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S1. Differences between Model T and Model F
Here we show the equations of the currents in Model T [1] and Model F [2] that are different
in kinetics. Below gX is the conductance (constant), EX is the reversal potential, Xo is the
extracellular concentration, Xi is the intracellular concentration of ion X . V is the membrane
voltage, F is Faraday constant, R is the ideal gas constant.

ICaL

Model T Model F

ICaL =
gCaL · d · f · fCa · 4 · V · F

2

R · 310

×

Cai · e 2·V ·F
R·310 − 0.341 · Cao


e 2·V ·F
R·310 − 1



d∞ =
11 + e

(−5−V )
7.5



αd =


1.41 + e
(−35−V )

13


+ 0.25



βd =
1.41 + e
(V+5)

5



γd =
11 + e

(50−V )
20



τd =
(
αd · βd + γd

)
dd

dt
=

(d∞ − d)

τd

ICaL =
gCaL · d · f · f2 · fCass · 4 · (V − 15) · F2

R · 310

×

0.25 · Cass · e 2·(V−15)·F
R·310 − Cao


e 2·(V−15)·F

R·310 − 1



d∞ =
11 + e
(5−V )

7.5



αd = as per Model T,

βd = as per Model T,

γd = as per Model T,

τd = as per Model T,

dd

dt
= as per Model T,

f∞ =
11 + e
(V+20)

7



τf =


1125 · e

−(V+27)2

240 + 80 +
1651 + e
(25−V )

10




df

dt
=

(f∞ − f)

τf

αfCa =
1(

1 +
(

Cai
0.000325

)8)

βfCa =
0.11 + e

(
Cai−0.0005

)

0.0001



γfCa =
0.21 + e

(
Cai−0.00075

)

0.0008



fCa∞ =

(
αfCa + βfCa + γfCa + 0.23

)
1.46

τfCa = 2

dfCa =
(fCa∞ − fCa)

τfCa

dfCa

dt
=


0; if (fCa∞ > fCa) and (V >−60),

dfCa otherwise.

f∞ = as per Model T,

τf =
1

4


1102.5 · e

−(((V+27))2)
225 +

2001 + e
(13−V )

10


+

1801 + e
(V+30)

10


+ 20


df

dt
= as per Model T,

f2∞ =


0.751 + e
(V+35)

7


+ 0.25



τf2 =
1

2


562 · e

−(V+27)2

240 +
311 + e
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10


+

801 + e
(V+30)

10




df2

dt
=

(f2∞ − f2)

τf2

fCass∞ =


0.4(

1 +
(
Cass
0.05

)2) + 0.6



τfCass =


80(

1 +
(
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0.05
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dfCass

dt
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(fCass∞ − fCass)

τfCass
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Ito

Model T Model F

Ito = gto · r · s · (V − EK)

s∞ =
1(

1 + e
(V+28)

5

)
τs = 1000 · e

(
−(V+67)2

1000

)
+ 8

ds

dt
=

(s∞ − s)
τs

r∞ =
1(

1 + e
(20−V )

6

)
τr =

(
9.5 · e

−(V+40)2

1800 + 0.8

)
dr

dt
=

(r∞ − r)
τr

Ito = as per Model T,

s∞ =
1(

1 + e
(V+20)

5

)
τs =

85 · e
−(V+45)2

320 +
5(

1 + e
(V−20)

5

) + 3


ds

dt
= as per Model T,

r gate as per Model T.
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IKr

Model T Model F

IKr = gKr ·
√
Ko

5.4
·Xr1 ·Xr2 · (V − EK)

xr1∞ =
1(

1 + e
(−26−V )

7

)
αxr1 =

450(
1 + e

(−45−V )
10

)
βxr1 =

6(
1 + e

(V+30)
11.5

)
τxr1 = αxr1 · βxr1

dXr1

dt
=

(xr1∞ −Xr1)

τxr1

xr2∞ =
1(

1 + e
(V+88)

24

)
αxr2 =

3(
1 + e

(−60−V )
20

)
βxr2 =

1.12(
1 + e

(V−60)
20

)
τxr2 = αxr2 · βxr2

dXr2

dt
=

(xr2∞ −Xr2)

τxr2

IKr = gKr ·
(
310

35
−

55

7

)
·
√
Ko

5.4
·Or4 · (V − EK)

αxr1 = e(24.335+(0.0112·V−25.914))

βxr1 = e(13.688+(−(0.0603)·V−15.707))

αxr2 = e(22.746+(0·V−25.914))

βxr2 = e(13.193+(0·V−15.707))

αxr3 = e(22.098+(0.0365·V−25.914))

βxr3 = e(7.313+(−(0.0399)·V−15.707))

αxr4 = e(30.016+(0.0223·V−30.888)) ·
(
5.4

Ko

)0.4

βxr4 = e(30.061+(−(0.0312)·V−33.243))

dCr1

dt
= (βxr1 · Cr2− αxr1 · Cr1)

dCr2

dt
= ((αxr1 · Cr1 + βxr2 · Cr3)− (αxr2 + βxr1) · Cr2)

dCr3

dt
= ((αxr2 · Cr2 + βxr3 ·Or4)− (αxr3 + βxr2) · Cr3)

dOr4

dt
= ((αxr3 · Cr3 + βxr4 · Ir5)− (αxr4 + βxr3) ·Or4)

dIr5

dt
= (αxr4 ·Or4− βxr4 · Ir5)
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IK1

Model T Model F

IK1 = gK1 · xK1∞ ·
√
Ko

5.4
· (V − EK)

αK1 =
0.1(

1 + e0.06·((V−EK)−200)
)

β
a
K1 = 3 · e0.0002·((V−EK)+100)

β
b
K1 = e

0.1·((V−EK)−10)

βK1 =
βaK1 + βbK1(

1 + e−(0.5)·(V−EK)
)

xK1∞ =
αK1

(αK1 + βK1)

IK1 = gK1 ·
(

310

35
−

55

7

)
·
√
Ko

5.4
· xK1∞ · (V − EK)

KiMg = 2.8 · e
−(V−δ·EK)

180

KbMg = 0.45 · e
−(V−δ·EK)

20

Kd1SPM = 0.7− 3 · e
−
(
(V−δ·EK)+8·MgBuf

)
4.8

Kd2SPM = 40− 3 · e
−(V−δ·EK)

9.1

X =

(
1 +

MgBuf

KbMg

)

rec1 =
X2(

SPM
Kd1SPM

+
MgBuf
KiMg

+X3
)

rec2 =
1(

1 + SPM
Kd2SPM

)
xK1∞ = (φ · rec1 + (1− φ) · rec2)

MgBuf = 0.0356

SPM = 0.0014613

φ= 0.8838

δ = 1.0648

IKs

Model T Model F

IKs = gKs ·X2
s · (V − EKs)

xs∞ =
1(

1 + e
(−5−V )

14

)
αxs =

1100√(
1 + e

(−10−V )
6

)
βxs =

1(
1 + e

(V−60)
20

)
τxs = αxs · βxs

dXs
dt

=
(xs∞ −Xs)

τxs

IKs = as per Model T,

xs∞ = as per Model T,

αxs =
1400√(

1 + e
(5−V )

6

)
βxs =

1(
1 + e

(V−35)
15

)
τxs = (αxs · βxs + 80)

dXs
dt

= as per Model T.
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S2. Modelling discrepancy using a Gaussian process
In order to add a discrepancy term to our basic measurement model (see main text), we model
the ith observation as:

(YC)i = fi(θ, u
i
C) + δi(φ,v

i
C) + εi, (S2.1)

where δi(φ,viC) is the model discrepancy term, a function with arguments vC and parameters φ.
Note that the inputs vC can be independent from the inputs passed to the mechanistic model. We
choose vC to be (1) time t, and (2) the open probability O (i.e. O in Eq. (3.3)) and the voltage V .

Following [3] we place a zero mean Gaussian process prior on the discrepancy function given
by

δ(φ,vC)∼GP
(
0,κ(vC ,v

′
C ;φ)

)
, (S2.2)

where κ(vC ,v′C ;φ) is the covariance function (also known as covariance kernel) parameterised
by φ. One common choice for the covariance function is the squared exponential function given
by

κ(vC ,v
′
C ;φ) = α2 exp

− q∑
j=1

(vCj − v
′
Cj )

2

2ρ2j

 , (S2.3)

where q is the number of covariates, such as time or open probability as mentioned above,
representing vC . The parameter ρj quantifies the characteristic length-scale along the jth

covariate and α denotes the marginal variance of the GP prior. Together they constitute the
parameter vector φ= [α, ρ1, . . . , ρq].

Since our measurement noise is Gaussian with variance σ2 we can analytically compute
the discrepancy function to obtain the marginal likelihood of N observations Y C = (YC)

N
i=1,

conditioned on the parameters θ, φ of the mechanistic and discrepancy models respectively, as
well as the calibration inputs uC and vC , given by

p(Y C |uC ,vC ,θ,φ)∼N (fθ,uC , ΣNN + σ2I), (S2.4)

where fθ,uC = [f1(θ, uC), . . . , fN (θ, uC)] is a vector collecting the N evaluations of the
mechanistic model function, ΣNN represents the covariance function ( Eq. S2.3) evaluated on
all N ×N pairs of the calibrations inputs vC :

ΣNN =


κ(v1C ,v

1
C ;φ) . . . κ(v1C ,v

N
C ;φ)

...
. . .

...
κ(vNC ,v

1
C ;φ) · · · κ(vNC ,v

N
C ;φ)

 , (S2.5)

and I is a N ×N identity matrix.

Inference of the model and GP parameters
We proceed by first placing suitable prior distributions, p(θ) and p(φ), on the model and GP
parameters and then obtain the posterior distribution using Bayes theorem as follows:

p(θ,φ|Y C , uC ,vC)∝ p(Y C |uC ,vC ,θ,φ)p(θ)p(φ). (S2.6)

Since this posterior distribution is analytically intractable due to the non-linear dependence on
θ and φ we resort to Markov chain Monte Carlo (MCMC) in order to obtain samples from this
distribution.

Predictions
Having inferred the parameters θ and φ we may want to predict the output of the model in
Eq. S2.1 for a new set of model inputs uV and vV . Note that these new model inputs are
considered as validation inputs, denoted with subscript V . For the purpose of derivation here,
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we consider the number of validation points M to be different than the number of measurement
points N , although these numbers can be the same for specific choices of calibrations.

We denote the column vector for the corresponding M predicted outputs as Y V =

(YV )
M
i=1, and the model evaluations with the new inputs as fθ,uV = [f1(θ, uV ), . . . , fM (θ, uV )]

T

Furthermore, we denote the collection of calibration inputs at the N training (points
corresponding to the measurements) as IC = (uC ,vC), and at the prediction points as IV =

(uV ,vV )

Note that for a fixed value of parameters, θ and φ respectively, we can analytically obtain the
predictive distribution of Y V given by

p(Y V |IV , IC ,Y C ,θ,φ) =N (µV ,σ
2
V ), (S2.7)

where the mean and variance is given by [4]

µV = fθ,uV +ΣMN [ΣNN + σ2I]−1(Y C − fθ,uC )

σ2
V =ΣMM −ΣMN [ΣNN + σ2I]−1ΣNM ,

(S2.8)

where ΣMN and ΣNM denotes the M ×N and N ×M matrices of covariance function
evaluations between the training and prediction inputs given by

ΣMN =


κ(v1V ,v

1
C ;φ) . . . κ(v1V ,v

N
C ;φ)

...
. . .

...
κ(vMV ,v1C ;φ) · · · κ(vMV ,vNC ;φ)

 , (S2.9)

ΣNM =


κ(v1C ,v

1
V ;φ) . . . κ(v1C ,v

M
V ;φ)

...
. . .

...
κ(vNC ,v

1
V ;φ) · · · κ(vNC ,v

M
V ;φ)

 , (S2.10)

with inputs vC and vV , respectively, and ΣMM is the covariance evaluated at the prediction
inputs vV only:

ΣMM =


κ(v1V ,v

1
V ;φ) . . . κ(v1V ,v

M
V ;φ)

...
. . .

...
κ(vMV ,v1V ;φ) · · · κ(vMV ,vMV ;φ)

 . (S2.11)

Finally, to obtain the marginal (i.e. integrating out the parameters) predictive distribution:

p(Y V |IV , IC ,Y C) =

∫
N (µV ,σ

2
V )p(θ,φ|Y C , uC ,vC) dθ dφ, (S2.12)

we use Monte Carlo integration using the samples of θ and φ obtained through MCMC.

Sparse Gaussian Process
The above formulation of the discrepancy model suffers from a crucial computational bottleneck
stemming from the need of inverting the covariance matrix ΣNN while evaluating the marginal
likelihood in Eq. S2.4, as well as drawing posterior predictions in Eq. S2.12 (in turn using
Eq. S2.8). In all the calibration problems under consideration here, we have a large number of
data points (time series measurements) where N ≥ 80000. Thus, it becomes infeasible to apply
Gaussian processes for modelling the discrepancy without tackling this excessive computational
load related to repeated inversion of a large matrix.

In order to alleviate this computational bottleneck we use a sparse approximation of the true
covariance function. Quiñonero-Candela et al. [5] provides an extensive review of such sparse
approximations techniques. Following [5] we use a set of P or inducing inputs (or pseudo-inputs)
xC with associated latent function δ(φ, xC) representing the discrepancy function corresponding
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to the inducing inputs. This inducing function is assigned a zero mean GP prior as follows:

δ(φ, xC)∼GP
(
0,κ(xC , x

′
C ;φ)

)
. (S2.13)

Let us denote the vector of discrepancy function evaluations at all the training points as
δφ,uC = [δ1(φ, uC), . . . , δN (φ, uC)]

T and at inducing points as δφ,xC = [δ1(φ, xC), . . . , δP (φ, xC)]
T .

We can then write the joint prior as a product of all the training and inducing points
as p(δφ,uC ) =N (0, ΣNN ) and p(δφ,xC ) =N (0, ΣPP ) respectively, where ΣPP denotes the
covariance evaluated at all pairs of inducing inputs:

ΣPP =


κ(x1C , x

1
C ;φ) . . . κ(x1C , x

P
C ;φ)

...
. . .

...
κ(xPC , x

1
C ;φ) · · · κ(xPC , x

P
C ;φ)

 . (S2.14)

We can then approximate the prior on the true discrepancy function δφ,uC marginalising the
inducing discrepancies as:

p(δφ,uC )≈ p(δφ,uC |δφ,xC ) =
∫
p(δφ,uC |δφ,xC )p(δφ,xC ) d δφ,xC

=N (ΣNPΣ
−1
PP δφ,xC , ΣNN −ΣNPΣ

−1
PPΣPN ),

(S2.15)

where ΣNP , ΣPN denotes the covariance matrices containing the cross-covariances between
the training and inducing inputs (evaluated in the same way as in Eqs. S2.9, S2.10). This sparse
approximation was first introduced in [6] to scale the GP regression model. This approximation
is widely known as the fully independent training conditional (FITC) approximation in machine
learning parlance since the introduction of these inducing inputs and corresponding function
values δφ,xC induces a conditional independence among all the elements of δφ,uC [5], that is we
have

p(δφ,uC |δφ,xC ) =
N∏
i=1

p(δi(φ,v
i
C)|δφ,xC ) =N (ΣNPΣ

−1
PP δφ,xC , ΣNN −ΣNPΣ

−1
PPΣPN ).

(S2.16)
Using this approximate prior p(δφ,uC |δφ,xC ) to obtain the marginal likelihood and the

prediction terms we essentially approximate the true covariance ΣNN as [5]:

ΣNN ≈ Σ̂ =Q+ diag(ΣNN −Q), (S2.17)

where diag(A) is a diagonal matrix whose elements match the diagonal of A and the matrix Q is
given by

Q=ΣNPΣ
−1
PPΣPN . (S2.18)

Σ̂ has the same diagonal elements as ΣNN and the off-diagonal elements are the same as for Q.
Thus, inversion of Σ̂ scales as O(NP 2) as opposed to O(N3) for the inversion of ΣNN .
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S3. Modelling residuals using an ARMA(p, q) process
In the previous section we modelled the discrepancy as a function drawn from a GP prior.
Alternatively, we can address the case of discrepancy using a correlated residual approach (see
Section 3.6.2 in [7] for an introduction to this modelling approach). In this case we can model the
residuals between the data (YC)i and the mechanistic model fi(θ, uiC) as an ARMA(p, q) process
as follows:

(YC)i − fi(θ, uiC) = ei

=ϕ1ei−1 + . . .+ ϕpei−p + νi + ζ1νi−1 + . . .+ ζqνi−1−q, (S3.1)

where

νi ∼N (0, τ2), (S3.2)

and ϕ= [ϕ1, . . . , ϕp]
T , ζ = [ζ1, . . . , ζp]

T are the vectors representing the p≥ 0 autoregressive
coefficients and q≥ 0 moving-average coefficients of the ARMA process.

The rationale behind this modelling approach comes from the fact that if the mechanistic
model is able to explain the measurements adequately then the residuals are essentially
uncorrelated measurement noise ε∼N (0, σ2). Note that we use a different symbol ν, as opposed
to ε, to represent the noise term in order to highlight the difference in its interpretations. However,
the existence of discrepancy between the model output and the observations points to the fact
that the residuals, for each data sample, has unexplained structure that can be modelled using a
pre-determined correlation structure, as expressed through an ARMA(p, q) model.

Inference
We first re-write the normally distributed error term νi as

νi = (YC)i − fi(θ, uiC)−
p∑
j=1

ϕj{(YC)i−j − fi−j(θ, ui−jC )} −
q∑

k=1

ζkνi−k, (S3.3)

using which we can write the conditional likelihood of the observed data for N measurements
as [8]

p(Y C |θ,ϕ, ζ, τ) = (2πτ2)N/2 exp

(
− 1

2τ2

N∑
i=p+1

ν2i

)
, (S3.4)

where we have used νi for i≥ p+ 1 by assuming that νp = νp−1 = . . .= νp+1−q = 0, its expected
value. Note that to calculate the likelihood for all the N measurements requires us to introduce
extra parameter values, as latent variables, for the past history of the data as well as the error terms
before measurement commences, that is for [(YC)0, (YC)−1, . . . , (YC)1−p] and [ν0, ν−1, . . . , ν1−q].
Alternatively, we can reformulate Eq. S3.1 in a state space form and use the Kalman filter
algorithm to evaluate the unconditional full likelihood for all i. We refer the reader to [7] for the
details of this approach. We point out here that the difference between these two approaches of
calculating the likelihood is insignificant for long time series, which is the case for our calibration
problems with N ≥ 80000.

Having defined the likelihood we can again adopt the Bayesian framework to infer posterior
distributions of the model parameters θ and the set of ARMA parameters φ= [ϕ, ζ], by choosing
suitable prior distributions p(θ) and p(φ) respectively and using the Bayes theorem to obtain the
posterior given by

p(θ,φ|Y C)∝ p(Y C |θ,φ)p(θ)p(φ). (S3.5)

Note that we have considered the noise variance known since its maximum likelihood estimate is
given by τ2 =

∑N
i=p+1 ν

2
i

N−(2p+q+1)
, which can be easily obtained once estimates of φ and θ are available.

Similar to the GP based inference problem we again use MCMC to obtain the desired posterior
distributions.
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Predictions
In a purely time series modelling context, where models such as the ARMA is extensively used,
predictions are used to forecast ahead in time for short intervals. In the context of our calibration
problem we are generally interested in predicting outputs for a new calibration uV . However,
considering the fact that we want to to predict M output values corresponding to the new
validation inputs, we can simply recast our predictions as one-step-ahead forecasts.

We denote theM predicted outputs as Y V = (YV )
M
m=1, while Y p = (YC)

N
N−(p−1) and fθ,uC =

[fN (θ, uC), . . . , fN−(p−1)(θ, uC)] are column vectors representing the last p observations and
model evaluations with the calibration uC . We denote the vector of the last q errors as νC =

[νN−(q−1), . . . , νN ]T .
Note that in our formulation here, the mth, m= 1, . . . ,M , prediction is to be considered as

the (N + 1)th prediction from the model in Eq. S3.1 with the following modification: we replace
fN+1(θ, u

i
C) with f1(θ, u1V ). Thus, for a particular value of the parameters we have

(YV )m ∼N (E[(YV )m|Y p,νC ,θ,φ],Var[(YV )m|Y p,νC ,θ,φ]), (S3.6)

where the mean and the variance of the one-step ahead prediction distribution is given by

E[(YV )m|Y p,νC ,θ,φ] = fm(θ, umV ) +ϕT (Y p − fθ,uC ) + ζ
TνC ,

Var[(YV )m|Y p,νC ,θ,φ] = Var
[
(YV )m − E[(YV )m|Y p,νC ,θ,φ]

]
=Var[νN ] = τ2.

(S3.7)

In order to quantify the uncertainty in the predictions we can integrate out the model and noise
parameters [9]:

p((YV )m|Y p,νC) =

∫
N (E[(YV )m|Y p,νC ,θ,φ]p(θ,φ|Y C) dθ dφ, (S3.8)

where we use Monte Carlo integration as in Eq. S2.12.
In order to collect the full set of M predictions Y V we simply use the one-step-ahead

forecasting distribution shown above in a recursive manner.
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S4. Choice of priors for the ion channel example
Here we specify the choice of priors for the ion channel example.

• For the ion channel ODE model parameters, we chose a uniform prior specified in Beattie
et al. [10] and Lei et al. [11,12].
• For the GP model, we have the unbiased noise parameter σ, the length-scale ρi, the

marginal variance α:

– σ: Half-Normal prior with standard deviation of 25;
– ρi: Inverse-Gamma prior with shape and scale being (5, 5);
– α: Inverse-Gamma prior with shape and scale being (5, 5).

• For the ARMA model, we have the autoregressive coefficients ϕi, and moving-average
coefficients ζi:

– ϕi: Normal prior centred on the maximum likelihood estimates with standard
deviation of 2.5;

– ζi: Normal prior centred on the maximum likelihood estimates with standard
deviation of 2.5.
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S5. Computing and representing posterior predictive
To compute the posterior predictive, we follow Girolami [13] and write the posterior predictive
in Eqs. S2.12 & S3.8 as

p(YV | YC) =
∑
k

p(YV | θk,φk, YC)p(θk,φk | YC), (S5.1)

where θk,φk are the kth posterior sample of the parameters. We have checked the posterior
predictive of the ODE models at a given time point is symmetric and similar to a Gaussian
distribution, for the sake of simplicity, we therefore use summary statistics such as the predictive
mean and credible intervals computed using variance to represent the posterior predictive in this
paper. To obtain the predictive mean E[YV | YC ] and variance Var[YV | YC ], we use

E[YV | YC ] =
∑
k

E[YV | θk,φk, YC ]p(θk,φk | YC), (S5.2)

Var[YV | YC ] =
∑
k

(
Var[YV | θk,φk, YC ] + E[YV | θk,φk, YC ]

2
)
p(θk,φk | YC)− E[YV | YC ]2.

(S5.3)

Finally, to show the 95% credible intervals of our predictions, we plot E[YV | YC ]± 1.96σYV where
σ2YV =Var[YV | YC ].
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S6. Supplementary results for the action potential example

Figure S1. Matrix plot and histograms: Posterior distribution of Model T parameters when estimated using data from

Model T. The dashed black lines indicate the true (data-generating) parameters; the dashed red lines are the result of the

global optimisation routine. Inset plot: Posterior predictions for the ‘context of use’ (CoU) data, for the action potential

model tutorial (in the scenario of no model discrepancy). The posterior predictions are model predictions using parameters

sampled from the posterior distribution; 200 samples/predictions are shown. Model T gives an almost-perfect prediction

of the CoU data (which was not used in training).
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Figure S2. Results obtained via Genetic Algorithm and Differential Evolution to adjust the Fink Action Potential to ten

Tusscher at control, i.e., 1Hz, and 0% IKr block configuration. The Genetic Algorithm was used with a population size

of 100 individuals and 10 generations. The Differential Evolution was used with 150 individuals and 15 generations. Both

algorithms were implemented using the Python library Pygmo with the standard configurations. A From all the evaluations

we selected the candidates (parameter sets) that satisfied Error0% < 0.1. Relative RMS errors are computed with

ErrorX(i) =
||TX−aFX (i)||2

||TX ||2
, where TX is the ten Tusscher model in scenario X , and aFX is the adjusted Fink

model using the individual i for scenario X . A total of 1079 candidates satisfied Error0% < 0.1, i.e., were below the

displayed threshold. Using this metric, the best candidate had Error0% = 1.6%. B Testing the performance of the 1079

candidates with respect to the 2Hz scenario a total of 990 candidates satisfy Error0% < 0.1 and Error2Hz < 0.1.

Using these two metrics, the best candidate hadError0% = 1.8% andError2Hz = 1.8%. C Testing the performance

of the 1079 candidates with respect to the 75% IKr block scenario only 80 candidates satisfy Error0% < 0.1 and

Error75% < 0.1. Using these two metrics, the best candidate had Error0% = 4.5% and Error75% = 4.5%. D

Testing the performance of the 1079 candidates with respect to both 75% IKr block and 2Hz scenarios only 70 candidates

satisfy Error0% < 0.1, Error75% < 0.1, and Error2Hz < 0.1. Using the three metrics, the best candidate had

Error0% = 4.5%, Error2Hz = 3.7%, and Error75% = 4.5%.
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Figure S3. APs obtained by the Data (ten Tusscher model) and also by the fitting process for each scenario: A control,

i.e., 1Hz, and 0% IKr block; B 2Hz; and C 75% IKr block. “Best 0% prediction” are the results obtained using the best

candidate that satisfies Error0% < 0.1. “Best 0% + 2Hz prediction” are results obtained using the best candidate that

satisfies Error0% < 0.1 and Error2Hz < 0.1. “Best overall prediction” are results obtained using the best candidate

that satisfiesError0% < 0.1,Error2Hz < 0.1, andError75% < 0.1. The 1079 APs that satisfyError0% < 0.1 are

plotted with grey lines. The 70/1079 APs that satisfy Error0% < 0.1, Error2Hz < 0.1, and Error75% < 0.1 are are

plotted with black lines. Note that there is no way of knowing in advance what the best candidate parameter set will be

without performing the experiment, so a distribution of possibilities should generally be shown.
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S7. Supplementary results for the ion channel discrepancy
example
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Figure S4. A comparison of the σ values in the i.i.d. model for Model A and B, and σtrue refers to the value used in

generating the data with Model C. If we consider the inferred σ value in Eq. 1.3 in the main text as σ2
inferred = σ2

true +

σ2
discrepancy, then we can see that both σA, σB >σtrue. Hence we have σ2

discrepancy term is non-zero for both models, which

reflects the fact that there is discrepancy for both models. One may use the size of σinferred to interpret the size of the

model discrepancy here.

iid noise GP(t) GP(O, V) ARMA(2, 2)Model A

AP

Staircase

SinewaveCalibration

Prediction
6.1 × 104 2.2 × 105 1.1 × 105 0

5.4 × 105 3.4 × 105 3.6 × 105 0

3.8 × 104 2.1 × 103 1.4 × 104 0

iid noise GP(t) GP(O, V) ARMA(2, 2)Model B

AP

Staircase

SinewaveCalibration

Prediction
3.6 × 105 3.8 × 105 0 2.5 × 104

1.6 × 106 6.6 × 105 3.7 × 105 0

5.5 × 104 6.8 × 103 1.9 × 104 0

Table S1. Posterior predictive log-likelihoods of fits and predictions for Models A (left) and B (right) with different

discrepancy models: i.i.d. noise, GP(t), GP(O, V ), and ARMA(2, 2) for all three voltage protocols. The posterior

predictive log-likelihood is π(Y | YC) =
∫
π(Y | θ)π(θ | YC)dθ, which we approximate by 1

N

∑N
n=1 p(Y | θn) where

θn are samples from the posterior distribution generated by MCMC. Only relative differences within a row are meaningful,

and we therefore subtract the maximum log-likehood for each dataset from the results giving the best model in each row

a score of zero. Note that care is needed when interpreting the log-likelihood values for the GP models due to the FITC

approximation used to approximate the full likelihood.
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(a) Model A

Figure S5. Trace plot of 3 independent MCMC runs for Model A parameters (with the i.i.d. noise model): the conductance,

g, and kinetic parameters p1, . . . , p8 (a list of parameters referring to Ai,j and Bi,j in Eq. (3.5)).

Figure S6. Trace plot of 3 independent MCMC runs for Model A parameters (with the GP(t) noise discrepancy model):

the conductance, g, and kinetic parameters p1, . . . , p8 (a list of parameters referring to Ai,j and Bi,j in Eq. (3.5)).
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Figure S7. Trace plot of 3 independent MCMC runs for Model A parameters (with the GP(O, V ) noise discrepancy

model): the conductance, g, and kinetic parameters p1, . . . , p8 (a list of parameters referring to Ai,j and Bi,j in

Eq. (3.5)).

Figure S8. Trace plot of 3 independent MCMC runs for Model A parameters (with the ARMA(2, 2) noise discrepancy

model): the conductance, g, and kinetic parameters p1, . . . , p8 (a list of parameters referring to Ai,j and Bi,j in

Eq. (3.5)).
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(i) Model A: Full model predictions

Figure S9. Model A prediction with different discrepancy models: no discrepancy (i.i.d. noise), GP(t), GP(O, V ), and

ARMA(2, 2). The voltage clamp protocol for calibration is the action potential series protocol [10].
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(ii) Model A: Discrepancy predictions

Figure S10. Model A fitting residuals of the MAP estimate accounted by different discrepancy models: no discrepancy

(i.i.d. noise), GP(t), GP(O, V ), and ARMA(2, 2). The voltage clamp protocol for calibration is the sinusoidal protocol

[10].
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Figure S11. Model A prediction residuals of the MAP estimate accounted by different discrepancy models: no

discrepancy (i.i.d. noise), GP(t), GP(O, V ), and ARMA(2, 2). The voltage clamp protocol for calibration is the action

potential series protocol [10].
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Figure S12. Model A prediction residuals of the MAP estimate accounted by different discrepancy models: no

discrepancy (i.i.d. noise), GP(t), GP(O, V ), and ARMA(2, 2). The voltage clamp protocol for calibration is the

staircase protocol [11].
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(iii) Model A: ODE model predictions

Figure S13. Fitting of the ODE model of Model A, using different discrepancy models: no discrepancy (i.i.d. noise),

GP(t), GP(O, V ), and ARMA(2, 2). The voltage clamp protocol for calibration is the sinusoidal protocol [10].
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Figure S14. Predictions of the ODE model of Model A, using different discrepancy models: no discrepancy (i.i.d. noise),

GP(t), GP(O, V ), and ARMA(2, 2). The voltage clamp protocol for calibration is the action potential series protocol

[10].
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Figure S15. Predictions of the ODE model of Model A, using different discrepancy models: no discrepancy (i.i.d. noise),

GP(t), GP(O, V ), and ARMA(2, 2). The voltage clamp protocol for calibration is the staircase protocol [11].
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(b) Model B

Figure S16. Model B inferred marginal posterior distributions for the conductance, g, and kinetic parameters p1, . . . , p10
(a list of parameters referring to Ai,j and Bi,j in Eq. (3.5)) with different discrepancy models: i.i.d. noise (blue), GP(t)

(orange), GP(O, V ) (green), and ARMA(2, 2) (red).
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(i) Model B: Full model predictions

Figure S17. Model B fitting results with different discrepancy models: i.i.d. noise, GP(t), GP(O, V ), and ARMA(2, 2).

The voltage clamp protocol for calibration is the sinusoidal protocol [10]. It shows the posterior predictive with the bounds

showing the 95% credible interval.
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Figure S18. Model B prediction with different discrepancy models: i.i.d. noise, GP(t), GP(O, V ), and ARMA(2, 2).

The voltage clamp protocol for calibration is the staircase protocol [11]. It shows the posterior predictive with the bounds

showing the 95% credible interval.
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Figure S19. Model B prediction with different discrepancy models: no discrepancy (i.i.d. noise), GP(t), GP(O, V ), and

ARMA(2, 2). The voltage clamp protocol for calibration is the action potential series protocol [10].
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(ii) Model B: Discrepancy predictions

Figure S20. Model B fitting residuals of the MAP estimate accounted by different discrepancy models: no discrepancy

(i.i.d. noise), GP(t), GP(O, V ), and ARMA(2, 2). The voltage clamp protocol for calibration is the sinusoidal protocol

[10].
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Figure S21. Model B prediction residuals of the MAP estimate accounted by different discrepancy models: no

discrepancy (i.i.d. noise), GP(t), GP(O, V ), and ARMA(2, 2). The voltage clamp protocol for calibration is the action

potential series protocol [10].
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Figure S22. Model B prediction residuals of the MAP estimate accounted by different discrepancy models: no

discrepancy (i.i.d. noise), GP(t), GP(O, V ), and ARMA(2, 2). The voltage clamp protocol for calibration is the

staircase protocol [11].
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(iii) Model B: ODE model predictions

Figure S23. Fitting of the ODE model of Model B, using different discrepancy models: no discrepancy (i.i.d. noise),

GP(t), GP(O, V ), and ARMA(2, 2). The voltage clamp protocol for calibration is the sinusoidal protocol [10].
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Figure S24. Predictions of the ODE model of Model B, using different discrepancy models: no discrepancy (i.i.d. noise),

GP(t), GP(O, V ), and ARMA(2, 2). The voltage clamp protocol for calibration is the action potential series protocol

[10].
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Figure S25. Predictions of the ODE model of Model B, using different discrepancy models: no discrepancy (i.i.d. noise),

GP(t), GP(O, V ), and ARMA(2, 2). The voltage clamp protocol for calibration is the staircase protocol [11].
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(c) GP covariance functions: RBF, OU and Matern3/2

Full model predictions

Figure S26. Model A GP(O, V ) discrepancy model fitted with different GP covariance functions: radial basis function

(RBF), Ornstein–Uhlenbeck (OU, also known as exponential covariance function), and Matérn 3/2 covariance function.

The voltage clamp protocol for calibration is the sinusoidal protocol [10]. It shows the posterior predictive with the bounds

showing the 95% credible interval.
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Figure S27. Model A GP(O, V ) discrepancy model fitted with different GP covariance functions: radial basis function

(RBF), Ornstein–Uhlenbeck (OU, also known as exponential covariance function), and Matérn 3/2 covariance function.

The voltage clamp protocol for calibration is the staircase protocol [11]. It shows the posterior predictive with the bounds

showing the 95% credible interval.
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Figure S28. Model A GP(O, V ) discrepancy model fitted with different GP covariance functions: radial basis function

(RBF), Ornstein–Uhlenbeck (OU, also known as exponential covariance function), and Matérn 3/2 covariance function.

The voltage clamp protocol for calibration is the action potential series protocol [10]. It shows the posterior predictive with

the bounds showing the 95% credible interval.
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Discrepancy predictions

Figure S29. Model A with GP(O, V ) discrepancy model fitting residuals of the MAP estimate accounted by different

GP covariance functions: radial basis function (RBF), Ornstein–Uhlenbeck (OU, also known as exponential covariance

function), and Matérn 3/2 covariance function. The voltage clamp protocol for calibration is the sinusoidal protocol [10].
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Figure S30. Model A with GP(O, V ) discrepancy model fitting residuals of the MAP estimate accounted by different

GP covariance functions: radial basis function (RBF), Ornstein–Uhlenbeck (OU, also known as exponential covariance

function), and Matérn 3/2 covariance function. The voltage clamp protocol for calibration is the action potential series

protocol [10].
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Figure S31. Model A with GP(O, V ) discrepancy model fitting residuals of the MAP estimate accounted by different

GP covariance functions: radial basis function (RBF), Ornstein–Uhlenbeck (OU, also known as exponential covariance

function), and Matérn 3/2 covariance function. The voltage clamp protocol for calibration is the staircase protocol [11].
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ODE model predictions

Figure S32. Fitting of the ODE model of Model A with GP(O, V ) discrepancy model, using different GP covariance

functions: radial basis function (RBF), Ornstein–Uhlenbeck (OU, also known as exponential covariance function), and

Matérn 3/2 covariance function. The voltage clamp protocol for calibration is the sinusoidal protocol [10].
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Figure S33. Fitting of the ODE model of Model A with GP(O, V ) discrepancy model, using different GP covariance

functions: radial basis function (RBF), Ornstein–Uhlenbeck (OU, also known as exponential covariance function), and

Matérn 3/2 covariance function. The voltage clamp protocol for calibration is the action potential series protocol [10].
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Figure S34. Fitting of the ODE model of Model A with GP(O, V ) discrepancy model, using different GP covariance

functions: radial basis function (RBF), Ornstein–Uhlenbeck (OU, also known as exponential covariance function), and

Matérn 3/2 covariance function. The voltage clamp protocol for calibration is the staircase protocol [11].



45

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

.........................................................

References
1. K. H. Ten Tusscher, D. Noble, P.-J. Noble, and A. V. Panfilov, “A model for human

ventricular tissue,” American Journal of Physiology-Heart and Circulatory Physiology, vol. 286,
no. 4, pp. H1573–H1589, 2004.

2. M. Fink, D. Noble, L. Virag, A. Varro, and W. R. Giles, “Contributions of HERG K+ current to
repolarization of the human ventricular action potential,” Progress in biophysics and molecular
biology, vol. 96, no. 1-3, pp. 357–376, 2008.

3. M. C. Kennedy and A. O’Hagan, “Bayesian calibration of computer models,” Journal of the
Royal Statistical Society: Series B (Statistical Methodology), vol. 63, no. 3, pp. 425–464, 2001.

4. C. Rasmussen and C. Williams, Gaussian processes for machine learning.
MIT Press, 2006.

5. J. Quiñonero-Candela and C. E. Rasmussen, “A unifying view of sparse approximate gaussian
process regression,” Journal of Machine Learning Research, vol. 6, no. Dec, pp. 1939–1959, 2005.

6. E. Snelson and Z. Ghahramani, “Sparse gaussian processes using pseudo-inputs,” in Advances
in Neural Information Processing Systems, pp. 1257–1264, 2006.

7. J. Durbin and S. J. Koopman, Time series analysis by state space methods.
Oxford university press, 2012.

8. W. Wei, Time Series Analysis: Univariate and Multivariate Methods, 2nd edition, 2006.
Pearson Addison Wesley, 2006.

9. J. Marriott, N. Ravishanker, A. Gelfand, and J. Pai, “Bayesian analysis of arma processes:
Complete sampling-based inference under exact likelihoods,” Bayesian analysis in statistics and
econometrics, pp. 243–256, 1996.

10. K. A. Beattie, A. P. Hill, R. Bardenet, Y. Cui, J. I. Vandenberg, D. J. Gavaghan, T. P. De Boer,
and G. R. Mirams, “Sinusoidal voltage protocols for rapid characterisation of ion channel
kinetics,” The Journal of physiology, vol. 596, no. 10, pp. 1813–1828, 2018.

11. C. L. Lei, M. Clerx, D. J. Gavaghan, L. Polonchuk, G. R. Mirams, and K. Wang, “Rapid
characterisation of hERG channel kinetics I: using an automated high-throughput system,”
Biophysical Journal, vol. 117, pp. 2438–2454, 2019.

12. C. L. Lei, M. Clerx, K. A. Beattie, D. Melgari, J. C. Hancox, D. J. Gavaghan, L. Polonchuk,
K. Wang, and G. R. Mirams, “Rapid characterisation of hERG channel kinetics II: temperature
dependence,” Biophysical Journal, vol. 117, pp. 2455–2470, 2019.

13. M. Girolami, “Bayesian inference for differential equations,” Theoretical Computer Science,
vol. 408, no. 1, pp. 4–16, 2008.


	S1 Differences between Model T and Model F
	S2 Modelling discrepancy using a Gaussian process
	S3 Modelling residuals using an ARMA(p, q) process
	S4 Choice of priors for the ion channel example
	S5 Computing and representing posterior predictive
	S6 Supplementary results for the action potential example
	S7 Supplementary results for the ion channel discrepancy example
	(a) Model A
	i Model A: Full model predictions
	ii Model A: Discrepancy predictions
	iii Model A: ODE model predictions

	(b) Model B
	i Model B: Full model predictions
	ii Model B: Discrepancy predictions
	iii Model B: ODE model predictions

	(c) GP covariance functions: RBF, OU and Matern3/2

	References

