Electronic Supplementary Information

New azobenzene liquid crystal with dihydropyrazole heterocycle and photoisomerisation studies

Xiaoxuan Wang, Zhaoxia Li, Haiying Zhao*and Shufeng Chen
Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
*Corresponding author. Fax: +86 4714992982.
E-mail addresses: hyzhao@imu.edu.cn

Measurements

IR spectra were recorded as KBr pellets on a Bruker-ALPHA spectrometer. NMR spectra were recorded on an Avance 500 Bruker (500 MHz) spectrometer using tetramethylsilane as internal standard. HRMS spectra were recorded on a Bruker ultrafleXtreme MALDI-TOF/TOF mass spectrometer. DSC thermographs were obtained on a METTLER TOLEDO DSC3 at a heating rate of $5^{\circ} \mathrm{C} \mathrm{min}^{-1}$ under nitrogen flow.

General procedures of synthesis and characterization of compounds 2a-2c

To a stirred solution of α, β-unsaturated diketone $1(1.5 \mathrm{mmol})$ in ethanol (5 mL) was charged with hydrazine hydrate $(80 \%, 1.96 \mathrm{~g}, 61.3 \mathrm{mmol})$. The resulting mixture was heated at reflux for 30 min , and then filtered at reduced pressure to yield a orange viscous liquid. The unstable intermediate was immediately dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. To the above solution was added a solution of acetyl chloride $(0.184 \mathrm{~g}, 2.35 \mathrm{mmol})$ dropwise at $20{ }^{\circ} \mathrm{C}$. The resulting mixture was further stirred for 10 min . The reaction mixture was washed with water and charged with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then partitioned between $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated, which was further purified by silica gel chromatography to yield 2 as a yellow powder.

2a, yield 55%. m. p. $237 \sim 240^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 10.42(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J$ $=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H})$, $5.52(\mathrm{dd}, 1 \mathrm{H}), 3.87(\mathrm{dd}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{dd}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.43,161.36$, $158.42,153.44,152.73,145.34,134.38,132.82,127.68,126.83,125.13,122.52,116.04,113.98,59.18,55.08,42.00$, 21.81; IR (KBr) $v: 3421,3129,2925,1630,1567,1509,1458,1243,1133,1029,846,555 \mathrm{~cm}^{-1} ;$ HRMS m/z: Calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 415.1770$, found 415.1768 .

2b, yield 42.7%. m.p. $238 \sim 240^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO) $\delta 10.42(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J$ $=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H})$,
$5.52(\mathrm{dd}, 1 \mathrm{H}), 3.92(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{dd}, 1 \mathrm{H}), 3.19(\mathrm{dd}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.68 \sim 1.63(\mathrm{~m}, 2 \mathrm{H}), 1.44 \sim 1.36(\mathrm{~m}$, $2 \mathrm{H}), 0.91(\mathrm{t}, J=9.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 167.88,161.83,158.34,153.91,153.20,145.81,134.70$, $133.29,128.14,127.27,125.59,122.99,116.51,114.93,67.55,59.63,42.45,31.18,22.27,19.19,14.14$; IR (KBr) v : $3423,2917,2848,1679,1608,1513,1400,1265,1170,1078,848,557 \mathrm{~cm}^{-1}$; HRMS m/z: Calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Na}^{+}$ $479.2059[\mathrm{M}+\mathrm{Na}]^{+}$, found 479.2040.

2c, yield 42%. m.p. $209 \sim 210{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 10.42(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J$ $=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H})$, $5.52(\mathrm{dd}, 1 \mathrm{H}), 3.90(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{dd}, 1 \mathrm{H}), 3.17(\mathrm{dd}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.70 \sim 1.63(\mathrm{~m}, 2 \mathrm{H}), 1.42 \sim 1.33(\mathrm{~m}, 2 \mathrm{H})$, $1.33 \sim 1.17(\mathrm{~m}, 8 \mathrm{H}), 0.91(\mathrm{t}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}\right)$) $\delta 167.41,161.36,157.87,153.43,152.73$, $145.35,134.22,132.82,127.67,126.80,125.12,122.52,116.04,114.46,67.39,59.17,41.99,31.24,28.73,28.67,25.52$, $22.08,21.80,13.95$; IR (KBr) v: 3423, 3056, 2923, 2850, 1629, 1579, 1463, 1240, 1133, 842, $549 \mathrm{~cm}^{-1} ;$ HRMS m/z: Calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Na}^{+} 535.2680[\mathrm{M}+\mathrm{Na}]^{+}$, found 535.2635.

Fig. S1 DSC curve of compound 3a-8

Fig. S2 DSC curve of compound 5a-8
${ }^{\wedge}$ exo
Izx003
23.11.2016 13:34:55

DEMO Version

Not signed

STAR ${ }^{\text {e }}$ SW 14.00
Fig. S3 DSC curve of compound 5a-10

Fig. S4 DSC curve of compound 5a-16

DEMO Version
Not signed
STAR ${ }^{\text {e }}$ SW 14.00

Fig. S5 DSC curve of compound $\mathbf{5 b} \mathbf{- 1 0}$

Fig. S6 DSC curve of compound 5c-10

Fig. S7 $\quad{ }^{1}$ H NMR of compound $\mathbf{2 a}$

Fig. S8 ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 a}$

Fig. S9 $\quad{ }^{1} H$ NMR of compound $\mathbf{2 b}$

Fig. S10 ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 b}$

Fig. S11 ${ }^{1}{ }^{1}$ NMR of compound 2c

Fig. S12 ${ }^{13} \mathrm{C}$ NMR of compound 2c

Fig. S13 ${ }^{1}$ H NMR of compound 3a-8

Fig. S14 ${ }^{13} \mathrm{C}$ NMR of compound 3a-8

Fig. S15 ${ }^{1} \mathrm{H}$ NMR of compound 3a-14

Fig. S16 ${ }^{13} \mathrm{C}$ NMR of compound 3a-14

Fig. S17 ${ }^{1}$ H NMR of compound 5a-8

Fig. S18 ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 a - 8}$

Fig. S19 ${ }^{1} \mathrm{H}$ NMR of compound 5a-10

Fig. S20 ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 a - 1 0}$

Fig. S21 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{5 a - 1 2}$

Fig. S22 ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 a - 1 2}$

Fig. S23 ${ }^{1} H$ NMR of compound 5a-14

Fig. S24 ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 a - 1 4}$

Fig. S25 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{5 a - 1 6}$

Fig. S26 ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 a - 1 6}$

Fig. S27 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{5 b} \mathbf{- 1 0}$

Fig. S28 ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 b} \mathbf{- 1 0}$

Fig. S29 $\quad{ }^{1}$ H NMR of compound $\mathbf{5 b}-14$

Fig. S30 ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 b} \mathbf{- 1 4}$

Fig. S31 ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{5 c} \mathbf{- 1 0}$

Fig. S32 $\quad{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 c - 1 0}$

Fig. S33 ${ }^{1}$ H NMR of compound $\mathbf{5 c - 1 4}$

Fig. S34 ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{5 c - 1 4}$

Fig. S35 HRMS of compound 3a-8

Acquisition Parameter

Date of acquisition	2016-09-14T14:16:26.671+08:00
Acquisition method name	D:IMethodsfllexControlMethodsIgc-RP_100-1500_Da.par
Aquisition operation mode	Reflector
Voltage polarity	POS
Number of shots Name of spectrum used for calibration Calibration reference list used	500
	sample

Fig. S36 HRMS of compound 3a-14

Acquisition Parameter

Fig. S37 HRMS of compound 5a-8

Fig. S38 HRMS of compound 5a-10

Fig. S39 HRMS of compound 5a-12

Fig. S40 HRMS of compound 5a-14

Fig. S41 HRMS of compound 5a-16

Mass Spectrum SmartFormula Report

Fig. S42 HRMS of compound $\mathbf{5 b} \mathbf{- 1 0}$

Fig. S43 HRMS of compound 5b-14

Fig. S44 HRMS of compound 5c-10

Fig. S45 HRMS of compound 5c-14

