SUPPLEMENTRARY INFORMATION: THE GODBILLON-VEY INVARIANT AS TOPOLOGICAL VORTICITY COMPRESSION AND OBSTRUCTION TO STEADY FLOW IN IDEAL FLUIDS

THOMAS MACHON

1. Appendix I

We consider the invariance of helicity

(1)
$$H = \int_{\Omega} \theta \wedge d\theta,$$

under an arbitrary transformation, $\theta \to \theta + \beta$, where β is a closed 1-form. Then the helicity integral gives a boundary term

(2)
$$H \to \int_{\Omega} \theta \wedge d\theta + \int_{\partial \Omega} \theta \wedge \beta,$$

which in general does not vanish. By construction, $d\theta|_{\partial\Omega} = 0$, hence $\theta|_{\partial\Omega}$ is a closed 1-form on $\partial\Omega$ and defines a de Rahm cohomology class $[\theta] \in$ $H^1(\partial\Omega;\mathbb{R})$. Restriction to the boundary defines a map $r : H^1(\Omega;\mathbb{R}) \to$ $H^1(\partial\Omega;\mathbb{R})$. $d\theta$ is fluxless if $[\theta] = 0 \in H^1(\partial\Omega;\mathbb{R})/\mathrm{Im}(r)$. This condition is equivalent to the statement that

(3)
$$\int_{S} d\theta = 0,$$

for any surface $S \subset \Omega$, with $\partial S \subset \partial \Omega$.

We start with the definition

(4)
$$H = \frac{1}{U \cdot A} \omega \times U = \beta \omega \times U.$$

Then we assert that

(5)
$$(\partial_t + \mathcal{L}_U)H = fA,$$

where f is to be determined. Using coordinate notation (recall we are in Euclidean space, so that we do not distinguish covariant and contravariant indices), we have

(6)
$$fA_i = \partial_t H_i + U_j \partial_j H_i + U_j \partial_i H_j.$$

Now by construction we have $U_iH_i = 0$, so this is rewritten as

(7)
$$fA_i = \partial_t H_i + U_j \partial_j H_i - H_j \partial_i U_j,$$

or

(8)
$$fA = \partial_t H - U \times \nabla \times H.$$

Expanding we find

(9) $\dot{fA} = (\partial_t \beta)\omega \times U + \beta(\partial_t \omega) \times U + \beta\omega \times (\partial_t U) - U \times (\nabla \beta \times (\omega \times U)) + \beta U \times (\partial_t \omega),$ (recall $\beta = (U \cdot A)^{-1}$) which becomes $fA = ((\partial_t + U \cdot \nabla)\beta)\omega \times U + \beta\omega \times (\partial_t U).$ (10)Now, using the fact that (11) $(\partial_t + U \cdot \nabla)A + (\nabla A) \cdot U = 0,$ we find $((\partial_t + U \cdot \nabla)\beta) = \beta(H \cdot A + \beta A \cdot \nabla(P + U^2/2)).$ (12)So we get (13) $\widehat{fA} = \left((h \cdot A) + \beta A \cdot \nabla (P + U^2/2) \right) H - \beta \omega \times \nabla (P + U^2/2) - \beta \omega \times (\omega \times U).$ Then we find $fA = \left(H^2 + \beta H \cdot \nabla (P + U^2/2)\right)A,$ (14)so we may identify $f = H^2 + \beta H \cdot \nabla (P + U^2/2).$ (15)

 $\mathbf{2}$