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1. Appendix I

We consider the invariance of helicity

(1) H =

∫
Ω
θ ∧ dθ,

under an arbitrary transformation, θ → θ + β, where β is a closed 1-form.
Then the helicity integral gives a boundary term

(2) H →
∫

Ω
θ ∧ dθ +

∫
∂Ω
θ ∧ β,

which in general does not vanish. By construction, dθ|∂Ω = 0, hence θ|∂Ω

is a closed 1-form on ∂Ω and defines a de Rahm cohomology class [θ] ∈
H1(∂Ω;R). Restriction to the boundary defines a map r : H1(Ω;R) →
H1(∂Ω;R). dθ is fluxless if [θ] = 0 ∈ H1(∂Ω;R)/Im(r). This condition is
equivalent to the statement that

(3)

∫
S
dθ = 0,

for any surface S ⊂ Ω, with ∂S ⊂ ∂Ω.

2. Appendix II

We start with the definition

(4) H =
1

U ·A
ω × U = βω × U.

Then we assert that

(5) (∂t + LU )H = fA,

where f is to be determined. Using coordinate notation (recall we are in
Euclidean space, so that we do not distinguish covariant and contravariant
indices), we have

(6) fAi = ∂tHi + Uj∂jHi + Uj∂iHj .

Now by construction we have UiHi = 0, so this is rewritten as

(7) fAi = ∂tHi + Uj∂jHi −Hj∂iUj ,

or

(8) fA = ∂tH − U ×∇×H.
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Expanding we find
(9)
fA = (∂tβ)ω×U+β(∂tω)×U+βω×(∂tU)−U×

(
∇β×(ω×U)

)
+βU×(∂tω),

(recall β = (U ·A)−1) which becomes

(10) fA = ((∂t + U · ∇)β)ω × U + βω × (∂tU).

Now, using the fact that

(11) (∂t + U · ∇)A+ (∇A) · U = 0,

we find

(12) ((∂t + U · ∇)β) = β(H ·A+ βA · ∇(P + U2/2)).

So we get
(13)
fA =

(
(h ·A) + βA · ∇(P + U2/2)

)
H −βω×∇(P +U2/2)−βω× (ω×U).

Then we find

(14) fA =
(
H2 + βH · ∇(P + U2/2)

)
A,

so we may identify

(15) f = H2 + βH · ∇(P + U2/2).


