Φ±(α, ϑ) and Ψ±(α, ϑ) we, first, consider behaviour of the integrand in (26),

Pν−1/2(± cosϑ)

dϑ1Pν−1/2(± cosϑ1)
C±(ν, τm) = O

(
Pν−1/2(− cos(νϑ̂±))

cos(πν)

)
, ν → i∞,

noticing that the right-hand side is of O
(

1

cos[νϑ̂±]

)
on the imaginary axis. We take into account the

known from [30] (formula 7.216) result (and its analytic continuation if necessary)

1

4
√
2

∞∫
0

cos(itα)
Pit−1/2(− cos θ)

cos(iπt)
dt =

1√
cosα− cos θ

where iα > 0 and
√
cosα− cos θ > 0 as −θ < α < θ.

The latter formula enables us to look for the local ‘singular’ expansion (w.r.t. smoothness) of the
Sommerfeld transformants

Ψ±(α, ϑ) =
A±

0 (ϑ)√
cosα− cos ϑ̂±(ϑ)

+ A±
1 (ϑ)

√
cosα− cos ϑ̂±(ϑ) + . . . , (28)

10 Recall that all singularities are on the real axis as τ = τm ∈ (0, π/2).



where the dots denote less singular terms including a regular components in some neighbourhood of
the point α = ϑ̂±(ϑ). (Due to evenness of Ψ±(α, ϑ) the same expansion is valid near α = −ϑ̂±(ϑ).)
The branch cuts in (28) are correspondingly conducted from ±ϑ̂± to ±∞ along the imaginary axis and√
cosα− cos ϑ̂± > 0 as −ϑ̂± < α < ϑ̂±. Recall that

Φ±(α, ϑ) =
∂

∂α
Ψ±(α, ϑ) =

1
2A

±
0 (ϑ) sinα

[cosα− cos ϑ̂±(ϑ)]3/2
+ . . . . (29)

In order to verify that the expansions in (28) and (29) really describe the behaviour of the transfor-
mants near the singularities and to determine the unknown A±

j (ϑ), j = 0, 1, . . . we formulate equations
and boundary conditions for the Sommerfeld transformants, see Sect. 5.6 in [6] and [31]. It is worth
mentioning that the Sommerfeld transformants are actually connected with u±ν by means of the Fourier
transform along the imaginary axis, see (10),(25) and (26). We then easily obtain, from (7), that

(△ω − ∂2α − 1/4)Φ±(α, ϑ) = 0 , ω ∈ Σ±, (30)

and
(△ω − ∂2α − 1/4)Ψ±(α, ϑ) = 0 , ω ∈ Σ±. (31)

For real α the latter equations are of the hyperbolic type, however, we consider them also for the
complex-valued α. Consider the following formal computation, assuming that

sinα
∂Ψ+(α, ϑ)

∂ϑ

∣∣∣∣
ϑ=ϑ1

=
2γ

κ

∂

∂α

(
Ψ+(α, ϑ)−Ψ−(α, ϑ)

2

)∣∣∣∣
ϑ=ϑ1

(32)

and integrating by parts. We verify (κ = κm)

1

κr

∂u+(r, ω)

∂ϑ

∣∣∣∣
ϑ=ϑ1

=
1√
κr

1

2πi

∫
γ0

dα eκr cosα sinα
∂

∂ϑ
Ψ+(α, ϑ)

∣∣∣∣
ϑ=ϑ1

=

2γ

κ

1

2πi

∫
γ0

dα
eκr cosα

√
κr

∂

∂α

(Ψ+(α, ϑ)−Ψ−(α, ϑ))

2

∣∣∣∣∣∣
ϑ=ϑ1

=

2γ

κ

1

2πi

∫
γ0

dα
eκr cosα

√
κr

(Φ+(α, ϑ)− Φ−(α, ϑ))

2

∣∣∣∣∣∣
ϑ=ϑ1

=
γ

κ

(
u+(r, ω)− u−(r, ω)

)∣∣∣
ϑ=ϑ1

,

which means that the first boundary condition in (3) holds. The second condition in (3) is verified on
a similar way provided

∂Ψ+(α, ϑ)

∂ϑ

∣∣∣∣
ϑ=ϑ1

=
∂Ψ−(α, ϑ)

∂ϑ

∣∣∣∣
ϑ=ϑ1

. (33)

From boundary conditions (32) and (33) we also obtain

∂Φ+(α, ϑ)

∂ϑ

∣∣∣∣
ϑ=ϑ1

=
2γ

κm

∂

∂α

(
Φ+(α, ϑ)− Φ−(α, ϑ)

2 sinα

)∣∣∣∣
ϑ=ϑ1

(34)

and
∂Φ+(α, ϑ)

∂ϑ

∣∣∣∣
ϑ=ϑ1

=
∂Φ−(α, ϑ)

∂ϑ

∣∣∣∣
ϑ=ϑ1

. (35)

The initial conditions are specified from (25) as 0 6 α < ϑ± because the integral rapidly converges and
the integrand is known.

Taking into account properties of the transformants described by Lemma 5.1, we arrive at

Lemma 5.2 The Sommerfeld transformants Φ±
m(α, ϑ) and Ψ±

m(α, ϑ) solve the equations (30) and (31)
and satify the boundary conditions (32)–(35) correspondingly.



We now substitute the expansion (28) into the equations (31) and equate coefficients at two leading

singularities as α ∼ ϑ̂± thus obtain (
dϑ̂±(ϑ)

dϑ

)2

= 1 ,

and

2
dϑ̂±(ϑ)

dϑ

dA±
0 (ϑ)

dϑ
+

(
1

sinϑ

d

dϑ
sinϑ

dϑ̂±(ϑ)

dϑ
− cot ϑ̂±(ϑ)

)
A±

0 (ϑ) = 0 .

The first of the latter two equations is obviously satisfied, whereas solutions of the second one is explicitly
found by quadrature. Taking into account the boundary conditions (32),(33), we consider their leading
singular terms and arrive at

dA+
0 (ϑ)

dϑ

∣∣∣∣
ϑ=ϑ1

=
dA−

0 (ϑ)

dϑ

∣∣∣∣
ϑ=ϑ1

.

From the equations and boundary condition A±
0 (ϑ) are explicitly determined up to a common contant

factor. The coefficients A±
j are recurrently determined in a similar manner. It is worth mentioning that

A±
0 (ϑ) := A±

0m(ϑ) by definition.

The other singularities of Φ±(·, ϑ) and Ψ±(·, ϑ) are isolated from ±ϑ̂± and located on the real axis
outside the strip Πϑ̂± .

5.3 Asymptotics of the Sommerfeld integral representations for eigenfunc-
tions

We make use of the Sommerfled integral representation (24) in order to determine the asymptotic
behaviour of an eigenfunction as κr → ∞ implying that the method of the steepest descent is to be
applied. To this end, we exploit the analytic properties of the Sommerfeld transformants and their
behaviour (29) near the leading singularities at α = ±ϑ̂±. We intend to deform the integration conotur
into the steepest descent (SD) paths (see Fig. 4) that conduct through the saddle point α = π and
α = −π which are zeros of the function S′(α) = − sinα = 0, where S(α) = cosα is the ‘phase’ function
of the rapidly varying exponent exp (κrS(α)) , in the integrand of (24). The contour of integration γ0
is deformed into the steepest descent paths Reα = ±π denoted γ±π

0 . However, in the process of such
deformation the singularities on the real eaxis in the exterior of strip Πϑ̂± can be captured and also
contribute to the asymptotics. Due to parity of the integrand it is sufficient to consider the contribution
of only one saddle point (say α = π) and of the corresponding positive leading singularity at α = ϑ̂+.

It is natural to distinguish two situations, namely, the first case (I) corresponds to the situation
when singularities are not in some close neighbourhoods of the corresponding saddle points. The second
one (II) is related to the situation when the singularity at α = ϑ̂+ is in some close vicinity of the

saddle point α = π (then α = −ϑ̂+ is close to α = −π). To this end, we introduce some useful
terminology. Let ε > 0 be some sufficiently small number. An angular neighbourhood of directions
for the solution u+, described by the inequality |ϑ̂+(ϑ) − π| 6 O(1/[κr]1/2−ε), is called vicinity of the

surface of singular directions [27], [6]. The surface is defined by ϑ̂+(ϑ) = π, r > 0 implying that
κr → ∞. In the same manner, angular vicinity of the surface of singular directions is defined for for
u−, |ϑ̂−(ϑ) − π| 6 O(1/[κr]1/2−ε). It is obvious that these surfaces, if exist, are some conical surfaces
and their angular vicinities are asymptotically small. The term ‘singular’ is justified by the fact that
for the scattering problems in a cone the diffraction coefficient (see [27], [6]) of the spherical wave from
the vertex is singular in these directions. As a result, provided ϑ is not close to singular directions,
i.e. outside an angular vicinity of singular directions (case I), the conventional saddle point technique
is applied to the asymptotic evaluation of the Sommerfeld integrals [33]. Otherwise, an appropriate
modification of the method is exploited (case II).

It is also worth commenting that a surface of singular directions depends on two parameters ϑ1 and
τm for a fixed m because its equation is ϑ̂±m(ϑ) = π, r > 0 or τm = ±(ϑ1 − ϑ), r > 0. Additionally, for
the upper signs one has, as ϑ = ϑ1 − τm > 0, the surface of the singular directions is in Ω+, whereas for
the lower signs, as ϑ = τm + ϑ1 < π, the surface is in Ω−.
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Figure 4: Contours for the asymptotic evaluation of the Sommerfeld integral.

5.3.1 Asymptotics outside close angular vicinity of singular directions

We turn to the case I and consider contribution due to the integration over the countour γπ0 . Taking

into account that in some O(1/[κr]1/2−ϵ)-vicinity (0 < ϵ < 1/2) of the branch point α = ϑ̂±, (ϑ̂± < π)
the expression (29) is valid for the Sommerfeld transfomants, one has11

u±(r, ω) =
eκr cos ϑ̂±(ϑ)

πi

A±
0 (ϑ)

2

∫
lϵ(κr)

dα
eκr[cosα−cos ϑ̂±(ϑ)]

√
κr

(
sinα

[cosα− cos ϑ̂±(ϑ)]3/2
+ . . .

)
+ (36)

+O

(
e−κr

κr

)
, κr → ∞ ,

where integration in the first term is conducted along the part of the contour that comprises the cut from
ϑ̂± to ∞ and is contained in the O(1/[κr]1/2−ϵ) circular vicinity of the point ϑ̂±, π/2 < ϑ̂±(ϑ) < π. The

remainder term O
(

e−κr

κr

)
is due to the contribution of the saddle point π which can be separated from

the first summand in (36). Remark that we used symmetry of the integration contours and parity of
the integrand. In the integral term of (36) we exploit a nondgenerate change of the integration variable

ζ = −[cosα− cos ϑ̂±(ϑ)] ,

dζ

dα
= sinα = sin ϑ̂±(ϑ) +O(1/[κr]1/2−ϵ) ,

where ϑ±(ϑ) is not close to π. From (36) we arrive at

u±m(r, ω) =
1

πi

eκmr cos ϑ̂±
m(ϑ)

√
κmr

A±
0m(ϑ)

2

∫
l

dζ
e−κmrζ

(
√
−ζ)3

(
1 +O

(
1

κmr

))
, (37)

where the contour l goes from +∞ along the upper side of the branch cut from 0 to +∞ then comprises
0 from the left and outgoes to +∞ along the lower side of the branch cut. The branch of the root is
fixed by the condition: arg ζ = 0 on the upper side of the branch cut and 2π > arg ζ > 0. The integral
in (37) is explicitly computed so that the asymptotics of the eigenfunction is

u±m(r, ω) =
2√
π
A±

0m(ϑ) e−κr cos[τm∓(ϑ1−ϑ)]

(
1 +O

(
1

κmr

))
(38)

as π/2 < ϑ̂±m(ϑ) < π, |ϑ̂±m(ϑ) − π| > O(1/[κr]1/2−ϵ), m ∈ M , (Em = − 4γ2

sin2 τm
is the eigenvalue). It is

obvious from (38) that in the nonsingular directions the asymptotics has an elementary expression in

11 Dependence on m is omitted, e.g. κm → κ, , A±
0m → A±

0 .



terms of the exponent rapidly vanishing as r → ∞. Contribution of the saddle points in this case is
asymptotically negligible in comparison with the leading approximation (38).

It is useful to notice that, provided ϑ̂±m(ϑ) > π and |ϑ̂±m(ϑ) − π| > O(1/[κmr]
1/2−ε), which means

that the branch points ±ϑ̂± are in the exterior of the strip Ππ, the saddle points ±π are responsible
for the leading asymptotic contributions. In this case the SD paths γ±0 are conducted across the saddle
points ±π correspodingly then, from (24), by means of the conventional steepest descent technique we
have

u±m(r, ω) = −
√

2

π
Φ±

m(π, ϑ)
e−κmr

κmr

(
1 +O

(
1

κmr

))
. (39)

In the asymptotics (39) the factor Φ±
n (π, ϑ) is computed by means of the representation (25) which is

valid in the strip Πϑ̂± , where ϑ̂
±
m(ϑ) > π.

5.3.2 Asymptotics near the singular directions

Now we turn to the case II when the singularies at ±ϑ±(ϑ) can be located in O(1/[κmr]
1/2−ε)-vicinities

of the saddle points ±π correspodingly. In these conditions we represents the expression (24) as (de-
pendence on m is skipped)

u±(r, ω) =
eκr cos ϑ̂±(ϑ)

πi

A±
0 (ϑ)

2

∫
γπ
0 ∩Bπ([κr]−1/2+ε)

dα
eκr[cosα−cos ϑ̂±(ϑ)]

√
κr

sinα

[cosα− cos ϑ̂±(ϑ)]3/2
+

+ δu±(r, ω) ,

(40)

where

δu±(r, ω) =
eκr cos ϑ̂±(ϑ)

πi

∫
γπ
0

dα
eκr[cosα−cos ϑ̂±(ϑ)]

√
κr

δΦ±(α, ϑ)

and

δΦ±(α, ϑ) := Φ±(α, ϑ) − A±
0 (ϑ)

2

sinα

[cosα− cos ϑ̂±(ϑ)]3/2
= O

(
[cosα− cos ϑ̂±(ϑ)]1/2

)
as α ∼ ϑ̂±(ϑ). In the representation (40) we integrate along the part of the SD contour γπ0 that is
contained in the circle Bπ([κr]

−1/2+ε) (see Fig. 4) centered at the point π and having small radius of
O(([κr]−1/2+ε). The term δu±(r, ω) in (40) plays the role of the asymptotic correction in comparison
with the first summand so that we pay our principal attention to reductions of the first term. We make
use of change of the variable α = π + ϑ±∗ (ϑ) + t and write (40) as

u±(r, ω) =

e−κr cosϑ±
∗ (ϑ)

πi

A±
0 (ϑ)

2

∫
γπ
0 ∩B0([r]−1/2+ε)

dt
e−κr[cos(t+ϑ±

∗ (ϑ)(ϑ))−cosϑ±
∗ (ϑ)]

√
κr

− sin(t+ ϑ±∗ (ϑ))

(−[cos t− cosϑ±∗ (ϑ)])3/2
(41)

+ δu±(r, ω) ,

where ϑ±∗ (ϑ) = −τm ± (ϑ1 − ϑ) and the remainder is δu±(r, ω) .
We asymptotically reduce the integral in (41). The contour of integration (shown in Fig. 4, right)

can be supplemented by its infinite parts then deformed into the imaginary axis comprising the branch
point from the left. The resulting contour is denoted S0. This procedure contributes some exponentially
small relative error. Then we introduce new variable of integration z in accordance with

cos(t+ ϑ±∗ (ϑ))− cosϑ±∗ (ϑ) = z2/2 + az ,

where a = (−2i) sin
ϑ±
∗ (ϑ)
2 ,

− sin(t+ ϑ±∗ (ϑ))dt = (z + a)dz .

The change of the variable is regular provided z = 0 corresponds to t = 0 and z = −a corresponds to
t = −ϑ±∗ (ϑ). It is easily computed that

z = 2i sin
ϑ±∗ (ϑ)

2
− 2i sin

(
t+ ϑ±∗ (ϑ)

2

)
.
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We make use of the notation s = a
√
κr and write

W (s) :=

∫
C0

dz
e−κr[z2/2+az ]

√
κr

(z + a)

(−[z2/2 + az ])3/2
=

∫
C0

dζ
(ζ + s) e−[ζ2/2+sζ ]

(−[ζ2/2 + sζ ])3/2
,

ζ = z
√
κr.

The contour of integration S0 is transformed into C0 (Fig 5). As a result, the integration contour
C0 goes from ∞ along the real axis to 0+ then comprises the branch cuts in the upper halfplane and
outgoes from 0− to −∞. It is worth commenting on the choice of the branch in the denominator of
the integrand. The cuts are conducted from −2s to −i∞ and from 0 to −i∞ along the imaginary axis.
We choose the branches as follows: arg(ζ) = −3π/2 and arg(ζ + 2s) = −3π/2 on the right side of the
corresponding cut. Such a choice is motivated by the condition

√
cosα− cos θ > 0 as −θ < α < θ

mentioned above. As a result of the asymptotic evaluation, we arrive at

u±m(r, ω) =
e−κmr cos[τm∓(ϑ1−ϑ)]

2πi
A±

0m(ϑ)W

(
−2i

√
κmr sin

[τm ∓ (ϑ1 − ϑ)]

2

)
+ δu±m(r, ω) , (42)

where only the leading term of the asymptotics is explicitly represented, as |ϑ̂±(ϑ)−π| 6 O(1/[κr]1/2−ε),

δu±m(r, ω) = O

(
W
(
a
√
κmr

)
κmr

e−κr cos[τm∓(ϑ1−ϑ)]

)
.

The special function W in (42) has the same exponential factor as that in the integral representation
for the parabolic cylinder (Weber) functions [30]. It is reasonable to expect that W has also similar
properties.

The main result of this section is then given by

Theorem 5.1 For any m the eigenfunction u±m(r, ω) (corresponding to the eigenvalue Em = − 4γ2

sin2 τm
)

has the asymptotics described by the expressions (38) and (39) for the case I, i.e. for nonsingular
directions, and by the expression (42) for the vicinity of singular directions, case II.

It is worth remarking that the eigenfunctions exponentially vanish as r → ∞, however, the rate of
the corresponding decreasing is described by the Theorem 5.1.

6 Conclusion

In this work we studied a particular problem for the Schrödinger equation with a singular potential
supported on a right-circular conical surface. The symmetry of the support enabled us to make use
of the incomplete separation of the spherical variables looking for the eigenfunctions in the form of



the Kontorovich-Lebedev (KL) integrals and to reduce study of the eigenfunctions to an auxiliary
functional difference equation with meromorphic potential from a special class. We investigated solutions
of the functional difference equation. To this end, a weighted Hankel integral operator attributed to
the functional difference equation was considered. In particular, its discrete and essential12 spectrum
were described. A simple sufficient condition for existence of the infinite discrete part of
the spectrum was obtained. For the problem under consideration this condition ensures
existence of the infinite discrete spectrum only for some range of ϑ1, however, we belive
that the discrete spectrum exists for all ϑ1 ∈ (π/2, π).

In order to determine the asymptotics the KL integral representation was reduced to that of the Som-
merfeld type. On this way, we obtained asymptotic expressions for the corresponding eigenfunctions by
means of application of the saddle point technique (or its appropriate modification) to the Sommerfeld
integral. In particular, the asymptotics is described by a special function of Weber (parabolic cylinder)
type in the so called singular directions, that is responsible for switching the regims of decay of an eigen-
function. Each surface of singular directions is a circular conical surface which is specified
by the corresponding eigenvalue and by the cone’s opening ϑ1. In the nonsingular directions
the asymptotics is represented by elementary expressions, by exponents vanishing at infinity. From
the physical point of view our asymptotic result for an eigenfunction can be interpreted
as follows. The energy corresponding to the eigenfinction is mainly concentrated in a
neighbourhood of the conical singularity of the boundary and exponentially decays with
the distance. However, the rate of the decay depends on the direction of observation, i.e.
is it contained inside or outside the cone of singular directions. The regim of the energy
decay is switched near the cone of singular directions and is governed by the Weber-type
special function.

It is natural to expect that the KL integral representation can be also applied in 2D,
3D and higher dimensions. For the rotational symmetry the problem is reduced to the
corresponding functional difference equation and then to 1D integral equation. It seems,
that the spectral properties of the latter can be studied in a similar manner. However,
for the conical surfaces with more general cross-sections the problem at hand is reduced
to some complex problem for the Laplacian on the unit sphere with nonlocal w.r.t. ν
boundary conditions, where ν is the variable of separation. It seems, however, that this
problem for the spherical Laplacian is not much simpler than the original problem.
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9 Appendix. Dixon’s operator and some of its spectral prop-
erties.

In this Appendix we consider some spectral properties of the Dixon’s integral operator (see Sect. 11.18
in [32], [16])

(Dρ)(x) =
1

π

1∫
0

dy

x+ y
ρ(y) .

The equation
[D − µ]f(x) = G(x), f,G ∈ L2(0, 1)

is an explicitly solvable model so that its solutions can be computed in an explicit form. The spectrum
σ[D] of the operator D coincides with the segment [0, 1], it is essential, σ[D] = σess[D] = [0, 1].The
resolvent [D − µ]−1 of the Dixon’s operator takes on the form

f(x) = [D − µ]−1G = − 1

µ

G(x) + 1

πµ

1∫
0

dz χD(x, z;µ)G(z)

 , µ /∈ σ[D] ,

where the kernel

χD(x, z;µ) =
1

2

+∞∫
−∞

dp
πp tanhπp

[µ coshπp− 1]

1

x
Pip− 1

2

(
1

x

)
1

z
Pip− 1

2

(
1

z

)

solves the equation

χD(x, y;µ) =
1

x+ y
+

1

πµ

1∫
0

dz
χD(y, z;µ)

x+ z
.

The spectral measure Et is completely specified by the operator D and is computed explicitly by
means of the known formula

EtG = lim
ϵ→0+

1

2πi

∫
Sϵ
t

[D − µ]−1Gdµ ,

where the strong limit exists and the contour Sϵ
t connects the points t− iϵ and t+ iϵ (t > 0) comprising

the cut conducted along the spectrum σ[D] = [0, 1] from the left. We find

EtG = G(x) +
1

2πi

∫
S0
t

dµ

µ

 1

π

1∫
0

χD(x, y;µ)G(y) dy

 , G ∈ L2(0, 1).
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