
Appendix 1:  A proof of the uniqueness and stability of the equilibriums in the absence of 

consumer demography 

 

The model in the absence of consumer demography is: 

RḢ = rHRH (1 −
RH

KH
) − αRHCH   (S1) 

RL̇ = rLRL (1 −
RL

KL
) − αRLCL  (S2) 

CḢ = CLβeλ(wH−wL) − CHβeλ(wL−wH) (S3) 

CL = 2CT − CH  (S4) 

in which  λ = γβ,wH = cαRH − μ, wL = cαRL − μ.  For simplicity but without influencing the 

results qualitatively, here we assume γ = 1. 

 The Jacobian matrix at positive equilibrium (obtained by setting all Eq.s S1-3 equal to 0) 

is: 

[
 
 
 
 −

rHRH
∗

KH
0 −αRH

∗

0 −
rLRL

∗

KL
αRL

∗

2λ2cαCH
∗ e−λcα∆ −2λ2cαCH

∗ e−λcα∆ −
2λCT

CL
∗ e−λcα∆

]
 
 
 
 

,  

where ∆ = RH
∗ − RL

∗  and CT = (CH + CL)/2.  From the above matrix, we can get the third-order 

polynomial of eigenvalue z: 

z3 + (
2λCT

CL
∗ e−λcα∆ +

rHRH
∗

KH
+

rLRL
∗

KL
) z2 + φz1 + 2λ2cαCH

∗ e−λcα∆ (
rHRH

∗

KH
αRL

∗ +
rLRL

∗

KL
αRH

∗ ) z0 



where φ=
rHrLRH

∗ RL
∗

KHKL
+

rHRH
∗

KH

2λCT

CL
∗ e−λcα∆ +

rLRL
∗

KL

2λCT

CL
∗ e−λcα∆ + 2λ2cα2RL

∗ CH
∗ e−λcα∆ +

2λ2cα2RH
∗ CH

∗ e−λcα∆) 

 Using the Routh-Hurwitz criterion, and due to the fact that all the above coefficients of 

z0, z1, z2 and z3 > 0, any positive equilibrium (Eq. S1-4) is stable.  

 In what follows, we prove the uniqueness of the positive solution. By setting Eq. S1 and 

S2 = 0, we get: RH
∗  = max (KH (1 − 

αCH
∗

rH
), 0), RL

∗  = max (KL (1−
αCL

∗

rL
), 0), so RH

∗  decreases in CH
∗  

and 

RL
∗  decreases in CL

∗ . 

 To ensure that the solution is positive, we must have RH
∗ >0 and RL

∗ >0, which is equivalent 

to:  KH (1−
αCH

∗

rH
) > 0 and KL (1−

αCL
∗

rL
) > 0.  Rearranging these two inequalities yields: 

 CH
∗

 < 
rH

α
 and CL

∗
 < 

rL

α
  (S5) 

We then let Eq. S3 = 0, that is, CLβeλ(wH−wL) − CHβeλ(wL−wH) = 0. After rearrangement, 

it becomes: 

0 = (2CT − CH
∗ )βeλ(wH−wL) − CH

∗ βeλ(wL−wH) = G (CH
∗ ) (S6)  

where G represents a function of CH
∗ . Because G decreases in CH

∗ , so there exists at most one 

value CH
∗  to make G(CH

∗ ) = 0. 

 Replacing CL
∗  by 2CT − CH

∗  in S5 and rearranging the inequality, we get:  

2CT – 
 rL

α
 < CH

∗  < 
 rH

α
   (S7) 



 To ensure positivity of  RH
∗  and RL

∗ , CT must satisfy: 

 
 rL

α
  ≤  2CT  <  

 rL

α
+

 rH

α
   (S8). 

 Based on (S7) and the uniqueness of a positive CH
∗  in (S6), we must have G(2CT – 

 rL

α
) > 0 

and G(
 rH

α
) < 0. 

 By replacing CL
∗= 2CT – CH

∗  = 
 rL

α
 when CH

∗ = 2CT – 
 rL

α
, RH

∗ = KH (1 −
αCH

∗

rH
) =

KH (1 −
α(2CT – 

 rL
α

)

rH
), RL

∗ = KL (1 −
αCL

∗

rL
) = KL(1 − 1) = 0, we can get:  

G (2CT – 
 rL

α
) = 

 rL

α
βe

λ(cαKH(1 − 
2CTα−rL

rH
))

− (2CT – 
 rL

α
) βe

−λ(cαKH(1 − 
2CTα−rL

rH
))

 > 0. Rearranging 

the above inequality, we get one necessary condition for G (2CT – 
 rL

α
) > 0: 

 
2αCT−rL

rL
< e

2λcαKH(1−
2CTα−rL

rH
) 
  (S9). 

 By replacing CL
∗= 2CT – 

 rH

α
 when CH

∗  = 
 rH

α
, RH

∗ = KH (1 −
αCH

∗

rH
) = KH(1 − 1) = 0, RL

∗ =

KL (1 −
αCL

∗

rL
) = KL (1 −

α(2CT– 
 rH
α

)

rL
), we get: G(

 rH

α
) = (2CT – 

 rH

α
)βe

λ(cαKL(1−
2CTα−rH

rL
))

−

 rH

α
βe

−λ(cαKL(1−
2CTα−rH

rL
))

 < 0.  

Rearranging this inequality, we get necessary condition for G(
 rL

α
) < 0: 

2αCT−rH

rH
< e

−2λcαKL(1−
2CTα−rH

rL
) 
 (S10). 



 In summary, necessary conditions of unique positive solution are (S8), (S9) and (S10), 

which indicated that, in general, to have positive RH
∗ , RL

∗ , CH
∗  and CL

∗ , total consumer abundance 

in the system (CT) should not be too large, which would deplete resources (RL
∗  = 0); CT also 

should not be too small, which would drive CL
∗  to zero under fitness-dependent movement.  

 

 

  



Appendix 2   The relationships among mobility, fitness sensitivity and the time for the 

system to reach equilibrium in the absence of consumer demography 

 

 In the absence of consumer demography, we used simulations to study how the time for 

the system to approach equilibrium depends on mobility and fitness sensitivity. Here, we define 

the solution approaching equilibrium when the density changes by less than 1e-6 within 10 

continuous time-steps.  

 Without consumer movement between the two patches (i.e., β = 0), each patch would 

have its own equilibrium. The time to equilibrium depends on the initial densities of both 

consumers and resources in each patch. When consumers move (β > 0) but in random directions 

(i.e., no fitness sensitivity; λ = 0), the time to equilibrium depends on the density difference of 

consumers between the two patches. Here, we set initial densities of consumers to be equal in the 

two patches (i.e., no density difference of consumers), so there is no migration of consumers 

between the two patches when λ = 0. Therefore, in the above two scenarios (either β = 0 or λ = 

0), the system has the same equilibrium and the same time to reach this equilibrium (the 

equilibrium time here is 53 steps; see the gray color line at β = 0 and λ = 0 in Fig. S1).  

 When consumers exhibit fitness-sensitive movement between the two patches (i.e., β > 0 

and λ > 0), the time to equilibrium rapidly decreases as the baseline mobility increases (see the 

abrupt color change along β axis in Fig. S1). The time to equilibrium shows a unimodal pattern 

with respect to fitness sensitivity: i.e., when fitness sensitivity increases, the time to equilibrium 

first increases and then decreases. The unimodal pattern is stronger when the baseline mobility is 

relatively small (see the hump shape of time change along λ axis in Fig. S1). This unimodal 

pattern arises because when the fitness sensitivity becomes slightly larger than 0, the equilibrium 



changes: more consumers end up in the high-quality patch than in the low-quality patch (see Fig. 

1a). For this simulation, the initial densities of consumers are equal in both patches, so the 

system needs more time to reach the new equilibrium. Once the fitness sensitivity increases up to 

a certain level, consumers can move to the high-quality patch faster, thus, the time to achieve 

equilibrium decreases. The smaller the baseline mobility is, the stronger the influence of fitness 

sensitivity on the system (i.e., the hump shape along λ axis is stronger when β is smaller in Fig. 

S1). 

  



 

 

Fig. S1 The relationships among mobility (β), fitness sensitivity (λ) and the time for the system 

to reach equilibrium when there is no consumer demography (p = 0). The color bar shows the 

time gradient to equilibrium: from gray to dark red, time increases. The parameters are: rH = 2, 

rL = 1, KH = 100, KL = 50, c = 0.05, α = 0.05, µ = 0.1 and CT=15. 
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Appendix 3   The proof of the relationship between the fitness sensitivity of movement and 

equilibria in the absence of consumer demography 

 Based on the model in the absence of consumer demography (S1-4), we have RH
∗ =

KH(1 −
αCH

∗  

rH
) and RL

∗ = KL(1 −
αCL

∗

rL
) at equilibrium, so the fitness difference of the two patches 

(∆) is: 

 ∆= RH
∗ − RL

∗ = (−
αKH

rH
−

αKL

rL
) CH

∗ + KH − KL +
αKL

rL
2CT  (S11) 

Differentiating CH
∗  from S11, we have 

d∆

dCH
∗ = −

αKH

rH
−

αKL

rL
  (S12) 

 At equilibrium, from Eq. S3=0, we have (2CT − CH
∗ ) eλcα∆ − CH

∗ e−λcα∆ = 0  (S13) 

 Using implicit differentiation on Eq. (S13) with respect to λ and inserting Eq. (S12), we 

get: 

dCH
∗

dλ
(−eλcα∆ − e−λcα∆ − (2CT − CH

∗ )eλcα∆cαλ (
αKH

rH
+

αKL

rL
) − cαλCH

∗ e−λcα∆ (
αKH

rH
+

αKL

rL
)) =

−(2CT − CH
∗ )eλcα∆cα∆ − CH

∗ e−λcα∆cα∆  (S14) 

 When ∆> 0 (which is true for our system), from (S14), we can get: 

dCH
∗

dλ
> 0 (S15) 

From RH
∗ = KH(1 −

αCH
∗  

rH
) and S15, we have 

dRH
∗

dλ
< 0  (S16) 

From S4 and S15, we have 
dCL

∗

dλ
< 0  (S17) 



From RL
∗ = KL(−

αCL
∗

rL
) and S17, we have 

dRL
∗

dλ
> 0 (S18) 

 Inequalities S15-S18 show that with the increase of λ, more consumers would move from 

low-quality patch to high-quality patch (CH
∗ − CL

∗  increases), and the disparity of resource 

densities would decrease (∆ = RH
∗ − RL

∗  decreases). This trend is always kept until ∆= 0 as λ →  

∞. ∆= 0 is the limiting pattern under Ideal Free Distribution (IFD). 

  



Appendix 4   The proof of the relationships between the fitness-sensitivity of consumers’ 

movement and regional resource density in the absence of consumer demography 

From Eq. S1-S2, we get RH
∗ = KH(1 −

αCH
∗  

rH
) and RL

∗ = KL(1 −
αCL

∗

rL
). By averaging these 

two quantities, we get the average regional density of resources, R∗:  

R∗ =
RH

∗ + RL
∗

2
=

1

2
KH (1 −

αCH
∗  

rH
) +

1

2
KL (1 −

αCL
∗

rL
)    

=
1

2
{KH + KL − α(

KH

rH
CH

∗ +
KL

rL
CL

∗)}    (S19) 

By replacing CL
∗ = 2CT − CH

∗ , we get: 

R∗ =
1

2
{KH + KL − 2α

KL

rL
CT − αCH

∗ (
KH

rH
−

KL

rL
)}    (S20) 

When 
KH

rH
−

KL

rL
= 0,  R∗ =

1

2
(KH + KL − 2α

KL

rL
CT), which is constant with the fixed CT 

(see Fig. 2c).        (S21) 

When 
KH

rH
−

KL

rL
< 0 or rH/KH > rL/KL, under (S15), we can get: 

dR∗

dλ
> 0        (S22) 

When 
KH

rH
−

KL

rL
> 0 or rH/KH < rL/KL, under (S15), we have: 

dR∗

dλ
< 0        (S23) 

       


