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SUPPLEMENTARY INFORMATION 
 

Reactivation 
 

The reactivation methods can be fully described analytically. The starting point is to use a matrix A of 

binned spike trains: 

𝐴 =

𝑎ଵ(1) 𝑎ଵ(𝑡) 𝑎ଵ(𝐵)
𝑎௜(1) 𝑎௜(𝑡) 𝑎௜(𝐵)
𝑎ே(1) 𝑎ே(𝑡) 𝑎ே(𝐵)

 

Where ai(t) denotes the number of spikes emitted by neuron i in time bin t for N neurons recorded during 

B time bins. The population vector of activity will be noted in bold, e.g. a(t) for the population vector of 

spike counts at time bin t. 

As firing rate (and spike count variance) are log-normally distributed, it is more convenient and 

meaningful to work with correlation coefficients. Covariance would give too much weight to high firing 

neurons. For this reason, the activity is z-scored during each epoch: 

𝑧௜(𝑡) =
𝑎௜(𝑡) − 𝜇௔

𝜎௔
 

Where a and a denote average and standard deviation of spike count for neuron i. Calling 𝑍 the z-scored 

𝐴 matrix during a given epoch, the cell-pair correlation matrix Cepoch (for a given epoch) is simply:  

𝐶௘௣௢௖௛ =
ଵ

஻
𝑍்𝑍. 



Explained Variance. 
The EV measure can be directly obtained from correlation measures. First, the cell-pair coherence r1,2 for 

epochs 1 and 2 is: 

𝑟ଵ,ଶ =
1

𝑁௣௔௜௥௦
𝜌ଵ

்𝜌ଶ 

Where 1,2 denote the z-scored vector of all cell-pair correlation coefficients during epochs 1 and 2, and 

Npairs the total number of cell pairs (i.e. N(N-1)/2). Then EV is defined as the partial correlation of cell-

pair correlations: 

𝐸𝑉 =

⎝

⎛
𝑟ௐ,௉ைௌ் − 𝑟ௐ,௉ோா𝑟௉ோா,௉ைௌ்

ට൫1 − 𝑟ଶ
ௐ,௉ோா൯൫1 − 𝑟ଶ

௉ோா,௉ைௌ்൯
⎠

⎞

ଶ

 

REV is obtained by switching epochs PRE and POST in the above equation.  

Reactivation strength 
To resolve reactivation measure in time, cell-pair coherence can be decomposed on a bin-by-bin basis by 

projecting instantaneous firing during sleep onto the correlation matrix of the wake epoch Cwake, thus 

obtaining the cell-pair coherogram  

𝜒௦௟௘௘௣(𝑡) = 𝒛𝒔𝒍𝒆𝒆𝒑
𝑻 (𝑡)𝐶௪௔௞௘𝒛𝒔𝒍𝒆𝒆𝒑(𝒕) 

Where zsleep(t) is a row of the z-scored matrix of binned spike trains. It is to be noted that, while cell-pair 

coherence and coherogram are related, they are not exactly similar. The time average of the coherogram is 

equal to the variance during the sleep epoch explained by the correlation of the wake epoch. Note that we 

refer to sleep and wake epochs only for the sake of clarity and that, obviously, this method applies to any 

pairs of recording epochs. 

PCA can be used at this point to decompose the cell-pair correlation matrix into its eigenvectors i, each 

associated with an eigenvalue i such that 𝐶𝑣௜ = 𝜆௜𝑣௜. From the eigenvectors, the cell-pair correlation 

matrix can be decomposed in its projectors P: 

𝐶 = ෍ 𝜆௜𝑃௜

ே

௜ୀଵ

 

Where projectors are defined by the outer product of the correlation matrix eigenvectors: 𝑃௜ = 𝑣௜𝑣௜
்.  



The strategy now consists at keeping only a subset of projectors (corresponding to vectors explaining 

more variance than expected from random data). Furthermore, to exclude all the terms depending on 

firing of individual neurons in the reactivation measure, the diagonal of the projectors is set at 0: Pk,k=0 

By replacing the cell-pair correlation matrix by one of the ith projector in the cell-pair coherogram, one 

obtains the reactivation strength for the ith component:  

𝑅௜(𝑡) = 𝒛𝒔𝒍𝒆𝒆𝒑
𝑻 𝑃௜𝒛𝒔𝒍𝒆𝒆𝒑(𝒕) 

 

Which by expanding all the terms is equal to: 

𝑅௜(𝑡) = ෍ 𝑣௞
௜ 𝑣௟

௜𝑧௞(𝑡)𝑧௟(𝑡)

௞ஷ௟

 

Bayesian decoding 
For a detailed derivation of this method, see (Zhang et al., 1998). Briefly, the occupancy map is calculated 

as: 

𝑃(𝑥) =
𝑁(𝑥)

∑ 𝑁(𝑥)௫
 

Where 𝑁(𝑥) is the number of times the animal occupied position 𝑥. The average firing rates for each 

neuron are then calculated as:   

𝑓(𝑥) =
𝑆(𝑥)

𝑁(𝑥)∆𝑡
 

Where 𝑆(𝑥) is the total number of spike counts as location 𝑥 and 𝑁(𝑥)∆𝑡 is the total time spent in 

position 𝑥. These equations can then be used to calculate the conditional probability of being in position 

𝑥, given the numbers of spikes 𝑛: 

𝑃(𝑥|𝑛) = 𝑃(𝑥) ൭ෑ 𝑓௜(𝑥)௡೔

ே

௜ୀଵ

൱ exp ൭−𝜏 ෍ 𝑓௜(𝑥)

ே

௜ୀ௜

൱ 

Let’s start with a simple case, where we have two place cells with non-overlapping place fields.  One 

neuron’s peak in-field firing rate is 50 Hz, while the other is 25 Hz. Let’s assume the reliability (i.e. 

spatial information) across trials is similar.  Now, during a candidate ‘replay’ event we are presented with 

a single time bin where both neurons fire one action potential.  How will these neurons be weighted? 

What is the estimated ‘position’ during such an event?  Well, it depends on the temporal window size 



used when binning the candidate event. One spike, in a 20-millisecond bin corresponds to a firing rate of 

50 Hz, and the Bayesian method will decode to the position of cell 1.  Whereas, if that same event is 

examined with 50-millisecond bins, the firing rates will be estimated to be 20 Hz and the Bayesian 

method will decode to the position of cell 2.  While these neurons carry equivalent spatial information, 

the estimated position is based solely on the choice of temporal bin size. Thus, average firing rates 

combined with bin size determines the outcome for this method of replay decoding, while the trial-by-trial 

spatial reliability of cells is not a factor.  

General replay caveats 
The first is a methodological issue that exists for all analyses examining temporal ordering of spiking 

activity. As a neuron fires multiple action potentials, the shape and amplitude of the action potential can 

change dramatically. Using extracellular recording methods, such waveforms are the primary source of 

information when isolating ‘single units.’  Therefore, it is possible that such bursts of changing 

waveforms are accidentally misidentified as two or multiple neurons firing in close temporal order. As 

only a small percentage of CCGs show the temporal asymmetry effect (~5%; (Skaggs and McNaughton, 

1996)), even very rare mistakes in clustering waveforms can impact the results greatly (Quirk and Wilson, 

1999). One way to address this criticism is to only examine cell pairs recorded across separate 

tetrodes/shanks, thus limiting the impact of waveform classification errors. 

An additional issue with most methods for replay analysis stems from the distribution of baseline firing 

rates across neurons.  As cell pair correlations co-vary with baseline firing rates (De La Rocha et al., 

2007), and only a small fraction of neurons display extremely high firing rates (Buzsáki and Mizuseki, 

2014), these analyses can be particularly susceptible to bias from a small fraction of the population.  Z-

scoring or generating bootstrapped firing rate matched distributions for comparison are reasonable 

approaches to overcome this.  

Template free methods 
seqNMF 
A recent success in template-free examination of neural sequences was the application of nonnegative 

matrix factorization (Lawton and Sylvestre, 1971; Paatero and Tapper, 1994) to neural population data 

(Mackevicius et al., 2019).  The matrix 𝑋௡௧, where 𝑛 is the neuron and 𝑡 is the time bin, can be 

approximated by:  

𝑋௡௧ = ෍ ෍ 𝑊௡௞௟𝐻௞(௧ି௟) ≡ (𝑊 ∗ 𝐻)௡௧

௅ିଵ

௟ୀ଴

௄

௞ୀଵ

 



where 𝑊 is a N x K x L tensor containing ‘exemplar’ patterns.  N is the number of neurons, K is the 

number of patterns (defined a priori), and L is the length of each pattern (defined a priori). 𝐻 is a K x T 

matrix of temporal loadings for each pattern. By adding a penalty term 𝑅 that accounts for both 

correlations between temporal loadings and correlations between different patterns in 𝑊, the authors were 

able to achieve an algorithm that reliably converges on a similar result across random initializations while 

also reducing the correlations between patterns in 𝑊.  This approach, termed ‘seqNMF’, is capable of 

detecting reliable sequences without the a priori identification of a template or particular spike sequence.  

Dataset details 
39 recordings from 5 Long Evans rats were used (3 male, 2 female). All recordings consisted of three 

continuous sessions (PRE/behavior/POST), each lasting 1-5 hours. Place field heuristics were defined as 

follows, 1) Minimum peak firing rate of 2 Hz, 2) Minimum field width of 8 cm, 3) Maximum field width 

of 120 cm, 4) Minimum of 1.5 spikes per trial on average, and 5) at least 10 trials with consistent 

behavior.  

Candidate replay events were initially detected using the CA1 LFP to identify sharp-wave ripples.  Events 

were then screened and only analyzed if at least 5 place cells fired at least one spike each during the 

event.  
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