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1 A finite form for the bracket polynomial of a polygonal curve with 4
edges

In this section we show that an equivalent finite form of bracket polynomial exists, reducing the
computation of the integral to a computation of a few dot and cross products between vectors and
some arcsin evaluations. Here we provide a finite form of the bracket polynomial for a polygonal
curve of 4 edges. This could lead to the creation of its finite form for more edges.

1.1 Closed curves

The first non-trivial bracket polynomial of a closed polygonal curve is that of a polygon of 4 edges,
since a polygon of 3 edges is a triangle in 3-space and all projections give a diagram of no crossings
except a set of measure zero which corresponds to irregular projections. Let P4 denote a polygon
of 4 edges, e1, e2, e3, e4 that connect the vertices (0, 1), (1, 2), (2, 3) and (3, 0), respectively. Let εi,j
denote the sign of the crossing between the projections of the edges ei, ej when they cross. Notice
that εi,j is independent of the projection direction and can take the values 1 and -1.

Proposition 1.1. The bracket polynomial of a polygon of 4 edges, e1, e2, e3, e4, in 3-space, P4, is
equal to:

〈P4〉 = 2|L(e1, e3)|(−A3ε1,3) + 2|L(e2, e4)|(−A3ε2,4) + (1−ACN(P4)) (1)

where L denotes the Gauss linking integral and ACN denotes the average crossing number.

Proof. In any projection direction there are 3 possible diagrams that may occur as a projection of
P4: a diagram with no crossing, or a crossing between the projections of e1, e3 or a crossing between
the projections of e2, e4. Notice that not both crossings at the same diagram are possible (the line
defined by the projection of e1 cuts the plane in two regions. Since the projection of e3 intersects the
projection of e1, the projections of the vertices 2 and 3 lie in different regions. Since e2 joins vertex
1 with 2 and e4 joins vertex 3 with 0, e2, e4 lie in different regions, thus they cannot cross.) In the
case where there is no crossing, the bracket polynomial of that projection is equal to 1. When there
is a crossing, the bracket polynomial is equal to −A±3, where the sign of the exponent is determined
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by the sign of the crossing in the projection. Since the probability of e2, e4 crossing is equal to
2|L(e2, e4)| and the probability of e1, e3 crossing is 2|L(e1, e3)|, then the bracket polynomial is

〈P4〉 = 2|L(e1, e3)|(−A3ε1,3) + 2|L(e2, e4)|(−A3ε2,4) + (1−ACN(P4)) (2)

where we used the fact that ACN(P4) = 2|L(e1, e3)| + 2|L(e2, e4)|. Notice that, due to the
connectivity of the polygonal curve, ε1,3 = −ε2,4, thus Eq. 2 could be expressed as

〈P4〉 = 2|L(e1, e3)|(−A3ε1,3) + 2|L(e2, e4)|(−A−3ε1,3) + (1−ACN(P4))

1.2 Open curves

In the case of a polygonal curve with 3 edges, we denote E3, the Kauffman bracket polynomial
is always trivial, but the writhe of a diagram of a projection of E3 can be 0 or ±1, depending on
whether e1, e3 cross when projected in a direction ~ξ.

Proposition 1.2. Let E3 denote a polygonal curve of 3 edges, e1, e2, e3 in 3-space, then the bracket
polynomial of E3 is

〈E3〉 = 2|L(e1, e3)|(−A3)ε13 + (1− 2|L(e1, e3)|)

where ε1,3 is the sign of L(e1, e3)

Proof. Consider a polygonal curve of 3 edges e1, e2, e3, (E3). Then in a projection of E3, (E3)~ξ,

one either sees no crossings, so 〈(E3)~ξ〉 = 1, or there is a crossing between e1 and e3, in which case

〈(E3)~ξ〉 = −Aε1,3 , thus

〈E3〉 = p
(3)
k0,0 + p

(3)
k0,ε1,3

(−A3)ε1,3

= (1− 2|L(e1, e3)|) + 2|L(e1, e3)|(−A3)ε1,3

where p
(3)
k0,0 = P (K((E3)~ξ) = k0, wr((E3)~ξ) = 0) and p

(3)
k0,ε1,3

= P (K((E3)~ξ) = k0, wr((E4)~ξ) = ε1,3).

Let E4 be composed by 4 edges, e1, e2, e3, e4, connecting the vertices (0, 1), (1, 2), (2, 3), (3, 4),
respectively.

Let E4 denote a polygonal curve of 4 edges. Then, by Propositions A.1 and A.2 (in main
manuscript), the only non-trivial bracket polynomial is k2.1 and the writhe of the diagram is either
2 or -2. All the possible writhe values in a k0 (trivial knotoid) diagram of E4 can be determined by
inspection of all the possible diagrams of a polygonal curve of 4 edges, given in Proposition A.1.
Let us denote these diagrams as k0A1 , k0A2 , k0A3 , k0Bi , k0Bi′ , k0Bii , k0Bii′ , k0C . Let us denote by
wr the writhe of a diagram. Then one can see that wr(k0A1) = ±1, wr(k0A2) = ±1, wr(k0A3) =
±1, wr(k0Bi) = 0 or = ±2, wr(k0Bi′) = 0 or ±2, wr(k0Bii) = 0 or ±2, wr(k0Bii′) = 0 or ±2,
wr(k0C) = ±1. Thus the bracket polynomial of E4 has the following form:
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〈E4〉 = p
(4)
k2.1〈k2.1〉+

2∑
j=−2

p
(4)
k0,j(−A

3)j

= p
(4)
k2.1(A

2 −A−4 + 1) +
2∑

j=−2
p
(4)
k0,j(−A

3)j

where p
(4)
k2.1 = P (K((E4)~ξ) = k2.1) denotes the geometric probability that a projection of E4

gives the non-trivial knotoid k2.1 (obtained in Theorem A.2 in main manuscript) and where

p
(4)
k0,j = P (K((E4)~ξ) = k0, wr((E4)~ξ) = j) denotes the probability of obtaining a diagram of the

trivial knotoid with writhe j. The rest of this section is focused on obtaining finite forms for these
probabilities.

Theorem 1.1. Let E4 denote a polygonal curve of 4 edges, e1, e2, e3, e4 in 3-space, then the bracket
polynomial of E4 is

〈E4〉 =p
(4)
k2.1〈k2.1〉+ p

(4)
k0,ε2,4

(−A3)ε2,4 + p
(4)
k0,−ε2,4(−A3)−ε2,4 + p

(4)
k0,−2ε2,4(−A3)−2ε2,4

+ p
(4)
k0,2ε2,4

(−A3)2ε2,4 + p
(4)
k0,0

where the coefficients are:

p
(4)
k2.1 =

{
1
2πA(Q), if ε1,3 = ε1,4

0, otherwise
(3)

p
(4)
k0,ε2,4

=


2|L(e2, e4)| − 1

2πA(Q4,2,1), ε1,3 = ε1,4

2|L(e2, e4)|+ 2|L(e1, e4)| − 1
2π (A(Q4,2,1) +A(Q2) +A(Q1)), if ε2,4 = ε1,4 = −ε1,3

2|L(e2, e4)|+ 2|L(e1, e3)| − 1
2π (A(Q4,2,1) +A(Q1)), if ε2,4 = ε1,3 = −ε1,4

(4)

p
(4)
k0,−ε2,4 =


2|L(e1, e3)|+ 2|L(e1, e4)| − 1

2π (A(Q1,3,4) +A(Q2) +A(Q1)), ε1,3 = ε1,4

2|L(e1, e3)| − 1
2πA(Q1,3,4), if ε2,4 = ε1,4 = −ε1,3

2|L(e1, e4)| − 1
2π (A(Q1,3,4) +A(Q2)), if ε2,4 = ε1,3 = −ε1,4

(5)

p
(4)
k0,2ε2,4

=

{
1
2π (A(Q2)−A(Q)), if ε2,4 = ε1,4 = −ε1,3
0, otherwise

(6)
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p
(4)
k0,−2ε2,4 =

{
1
2π (A(Q1)−A(Q)), if ε1,4 = ε1,3 = −ε2, 3
0, otherwise

(7)

and

p
(4)
k0,0 = 1− p(4)k0,−2ε2,4 + p

(4)
k0,2ε2,4

+ p
(4)
k0,−ε2,4 + p

(4)
k0,ε2,4

+ p
(4)
k2.1,−ε2,4 (8)

where εi,j denotes the sign of the linking number between ei, ej, Q1 = Q1,3,4 \Q2,4, Q2 = Q4,2,1 \Q1,3

and Q = Q((E4)~ξ = k2.1). P (Q) is derived in Theorem A.2 (in main manuscript) and Q1 is shown
in Table 1. Q4,2,1, Q2 are derived with the same formulas for the reversed polygonal curve.

Proof. In the following, for simplicity, we will write P (A1) to express the probability P (K((E4)~ξ) =

k0A1), etc.
By Proposition A.2 (in main manuscript), k2.1 is a possible knotoid diagram only when ε1,3 = ε1,4,

in which case, it also implies that ε2,4 = −ε1,3. The probability of obtaining k2.1 is found in Theorem
A.2 (in main manuscript).

Thus, we only need to examine the probabilities of obtaining the trivial knotoid with a given
writhe. By inspection of the diagrams shown in Figure 6 (in main manuscript), we first notice the
following:

p
(4)
k0,ε2,4

=


P (A2), if ε1,3 = ε1,4 = −ε2,4
P (A3) + P (A2) + P (C), if ε2,4 = ε1,4 = −ε1,3
P (A1) + P (A2) + P (C), if ε2,4 = ε1,3 = −ε1,4

(9)

p
(4)
k0,−ε2,4 =


P (A1) + P (A3) + P (C), if ε1,3 = ε1,4 = −ε2,4
P (A1), if ε2,4 = ε1,4 = −ε1,3
P (A3), if ε2,4 = ε1,3 = −ε1,4

(10)

p
(4)
k0,2ε2,4

=

{
P (Bii) + P (Bii′), if ε2,4 = ε1,4 = −ε1,3
0, otherwise

(11)

p
(4)
k0,−2ε2,4 =

{
P (Bi) + P (Bi′), if ε1,3 = −ε1,4 = −ε2,4
0, otherwise

(12)

We will compute these probabilities in the three cases: ε1,3 = ε1,4, ε1,3 = −ε1,4 = ε2,4, ε1,3 =
−ε1,4 = −ε2,4.

First, we notice that, in all cases, due to the connectivity of the polygonal curve,
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ε1,3 = ε1,4, w < 0, w0 < 0 Q1,3,4 Q1

c3,1 > 0, c4,1 > 0, c3,0 > 0, c4,0 > 0 (~n4, ~n1,−~u2, ~n3) (~n4,−~v3,−~u2, ~n3) ∪Q
c3,1 > 0, c4,1 > 0, c3,0 < 0, c4,0 < 0 (~n4, ~n1,−~u2,−~u1) (~n4,−~v3,−~u2,−~u1) ∪Q
c3,1 > 0, c4,1 > 0, c3,0 > 0, c4,0 < 0 (~n4, ~n1,−~u2,−~u1, ~n3) (~n4,−~v3,−~u2,−~u1, ~n3) ∪Q
c3,1 > 0, c4,1 > 0, c3,0 < 0, c4,0 > 0 (~n4, ~n1,−~u2, ~n3,−~u1) (~n4,−~v3,−~u2, ~n3,−~u1) ∪Q)
c3,1 < 0, c4,1 < 0, c3,0 > 0, c4,0 > 0 (~n4,−~u3,−~u2, ~n3) (~n4,−~v3,−~u2, ~n3) ∪Q
c3,1 < 0, c4,1 < 0, c3,0 < 0, c4,0 < 0 (~n4,−~u3,−~u2,−~u1) (~n4,−~v3,−~u2,−~u1) ∪Q
c3,1 < 0, c4,1 < 0, c3,0 > 0, c4,0 < 0 (~n4,−~u3,−~u2,−~u1, ~n3) (~n4,−~v3,−~u2,−~u1, ~n3) ∪Q
c3,1 < 0, c4,1 < 0, c3,0 < 0, c4,0 > 0 (~n4,−~u3,−~u2, ~n3,−~u1) (~n4,−~v3,−~u2, ~n3,−~u1) ∪Q
c3,1 > 0, c4,1 < 0, c3,0 > 0, c4,0 > 0 (~n4, ~n1,−~u3,−~u2, ~n3) (~n4,−~v3,−~u2, ~n3) ∪Q
c3,1 > 0, c4,1 < 0, c3,0 < 0, c4,0 < 0 (~n4, ~n1,−~u3,−~u2,−~u1) (~n4,−~v3,−~u2,−~u1) ∪Q
c3,1 > 0, c4,1 < 0, c3,0 > 0, c4,0 < 0 (~n4, ~n1,−~u3,−~u2,−~u1, ~n3) (~n4,−~v3,−~u2,−~u1, ~n3) ∪Q
c3,1 > 0, c4,1 < 0, c3,0 < 0, c4,0 > 0 (~n4, ~n1,−~u3,−~u2, ~n3,−~u1) (~n4,−~v3,−~u2, ~n3,−~u1) ∪Q
c3,1 < 0, c4,1 > 0, c3,0 > 0, c4,0 > 0 (~n4,−~u3, ~n1,−~u2, ~n3) (~n4,−~v3,−~u2, ~n3) ∪Q
c3,1 < 0, c4,1 > 0, c3,0 < 0, c4,0 < 0 (~n4,−~u3, ~n1,−~u2,−~u1) (~n4,−~v3,−~u2,−~u1) ∪Q
c3,1 < 0, c4,1 > 0, c3,0 > 0, c4,0 < 0 (~n4,−~u3, ~n1,−~u2,−~u1, ~n3) (~n4,−~v3,−~u2,−~u1, ~n3) ∪Q
c3,1 < 0, c4,1 > 0, c3,0 < 0, c4,0 > 0 (~n4,−~u3, ~n1,−~u2, ~n3,−~u1) (~n4,−~v3,−~u2, ~n3,−~u1) ∪Q
ε1,3 = ε1,4, w > 0 or w0 > 0 Q1,3,4 Q1

∅ ∅
ε1,3 = −ε1,4, w < 0 Q1,3,4 Q1

c4,0 > 0, c4,1 > 0 (~n2,−~u1,−~u2,−~u3) Q1,3,4 \ (~v1, ~v2, ~v3, ~n2)
c4,0 < 0, c4,1 < 0 (~n2, ~n1,−~u2, ~n3) Q1,3,4

c4,0 < 0, c4,1 > 0 (~n2, ~n1,−~u2,−~u3) Q1,3,4 \ (~v1, ~v2, ~n1, ~n2)
c4,0 > 0, c4,1 < 0 (~n2,−~u1,−~u2, ~n3) Q1,3,4

ε1,3 = −ε1,4, w > 0 Q1,3,4 Q1

c4,0 > 0, c4,1 > 0 (~n2,−~u1, ~n4,−~u3) Q1,3,4 \ (−~u3, ~n4, ~v3, ~n2)
c4,0 < 0, c4,1 < 0, c4′,1′ > 0 (~n2, ~n1, ~n4, ~n3) Q1,3,4 \ (~v3,−~v2, ~n2, ~n1, ~n4)
c4,0 < 0, c4,1 < 0, c4′,1′ < 0 (~n2, ~n1, ~n4, ~n3) Q1,3,4 \ (~v3,−~v2, ~n1, ~n4)
c4,0 < 0, c4,1 > 0 (~n2, ~n1, ~n4,−~u3) ∅
c4,0 > 0, c4,1 < 0 (~n2,−~u1, ~n4, ~n3) Q1,3,4

Table 1: The spherical polygons Q1,3,4 and Q1 = Q1,3,4 \ Q2,4, respectively, are computed by using the
above expressions. The expression (~w1, . . . , ~wn) denotes the spherical polygon defined by the intersection
of the great circles with normal vectors ~w1, . . . , ~wn in the counterclockwise orientation (see Definition A.1
in main manuscript). The expressions depend on the conformation of the curve in 3-space, where c3,1 =
(~p3,1 · ~n1)ε1,3 , c4,1 = (~p4,1 · ~n1)ε1,3, c3,0 = (~p3,0 · ~n3)ε1,3, c4,0 = (~p4,0 · ~n3)ε1,3, c4′,1′ = (~p1,4 · (−~v2))ε2,4 and
w = (~u2 × (−~n2)) · (~u2 × ~n4), where ~n1, ~ui, ~vi are the normal vectors to the quadrilaterals T1,3, T1,4, T2,4 and
where ~pi,j is the vector that connects vertex i to vertex j in 3-space. The areas of Q4,2,1 and Q2 are obtained
from the areas Q1,3,4 and Q1 of the polygonal curve with reversed orientation (see proof of Theorem 1.1).
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Q2,4 ∩Q1,3 ⊂ Q2,4 ∩Q1,4 = Q4,2,1 (13)

Q2,4 ∩Q1,3 ⊂ Q1 = Q1,3 ∩Q1,4 = Q1,3,4

The probabilities can be expressed as:

P (A1) = 2|L(e1, e3)| −
1

2π
A(Q1,3,4)

P (A2) = 2|L(e1, e3)| −
1

2π
A(Q4,2,1)

P (A3) = 2|L(e1, e4)| −
1

2π
A(Q4,2,1 \Q1,3)−A(Q1,3,4)

P (C) =
1

2π
A(Q2,4 ∩Q1,3,4)

P (Bi) + P (Bi′) =
1

2π
A(Q1,3,4 \Q2,4)

P (Bii) + P (Bii′) =
1

2π
A(Q4,2,1 \Q1,3)

From all these equations, and using the notation Q1 = Q1,3,4 \Q2,4 and Q2 = Q4,2,1 \Q1,3, we
obtain the expressions of the statement of the Theorem.

We proceed with finding finite forms for Q1,3,4 and Q1 from which the finite forms of Q4,2,1 and
Q2 are also derived.
Finite form of Q1,3,4

The finite form of Q1,3,4 is found by Theorem A.1 (in main manuscript) for i = 0, j = 2.
Finite form of Q4,2,1:

For the finite form of Q4,2,1 we think as follows: Let R(E4) to denote the polygonal curve E4 with
reversed numbering of vertices. Let us denote its edges e′1, e

′
2, e
′
3, e
′
4. Then Q4,2,1 = Q1′,3′,4′ . This can

be obtained from table 1 determined by the algorithm described in Section 2(a)(i) for ni′, ui′ which
are related to the normal vectors of E4 as follows: ~n1′ = −~v2, ~n2′ = −~v1, ~n3′ = −~v4, ~n4′ = −~v3,
~u1′ = −~u2, ~u2′ = −~u1, ~u3′ = −~u4, ~u4′ = −~u3. Accordingly, w′ = (~u1 × ~v1) · (~u1 × (−~v3)), w0′ =
(~n4 × ~v2) · (~n4 × ~n3), ε1′,3′ = ε2,4 and ε1′,4′ = ε1,4. Finally, c3′,1′ = (~p3′,1′ · ~n1′)ε1′,3′ = (~p1,3 · (−~v2)ε2,4,
otherwise c4′,1′ = (~p4′,1′ · ~n1′)ε1′,3′ = (~p1,4 · (−~v2))ε2,4, c3′,0′ = (~p3′,0′ · ~n3′)ε1′,3′ = (~p1,4 · (−~v4))ε2,4,
otherwise c4′,0′ = (~p4′,0′ ·~n3′)ε1′,3′ = (~p0,4 · (−~v4))ε2,4, when ε1′,3′ = ε1′,4′ and c4′,0′ = (~p4′,0′ ·~n1′)ε1′,3′ =
(~p0,4 · (−~v2))ε2,4, otherwise c4′,1′ = (~p4′,1′ · ~n3′)ε1′,3′ = (~p0,3 · (−~v4))ε2,4, when ε1′,3′ = −ε1′,4′
Finite form of Q1

- Case ε1,4 = ε1,3 = −ε2,4: One can derive from the proof of Theorem A.2 (in main manuscript) the
area of Q1,3,4 \Q2,4. The area will be Q1 = Q ∪ (~n4,−~v3,−~u2, x), where x is equal to −~u1 or ~n3 or
~n3,−~u1 or −~u1, ~n3, depending on the signs of c0,3, c0,4 (see Table 1).

Next, we consider the case ε1,4 = −ε1,3 and refer to Figure 1 as an illustrative example. Since
~u3 = −~v1 and ~n3 = ~v4, these spherical edges (which bound Q2,4) do not cross the interior of Q1,3,4.
In order to find Q1 = Q1,3,4 \Q2,4, we examine if and how ~v2 and ~v3 intersect the interior of Q1,3,4.
Figure 1 shows the relative positions of ~v1, ~v4, ~v2 determined by the connectivity of the polygonal
curve and the orientations of ~v1, ~v4 are also given by the known orientations of ~u3 and ~n3.

* Work supported by NSF DMS - 1913180 Page 6 of 9



- Case ε1,4 = −ε1,3 = ε2,4: (This is the case where c4,1 < 0 in Table 1). This corresponds to the case
where ε1′,4′ = ε1′,3′ for the reversed walk. First of all, in this case, we notice that when c4,0 > 0, then
w′ > 0 and, similarly, when w < 0 then w0′ > 0, thus in these cases Q4,2,1 = ∅, giving Q1 = Q1,3,4.
Thus, the only case that might give Q2,4 ∩ Q1,3,4 6= ∅ is the case w > 0, c4,0 < 0, equivalently,
w > 0, w0 < 0, (see Figure 1). In that case the great circle with normal vector ~v3 intersects the
interior of Q1,3,4 (since the face with normal vector ~v3 is in-between the faces with normal vectors
~n1, ~n3). To examine the intersection of Q2,4 ∩ Q1,3,4, we examine the reversed oriented polygon,
R(E4) (see previous paragraph). The above conditions correspond to the case where ε1′,3′ = ε1′,4′,
w′ < 0, w0′ < 0, which is the case that can give the non-trivial knotoid. Thus, using Theorem ??,
we derive that for w′ < 0, if c4′,1′ > 0, then Q1 = Q1,3,4 \ (v3,−v2, n2, n1, n4) and if c4′,1′ < 0, then
Q1 = Q1,3,4 \ (v3,−v2, n1, n4).
- Case ε1,4 = −ε1,3 = −ε2,4: (This is the case where c4,1 > 0 in Table 1) As in the previous case, in
order to find Q1 = Q1,3,4 \Q2,4, we need the area of Q1,3,4 that is determined by the great circles ~v2
and ~v3. To find these intersections, we will examine Q4,2,1 using the reverse walk with ε1′,3′ = −ε1′,4′,
and we notice that in all cases, c1′,4′ = (p4′,1′ · ~n3′)ε1′,3′ = (p0,3 · (−~v4))ε2,4 = (p0,3 · (−~n3))ε1,3 > 0.
Indeed, since ~n3 is the normal vector to the face defined by the vertices 1,2,3, of the tetrhedral T1,4
and points inwards if ε1,3 > 0 (in the direction of vertex 3) or outwards otherwise. Thus c1′,4′ > 0 in
all cases. Thus, the intersection will depend on the sign of c0′,4′ = (p4′,0′ ·~n1′)ε1′,3′ = (p0,4 · (−~v2))ε2,4.
This sign will depend on the sign of c4,0 = (~p4,0 · ~n1)ε1,3 and the sign of w, which determines if ~u2
lies between ~n2, ~n4.

If c4,0 < 0 then w′ < 0 since we can verify that the face with normal vector ~u1 is between the
faces with normal vectors ~v1, ~v3, and w′ > 0 if c4,0 > 0. If w < 0 then c0′,4′ = (p4′,0′ · ~n1′)ε1′,3′ =
(p0,4 · (−~v2))ε2,4 < 0 since ~v2 points in the opposite direction of the region that contains the vertex
0 when ε2,4 < 0, and c0′,4′ > 0 if w > 0.

Thus, by using Table 1 for the reversed walk we find that if c4,0 < 0 and w < 0, then Q1 =
Q1,3,4 \ (v1, v2, n1, n2). If c4,0 < 0 and w > 0, then Q1 = ∅. If c4,0 > 0 and w < 0, then
Q1 = Q1,3,4 \ (v1, v2, v3, n2). If c4,0 > 0 and w > 0, then Q1 = Q1,3,4 \ (v1, n4, v3, n2).
Finite form of Q2:

For the finite form of Q2 we think as follows: Let R(E4) to denote the polygonal curve E4 with
reversed numbering of vertices as described in the Finite form of Q4,2,1. Then Q2 = Q4,2,1 \Q1,3 =
Q1′,3′,4′ \Q2′,4′ = Q′1, which is found earlier.

Example: (continuation of Example in main manuscript) Figure 2 shows the Kauffman bracket
polynomial of the open 3-dimensional curve in time and that of the standard diagram of the knotoid
k2.1. We see the bracket polynomial of the open curve vary continuously in time, tending to that of
the diagram, due to the tightening of the configuration to become almost planar.
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Figure 1: Representation of Q1,3,4 when ε1,3 = ε2,4. In this case, one great circle of the boundary of Q1,3,4

is the one with normal vector ~n2 (top boundary in the figure). The lower great circle (bottom boundary)
is ~u2 or ~n4, depending on whether ε1,4 = ε2,4 or not (equivalently, depending on the sign of c1,4). Similar
considerations define the other boundaries, where c4,0 = (~p4,0 · ~n1)ε1,3, w = (~u2 × (−~n2)) · (~u2 × ~n4), ~n3 = ~v4
and ~u3 = −~v1. To determine Q1 = Q1,3,4 \ Q2,4, we examine how ~v2 and ~v3 intersect Q1,3,4 (see proof of
Theorem 1.1). The results are shown in Table 1.
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Figure 2: The Kauffman bracket polynomial of an open polygonal curve as it moves in time. The inset plot
shows the polynomial for values of the parameter A less than 1.
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