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I. Some Theoretical and Empirical Investigations of Mode Adjustment in

Deep Linear Networks1

Mode Learning Dynamics

Saxe et al. [2] provided (in part A of their supplementary material) solutions to

learning dynamics in linear networks from arbitrary initial mode strengths, with some

assumptions about the initialization and the structure of the data. We note a minor

correction to these solutions (see below) and build off them here.

Consider the input-output correlation matrix Σ31 = ∑P
i=1 yix

t
i where

{(x1, y), ..., (xP , yP )} are the (input, target) pairs the network is trained on. Saxe and

colleagues considered its singular value decomposition:

Σ31 =
k∑

α=1
uαsαv

T
α

Saxe and colleagues assumed that the input-input correlation matrix is white

(Σ11 = ∑P
i=1 xix

t
i = I), and under the assumption that the network is initialized so that the

singular value modes are decoupled, they showed that the modes then remained decoupled

and gave exact solutions for the learning of these modes from small initial weights. In the

supplementary material, they also expanded this to arbitrary initial weight size (but still

assuming decoupled initialization).

Specifically, consider singular mode i. For ease of explanation, we change the basis of

the representational layer of the network so each mode is represented by a single hidden

unit – this is permissable because we assumed the modes were decoupled. We call this the

SVD basis. (This is equivalent to the change of variables denoted by bars by Saxe and

colleagues.) Let the initial projection of this unit’s input weights onto the input mode vi be

a(0), and the initial projection of its output weights onto the output mode ui be b(0). Saxe

and colleagues showed that (a(t), b(t)) evolve over time along hyperbolas of constant

a2 − b2 until they approach ab = si, i.e. the true strength of that mode in the data.
1This section was developed and written by AKL.
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We assume a(0) 6= b(0) (otherwise a hyperbolic parameterization does not work).

Without loss of generality we assume a(0) + b(0) > 0 (the other half-space requires a trivial

reparameterization). We can then parameterize this hyperbola by the angle θ and make

the change of variables

a =
√

2c0 cosh θ2 , b =
√

2c0 sinh θ2

Where c0 = 1
2(a(0)2 − b(0)2) so that

ab = c0 sinh θ

Following the derivation of Saxe et al. [2] with this change of variables, and adding a factor

of 2 that was omitted in their original derivation, we arrive at:

τ

2
dθ

dt
= si − c0 sinh θ

(the factor of two can also be absorbed into the time constant τ , we leave it separate here

to avoid changing the definition of τ = 1/λ from the original paper).

This differential equation is separable, and so we can solve for the time needed to

traverse along the hyperbola from an initial point θ0 to a final point θf :

t = τ√
c2

0 + s2
i

tanh−1

c0 + si tanh
(
θ
2

)
√
c2

0 + s2
i

θf

θ0

(1)

This provides an exact analytic solution for the time a given degree of learning from a

given starting point requires. Although this equation cannot be analytically inverted to

find θ(t) (and thereby a(t) and b(t)), we can parametrically sweep through the interval

(θ0, θf ) to plot the theoretical learning curve. In Fig. 1 we demonstrate the match between

this theoretical learning curve and the empirical results for a linear two layer network

learning a single mode, starting from a random initialization, which provides the initial θ0.

We note that in the special case that s = 0, for instance when a mode is removed

from the data and is being unlearned, the solution is:

t = − τ

2c0

[
ln tanh

(
θ

2

)]θf

θ0

(2)
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We also note that

d(ab)
dt

= a
db

dt
+ b

da

dt
= 2c0(si − c0 sinh θ)

(
cosh2 θ

2 + sinh2 θ

2

)

Which corresponds to
d(ab)
dt

= (si − ab)
(
a2 + b2

)
(3)

That is, the change in the network’s representation of a mode is proportional to the

product of two factors: how far the projections are from the correct value (i.e. the error)

and to how (absolutely) large the summed, squared alignments to the true input and

output modes are. The sigmoidal trajectory of mode learning noted by Saxe and colleagues

can easily be interpreted from this equation – with a small weight initialization, the second

factor is small, and so the change in the strength of the mode is initially small. As a and b

increase, the rate of change increases, until ab approaches its asymptotic value of si, at

which point learning slows down as the error shrinks.
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Figure 1 . Match between theory (Eq. 1) and empirical initial learning of a single mode.

(a) shows the loss (squared error) of the network’s outputs, and (b) shows the alignment

(i.e. the quantity ab).

Note that the theoretical results assume that the network’s input and output modes

are perfectly aligned with the data modes, and all that must be learned is the correct
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singular value. This assumption will not generally hold when new data are introduced after

prior learning, because some modes will be adjusted. Nevertheless we find empirically that

the theory provides decently accurate approximations even in this more general setting, as

we show below.

Losses. The loss of the network at a given point in learning is given by a relatively

simple formula. For singular dimension i in the data let vTi be the input mode, si the

singular value, and ui the output mode. Similarly, for each mode j in the SVD of the

outputs produced by the network, let let v̂Tj be the input mode, ŝj the singular value, and

ûj the output mode

Loss =
∑
i

s2
i +

∑
j

ŝ2
j − 2

∑
i

∑
j

siŝj
(
ui · ûj

) (
vi · v̂j

)
For a derivation of this formula see Lampinen and Ganguli [1].

Although the formula above is more general, it is useful to consider the special case

where each of the network’s non-trivial modes has a non-zero projection onto only one of

the data modes. This does not require that the network modes be perfectly aligned with

the data modes, merely that the network modes be effectively “paired up” with the data

modes so each only projects onto a single one. In this case, the loss per component can be

calculated independently for each mode i:

Lossi = s2
i + ŝ2

i − 2siŝi
(
ui · ûi

) (
vi · v̂i

)
= s2

i + ŝ2
i − 2siaibi

where ai and bi are, respectively, the input and output mode projections as in the previous

section.

Learning from Different Starting Points

We are now in a position to examine the question of how new knowledge gets

integrated into linear networks that have already learned something. Given the above, this

reduces to the question of how this new knowledge projects onto the knowledge that is

already stored in the network. Qualitatively, new knowledge which provides a minor
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adjustment of existing knowledge will be rapidly integrated, since the projections of the

new singular dimensions onto the old singular dimensions will be strong (i.e. the second

factor of d(ab)/dt will be large), and the first factor will be proportional to the amount of

adjustment needed. Thus adjustments to old modes will be rapidly integrated, so

long as they are not large enough to make the mode nearly orthogonal to the

pre-adjustment mode. By contrast, entirely new knowledge (i.e. modes that are orthogonal

to all previously learned modes) will be integrated quite slowly. In fact, it will be learned

over the same period of time as it would have taken to learn this mode in a

randomly initialized network, assuming the modes are decoupled.

In Fig. 2 we demonstrate a fairly close match between theoretical and empirical

learning for these cases. In particular, the theoretical and empirical loss are very closely

matched. However, the alignment of the mode being adjusted is slightly slower than the

theory predicts. In fact, this is because there is a transient decrease in the singular value of

this dimension while the network adjusts it, which is not predicted by the theory (since the

theory assumed that the modes would be aligned, and only the singular values would

differ). However, if we scale the alignment by the ratio s/ŝ, i.e. the ratio of the singular

dimension strength in the data to the current network singular dimension strength, the

empirical curve matches very closely here as well, see Fig. 2(b-c). Note that this is not a

theoretically-derived adjustment, but rather an empirical observation that might lay the

groundwork for future work towards a deeper theoretical understanding of the adjustment

process.

Note that it suffices for only the input weights or the output weights but not both to

have a strong projection onto the new mode for the adjustment to be rapid – slow initial

learning only occurs when both projections are small, as in the case of small random

initializations. This is clear from the expression for d(ab)/dt given above.
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Figure 2 . Match between theory (Eq. 1) and empirical adjustment of one mode while

simultaneously learning an orthogonal new mode. (a) shows the theoretical loss due to

each component as well as the total, showing an extremely close match between theoretical

and empirical total loss. (b) shows the alignments of the modes, showing a slight

discrepancy in the alignment of the first mode, which is due to a transient decrease in the

singular value. (c) shows this discrepancy in the alignment in more detail, including the

ratio of the empirically observed ŝ to s, and that when the alignment is scaled by the

inverse of this ratio it matches the theory exactly. (Singular values: sold = 5, snew = 2.)
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Learning Multiple Non-Orthogonal New Modes

This theory assumes each mode is being adjusted (or learned from scratch) in a way

that is orthogonal to all prior modes. However, often a new mode has projections onto an

old mode, as in the case of the sparrowhawk. In fact, the adjustment made to the old mode

is often precisely to remove its initial alignment to the new mode.

Fortunately, we have some understanding of what happens in these situations. When

an adjusted mode has some projection onto two previous modes, the corresponding

representational modes will compete over the adjusted mode. Similarly, when the adjusted

mode and the new mode both share some projection onto the old mode, they will compete

for its representational mode. The one with the strongest singular value and strongest

projection onto the representational mode will win, and be learned first, all else being

equal. However, this competition changes the representational modes and delays the

incorporation of the new information. It is difficult to obtain exact analyses of learning in

this situation, as the modes are no longer decoupled and their evolution can be quite

complex. The overall pattern we have observed empirically, however, is that competition

with a partially-aligned new mode will delay the adjustment of the old mode,

and this delay will be worse the more similar the strengths of the projections of the old

modes onto the new mode are. This can be seen in Fig. 3 by the way the empirical

learning curves lag behind the theoretical curves initially.

However, in this case the new mode will benefit slightly from the initial strong

projection. Even though the mode being adjusted will win most of the representation and

prevents the new mode from using these strong weights from before, the competition will

actually end in a slight compromise, wherein the new mode will steal a little bit of this

original representational mode away from the adjusted mode. This will result in a stronger

earlier projection for the new mode. Because of the competition from the stronger mode

being adjusted, the amount of this projection will be quite small in absolute terms.

However, since the delay in initial learning of a mode is due to the lack of this early
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projection, the main effect of some projection of a new mode onto an old mode is a slight

acceleration in the learning of the new mode. This can be seen in Fig. 3 by the way

the empirical learning curves lead the theoretical curves late in learning.
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Figure 3 . Match between theory (Eq. 1) and empirical adjustment of one mode while

simultaneously learning a new mode which is partially aligned with the old mode. The

theory curves in the partially aligned case are the same as in the orthogonal case, showing

the slight slow down in adjusting the old mode and speed up in learning the new

mode.(Singular values: sold = 5, snew = 2.)

II. New learning in the Deep Linear Auto-Associator

Here we describe details of the process of acquiring a new distinct representation

corresponding to the sparrowhawk in a deep linear auto-associative network, demonstrating

corresponding patterns of learning and interference over the same range of regimes

considered in the one-hot input case in the main text. The results of these simulations are

shown in Figures 4 and 5.

As noted in the main text, after learning the eight patterns in the base training set,

the network already knows how to capture most of the content of the sparrowhawk pattern.

Presenting the sparrowhawk pattern on the input to the auto-associator after it has been
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Focused vs. interleaved learning in the deep linear autoassociator

Figure 4 . Focused vs. Interleaved Learning of a new item in the deep linear

auto-associator. Conventions as in Figure 9 of main text. Note that, initially, the sum

squared error on the SparrowHawk is only 2.5. During focused learning, this error is

quickly eliminated, at the cost of considerable interference with the previously-known birds

and some interference with the fish. During interleaved learning, the interference with the

known birds and fish is greatly reduced, but learning to capture the new dimension occurs

gradually. As before, the dashed line shows expected learning time for the added dimension

when all items are learned in a fully interleaved fashion without any prior learning. Thus,

learning the new dimension still requires the same amount of interleaved learning of the

birds as it would have required to learn the dimension without any prior learning.

trained on the original eight item training set results in the output pattern corresponding

to the average of the existing birds (the same pattern that was produced in the one-hot

input case after learning about the sparrowhawk with frozen output weights, as shown in

the last row at the bottom of Figure 9 in the main text), giving rise to a sum squared error

of 2.5 between the correct sparrowhawk output and the average bird pattern. This happens

because the input features of the sparrowhawk project fully onto dimensions 1 and 3 of the

knowledge already in the network, and these dimensions together capture the average

properties of the existing birds.

From this starting point, learning proceeds in each of the different interleaving
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Similarity weighting in the auto-associator: Same 2.5x speedup

Red curve:

Time scaled 

by patterns 
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Figure 5 . Similarity weighted Interleaved learning in the linear auto-associative network

(middle) compared with Full Interleaving (top) and the a control condition in which each

known item is presented .3 times per epoch (bottom). Conventions as in Figure 10 of main

text. Average number of pattern presentations per epoch is 9 for Full interleaving, and 3.4

for the other two cases, or 38% of the pattern presentations with full interleaving. Dashed

lines shows expected learning time for the new dimension when all items are learned in a

fully interleaved fashion without any prior learning (top two rows), or when scaled for the

average number of presentations of relevant items in the control condition (bottom row).

conditions much as in the one-hot input setup, but with adjustments to the dynamics due

to the auto-associative setup, in line with those we observed in Figure 6b in the main text

in considering how the auto-associator learned the original eight-item data set from

scratch. As shown in the top row of Figure 4, focused presentation of only the

sparrowhawk leads to rapid learning of this item, at the cost of extensive interference with

the already known birds, lesser interference with the fish, and no interference with the trees

or flowers, as in the one-hot input case. Furthermore, and also as before, fully interleaved

learning results in reduced interference with existing items, at the cost of a slowdown in
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fully capturing the properties of the sparrowhawk until the new dimension that separates

the sparrowhawk from the existing birds is learned. Also as before, the time to learn this

new dimension is exactly what it would have been had the network learned the whole

nine-item data set from scratch. In addition, as Figure 5 shows, similarity weighted

interleaving using the same presentation rates per epoch as in the main text produces

virtually identical results compared with full interleaving, with the same reduction in the

total amount of interleaved learning required as in the one-hot case. Finally, in the control

condition the relative slowdown in the time to learn the new dimension is still strictly a

matter of the density of exposure to the relevant items (the sparrowhawk and the other

two birds) times the number normalized training epochs.
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