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I. SADDLE FLOW AND APPROXIMATE SYMMETRY

The meridional velocity field in the vicinity of the critical ring is very nearly, but not exactly, anti-symmetric under
reflection (r, z) → (1 − z, 1 − r), for z ≥ 0. Figure 1(a) shows a contour plot of the Stokes streamfunction ψ(r, z) in
the vicinity of the critical ring. The contour lines are streamlines of the meridional flow. Also shown are contours of
the reflected streamfunction ψ(1− z, 1− r). The two sets of contours are barely distinguishable, demonstrating just
how nearly symmetrical the meridional streamlines are.

Figure 1(b) shows velocity profiles along two cuts indicated by the two lines in Fig. 1(a). The red curve is uz as a
function of r and the blue curve is ur as a function of z. These are nearly identical except very close to the right side
of the plot, which corresponds to the cylinder wall for the red curve and the and midplane for the blue curve. There
is shear (vorticity) at the cylinder wall ∂ruz|r=1 6= 0 but not at the midplane ∂zur|z=0 = 0.
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FIG. 1: (a) Approximate symmetry of the meridional flow near the critical ring. Contours of the Stokes streamfunction ψ(r, z)
are shown in black. Also shown in dashed green are contours of ψ(1− z, 1− r). The two sets of contours are nearly identical.
(b) Velocity profiles in along the cuts indicated by red and blue lines in (a). The z coordinate is oriented to align the profiles.
The red curve is uz(r, z = 3.9× 10−4) while the blue curve is ur(r = 1− 3.9× 10−4, z). Note that ∂ruz|r=1 6= 0 so that there
is shear (vorticity) at the cylinder wall, r = 1. However, by symmetry ∂zur|z=0 = 0 and there is no shear (vorticity) at the
midplane z = 0. (c) Plot of the source term S2D for the meridional pressure Poisson equation. The lack of exact symmetry
under (r, z)→ (1− z, 1− r) is evident.

The streamlines lacks exact symmetry under the transformation (r, z)→ (1− z, 1− r) both because the inhomoge-
neous radial coordinate is not equivalent to the homogeneous axial coordinate and because the symmetry condition
at the midplane z = 0 does not apply at the cylinder wall r = 1. The result in Fig. 1(b) suggest that the second
factor is much more relevant than the first in the lack of symmetry in the meridional saddle flow. It further suggests
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that this lack of exact symmetry would remain in the Boussinesq system. Only by replacing the symmetry condition
at the midplane with a wall in the Boussinesq system could one hope to achieve a symmetric saddle flow.

For completeness, Fig. 1(c) shows the source term S2D for the meridional pressure Poisson equation. The lack of
exact symmetry under (r, z)→ (1− z, 1− r) is evident.

II. EVOLUTION TOWARD SINGULARITY

Figure 2(a) shows the time evolution of ∂zu2θ over just a portion of the cylinder wall. While the final time investigated
in the main paper is t = 0.0031, the simulations are adequately resolved to t = 0.0032 and so this case is also shown
here. Recall from Sec. 6(c) of the main paper that Pa is determined from the Hilbert transform of ∂zu2θ(z), evaluated
at zero and that blowup is controlled by
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We can investigate whether this approaches a finite limit as the flow evolves. Using the integral representation of
the Hilbert transform, this can be written as
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The coordinate ξ is the unique rescaling of z such that limξ→0 h(ξ) = 1.
Figure 2(b) shows the time evolution of the integrand h(ξ) for the same data as in Fig. 2(a). The curves suggest

convergence to a finite limit, thereby implying a finite-time blowup. We already have evidence from Luo & Hou that
the flow collapses to a singularity in a nearly, but not exactly, self-similar way [1–4]. Hence this is not a new result,
but rather a different way of looking at what is already known. The lack of exact self-similarity necessarily follows
since the data is taken from simulations in an axially periodic cylinder and not an infinite cylinder. Therefore the
integrands h(ξ) fundamentally cannot collapse because the (very weak) tails at large ξ cannot. This lack of exact
self-similarity for this flow is well known [3, 4].
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FIG. 2: (a) Time evolution of ∂zu2
θ along the cylinder wall. These profiles determine the pressure curvature of pa on the critical

ring. (b) Plots of h versus ξ given by expressions Eqs. (2) for the same data as in (a). The bold black curve corresponds to
the time t = 0.0031. Results in the main paper are all shown at this time. For reference, at t = 0.0031, ξ = 2 corresponds to
z = 1.51× 10−3, which is very close to δ = 1.6× 10−3 used for most plots in the main paper. Circles are used to show the last
adequately resolved time in the simulations, t = 0.0032.
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