
S1 Appendix - Optimal Control Theory

Optimal control is a powerful approach for investigating complex dynamics subject to constraints. We

provide a very brief overview of the key ideas of optimal control relevant to dengue disease management.

In mathematical biology it is very common to consider a system whose behaviour can be explained by

a series of ordinary differential equations (ODEs). In many of these cases, some of the variables may

be externally controlled, for example in drug-interaction simulations the amount of drug administered is

directly controlled. We call these control variables, and those that cannot be influenced are referred

to as state variables. The goal of optimal control is then to determine, mathematically, the best choice

of values for these control variables over time to achieve a certain aim. In the pharmacological example,

one may wish to estimate the optimal amount of a drug administered to minimise tumour size while also

minimising adverse side-effects [1].

Unsurprisingly, disease dynamics are readily amenable to optimal control problems; often the key epidemi-

ological question is - what is the optimal choice of disease intervention measures (vaccines, vector-control

methods) to minimise the number of infected individuals while also trying to minimise the economic cost

of such measures. Traditional SIR networks are well formulated for optimal control approaches, and are

commonly used in identifying optimal vaccination programmes [2], often in parallel with other methods

and/or treatments [3]. One simple example is presented by Yusuf & Benyah (2012) [4].

To begin we define a system of ODEs to describe the behaviour of these state variables x(t) that depends

on the control variables u(t):

dx(t)

dt
= g(t, x(t), u(t)),

for some function g. We can also express, mathematically, what is wished to be minimised or maximised.

This will be some expression of our state variables and control variables, as we will want to minimise a

state (for example, the number of infected hosts), while also not letting the amount of control applied

balloon beyond what is feasibly manageable. We express this desire as wishing to minimise (or perhaps

maximise),

J(u) =

∫ t1

t0

f(t, x(t), u(t))dt,

for some function f . Here t0 and t1 represent the start and finish of the time period we consider. Again

we seek a particular optimal control variable, u∗(t), and its corresponding optimal state, x∗(t), that will

minimise or maximise J .

The key result on which all of optimal control theory is built on is known as Pontryagin’s Maximum

Principle [5] [6].
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We consider the Hamiltonian (H) as,

H(t, x(t), u(t), λ(t)) = f(t, x(t), u(t)) + λ(t)g(t, x(t), u(t)),

where f and g are as defined above and λ(t) is a piecewise differentiable function known as the adjoint

variable. Pontryagin’s Maximum Principle then states that, if u∗(t) and x∗(t) are optimal such that

they maximise (or minimise) J(u), then there exists a particular adjoint variable λ(t) such that,

H(t, x∗(t), u(t), λ(t)) ≤ H(t, x∗(t), u∗(t), λ(t)),

for all control variables u for all times t, if λ(t) is such that,

dλ

dt
= −∂H(t, x∗(t), u∗(t), λ(t))

∂x
,

λ(t1) = 0.

Unsurprisingly this critical point is the optimal maximum. Note that the mathematical explanation

follows the exact same procedure for minimisation problems, resulting only in an opposite inequality. As

it is an optimum point, it is also the case that ∂H
∂u = 0 at u∗. We formally present the three conditions

that an optimal problem satisfies,

∂H

∂u
= 0 at u∗ (Optimality Condition),

dλ

dt
= −∂H(t, x∗(t), u∗(t), λ(t))

∂x
(Adjoint Equations),

λ(t1) = 0 (Transversality Condition).

For very simple problems this can be solved analytically, however for more realistic, and complex, problem

formulations, the solution must be found numerically, via an iterative method. In general we consider

some initial states, u0, x0 and λ0. Usually we pick the zero function for all three as a starting point, but

enforce the initial condition of the system x(0) on x0. Then take the following steps.

• Solve the system of equations
dx1(t)

dt
= g(t, x0(t), u0(t)) using the initial condition of the system to

obtain a new x1.

• Solve the system of equations dλ1

dt = −∂H(t,x1(t),u0(t),λ0(t))
∂x using the transversality condition λ(t1) =

0 to produce a new λ1.

• Using the optimality condition ∂H
∂u = 0, u can be re-arranged as an expression of x and λ. Use this

expression to build a new u1 from x1 and λ1.

• Repeat these steps until a desired point of convergence.
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