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Supplementary Methods 
 

Catalysis-annotated metabolic networks 
 
All the reactions and the EC numbers they are linked to were retrieved from KEGG [1], 

along with their corresponding taxonomic annotations using the KEGG REST API 

(https://www.kegg.jp/kegg/rest/keggapi.html, accessed February 2018). The EC–reaction 

pairs were filtered by excluding reactions annotated only in eukaryotes. The corresponding 

chemical equations were then parsed to discard reactions involving molecular oxygen. 

Spontaneous reactions were parsed out of KEGG and added to the network with a fictional 

catalyst named “Spontaneous”. Reactions catalyzed by enzymes that are not spontaneous 

and the enzymes of which do not use any cofactors were assigned the catalyst “Peptide”. 

Reactions that equate synonymous cofactors were added with the generic catalyst 

“Pooling”. Extensive curation was performed regarding catalysis rules, reaction 

reversibility, and amino acid production. The reversibility of reactions was parsed out of 

KGML files for KEGG pathways and manually–curated. The resulting set of reactions was 

then integrated with cofactor information from Uniprot [2] through the corresponding EC 

numbers. Of all EC numbers searched in Uniprot, 34% had at least one associated cofactor, 

579 of which were EC numbers that involved more than one cofactor when parsed in a 

Boolean manner. Eighty-one unique cofactors were retrieved from Uniprot, which 

translated to 48 KEGG compounds or pools of catalytically equivalent cofactors linked to 

KEGG reactions through the EC numbers. Furthermore, cofactors directly participating in 

reactions (NADs, ATP, SAM, CoA, Cobalamins, Folates, Flavins and Quinones) were 

extracted from the reaction stoichiometry if not assigned as cofactors in Uniprot. All rules 
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were added to the network as additional parameters, and 66% of the final set of catalyzed 

reactions was assigned at least one small catalyst. The subsets for Met and Ace were 

obtained by crossing the genomic annotation of Moorella thermoacetica and 

Methanococcus maripaludis in KEGG with the previously built network, and with the 

addition of missing reactions that were present in corresponding manually–curated models 

[3,4]. The pipeline for the full procedure is shown in Supplementary Material, Fig. S1.  

 

Detection of maxRAFs 
All networks described above were tested for whether they contained maxRAFs with 

different food sets, which are described in the main text and available in Supplementary 

Material, Table S1. The fictional catalysts “Spontaneous” and “Pooling” were added in all 

tests, allowing for spontaneous reactions to always occur and synonymous cofactors to be 

equated. Pooling reactions that were part of the maxRAF were not accounted for in 

maxRAF sizes. 

 

RAF sets 
We define a chemical reaction system (CRS) as a tuple 𝑄 = {𝑋,𝑅, 𝐶, 𝐹}, where: 

• 𝑋 = {𝑥+, 𝑥,,… , 𝑥.} is a set of molecule types. 

• 𝑅 = {𝑟+, 𝑟,, … , 𝑟0} is a set of reactions. A reaction 𝑟 is an ordered pair 𝑟 = (𝐴,𝐵) 

where 𝐴,𝐵 ⊂ 𝑋. The (multi)set 𝐴 = {𝑎+, … , 𝑎7} indicates the reactants and the 

(multi)set 𝐵 = {𝑏+, … , 𝑏9} indicates the products. 

• 𝐶 ⊆ 𝑋 × 𝑅 is a set of catalysis assignments. A catalysis assignment is a pair (𝑥, 𝑟) 

with 𝑥 ∈ 𝑋 and 𝑟 ∈ 𝑅, denoting that molecule type 𝑥 can catalyse reaction 𝑟. 
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• 𝐹 ⊂ 𝑋 is a food set (i.e., molecule types that can be assumed to be available from the 

environment). 

Given a CRS 𝑄, a subset 𝑅′ of 𝑅, and a subset 𝑋′ of 𝑋, we define the closure of 𝑋′ relative 

to 𝑅′, denoted  𝑐𝑙@A(𝑋′), to be the (unique) minimal subset 𝑊 of 𝑋 that contains 𝑋′ and that 

satisfies the condition that, for each reaction 𝑟 = (𝐴,𝐵) in 𝑅′, 

𝐴 ⊆ 𝑋′ ∪𝑊 ⇒ 𝐵 ⊆ 𝑊. 

Informally, 𝑐𝑙@A(𝑋′) is 𝑋′ together with all molecules that can be constructed from 𝑋′ by the 

repeated application of reactions from 𝑅′. 

Given a CRS 𝑄 = {𝑋,𝑅, 𝐶, 𝐹} and a subset 𝑅′ of 𝑅, 𝑅′ is a RAF set if for each 𝑟 = (𝐴,𝐵) ∈

𝑅′ 

1. (Reflexive Autocatalysis): ∃𝑥 ∈ 𝑐𝑙@A(𝐹): (𝑥, 𝑟) ∈ 𝐶 , and 

2. (Food-generated): 𝐴 ⊆ 𝑐𝑙@A(𝐹). 

In other words, a subset of reactions 𝑅′ is a RAF set if, for each of its reactions, at least one 

catalyst and all the reactants are in the closure of the food set relative to 𝑅′ [5]. 

 

RAF algorithms 
Given a CRS 𝑄 = {𝑋,𝑅, 𝐶, 𝐹}, an efficient (polynomial-time) algorithm exists for deciding 

whether 𝑄 contains a RAF set or not. It is presented formally in Algorithm 1. 

 

Algorithm 1 RAF (X, R, C, F)  

 R' = R 
 change = true 
 while (change) do 
  change = false 
  Compute clR' (F) 
  for all (r = (A, B) ∈ R') do 
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   if (∄x ∈ clR' (F) : (x, r) ∈ C ∨A ⊈ clR' (F)) then 
    R' = R' \{r} 
    change = true 
   end if 
  end for 
 end while 
 Return R' 

 

In plain words, starting with the full set of reactions 𝑅, the algorithm repeatedly calculates 

the closure of the food set relative to the current reaction set 𝑅′ and then removes all 

reactions from 𝑅′ that have none of their catalysts or not all of their reactants in this 

closure. This is repeated until no more reactions can be removed. If, upon termination of 

the algorithm, 𝑅′ is non-empty, then 𝑅′ is the unique maximal RAF set (maxRAF) 

contained in 𝑄 (i.e., a RAF that contains every other RAF in 𝑄 as a subset) [5]. If 𝑅′ is 

empty, then 𝑄 does not contain a RAF set. 

Computing the closure of the food set relative to the current reaction set 𝑅′ is 

computationally the most expensive step in the RAF algorithm. It is presented formally in 

Algorithm 2. This closure computation algorithm, introduced in [5], is equivalent to the 

“network expansion” algorithm [6] used in [7]. 

 

Algorithm 2 ComputeClosure (F, R') 

 W = F 
 change = true 
 while (change) do 
  change = false 
  for all (r = (A, B) ∈ R') do 
   if (A ⊆ W ∧ B ⊈ W) then 
    W = W ∪ B 
    change = true 
   end if 
  end for 
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 end while 
 Return W 

 

A naive computational complexity analysis of the RAF algorithm gives a worst-case 

running time of 𝑂(|𝑋||𝑅|N). However, with some additional book-keeping (such as keeping 

track of all reactions that each molecule is involved in), this can be reduced. In fact, the 

average running time on a simple polymer-based model of CRSs turns out to be sub-

quadratic [5]. 

 

LUCA enrichment analysis 
The genetic families identified in [8] were mapped to KEGG orthologues, the 

corresponding EC numbers were retrieved and the reactions performed by these were listed 

and compared with the lists of reactions comprising the different networks, namely the 

global O2-independent prokaryotic network; the maxRAF obtained with this network; 

maxRAFs obtained with the Ace and Met subsets; and the intersection of these. 

 

Statistical Analysis 
For pathway and cofactor enrichment analysis (Fig. 3, 5A-B), a contingency table was built 

for each comparison between a smaller network and the global network. The p-value refers 

to the probability of having at least as many reactions as seen (in pathway X or catalyzed 

by cofactor X) in a smaller network if we were to select a random pick of reactions the 

same size of that smaller network from the global network. For this, one-tailed Fisher tests 

(with Benjamini–Hochberg multiple test corrections) were used, and significance was 

considered for corrected p-values smaller than 0.05. A similar one-tailed Fisher test was 
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also used for calculation of enrichment in LUCA genes (Fig. 5C) and significance was 

considered for p-values smaller than 0.0001. All statistical analysis were performed in 

Python ver. 3.6.6 with the package scipy.stats. Network properties were calculated and 

visualizations were produced with Cytoscape [9] ver. 3.7.1. 
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Supplementary Figures 

 
 
Fig. S1. Pipeline for reconstructing catalysis-annotated metabolic networks. Steps in 
grey include metabolic data only, steps in brown include catalysis rules, and steps in greens 
represent the inclusion of curated data from metabolic models of Moorella thermoacetica 
and Methanococcus maripaludis. 
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Fig. S2. MaxRAF obtained with the network of Moorella thermoacetica. Node size is 
scaled according to the degree, with food molecules highlighted in green and relevant 
products in dark blue (only metabolic interconversions are depicted; catalysis arcs are 
omitted for clarity). ‘Acceptor’ and ‘Reduced Acceptor’ are abstract redox molecules as 
represented in KEGG metabolism.  
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Fig. S3. MaxRAF obtained with the network of Methanococcus maripaludis. Node size 
is scaled according to the degree, with food molecules highlighted in green and relevant 
products in dark blue (only metabolic interconversions are depicted; catalysis arcs are 
omitted for clarity). ‘Acceptor’ and ‘Reduced Acceptor’ are abstract redox molecules as 
represented in KEGG metabolism. 
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Fig. S4. Circular bipartite representation of the core autocatalytic metabolism at the 
origin of LUCA. Reactions (in orange) and metabolites (in green if food, grey for the rest) 
are represented as nodes. Nodes are sorted according to degree clockwise starting from the 
bottom; numbers show the degree at the respective position. ATP, the second most connected 
metabolite, can be removed from the food set without impact, therefore here is represented 
in black. 
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Fig. S5. MaxRAF obtained with the intersection of the networks of Methanococcus 
maripaludis and Moorella thermoacetica. Node size is scaled according to the degree, with 
food molecules highlighted in green and relevant products in dark blue (only metabolic 
interconversions are depicted; catalysis arcs are omitted for clarity). ‘Acceptor’ and ‘Reduced 
Acceptor’ are abstract redox molecules as represented in KEGG metabolism. 
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Fig. S6. Impact of removing single molecules from the food set with organic cofactors 
on the size of maxRAFs. The impact is shown as the reduction in size of the maxRAF 
(percentage of the initial network lost) when each molecule is removed from the food set 
with all organic cofactors, for the global prokaryotic O2-independent network (yellow), 
Moorella thermoacetica (dark blue) and Methanococcus maripaludis (red). Cofactors with 
zero impact are not shown. 
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Fig. S7. MaxRAF obtained with amino acids and bases. The network represents the 
maxRAF obtained with the full prokaryote O2-independent network with inorganic catalysts, 
abiotic compounds, all amino acids and bases but no organic cofactors added to the food set 
(only metabolic interconversions are depicted; catalysis arcs are omitted for clarity). Node 
size is scaled according to the degree, with food molecules highlighted in green. ‘Acceptor’ 
and ‘Reduced Acceptor’ are abstract redox molecules as represented in KEGG metabolism. 
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Supplementary Tables 
 
Table S1. Composition of Food Sets used in predictions of maxRAFs in different 
metabolic networks and resulting maxRAF sizes. 

ID Description Size Content maxRAF size 
Global oxygen-

free network 
M. 

thermoacetica 
M. 

maripaludis 
1 Small-

molecules + 
inorganic 
catalysts 

39 H2O, H2, H+, CO2, CO, PO43-, 
SO42-, HCO3-, P2O74−, S, H2S, 
NH3, N2, CO, all metals, Fe–S 
clusters, Ni–Fe–S cluster, other 
clusters, general acceptor, 
general reduced acceptor 
(donor), general metal, 
“Pooling”, “spontaneous” 

8 4 4 

2 1 + abiotic 
organic carbon 

43 FS1 + Acetate, Pyruvate, 
Formate and Methanol 

16 9 8 

3 2 + organic 
cofactors 

68 FS2 + FMN, Pyridoxal 5-
phosphate, Thiamine 
diphosphate, NAD+, 
Molybdopterin, Cob(II)alamin, 
Pyrrolo-quinoline quinone, (R)-
Lipoate, ATP, Biotin, 
Glutathione, Decylubiquinone, 
S-Adenosyl-L-methionine, 
Other quinones, 
Tetrahydrofolate, 
dipyrromethane, TTQ, 5-
Hydroxybenzimidazolylcob(I)a
mide, AMP, Co(I) corrinoid 
protein, Pantetheine 4'-
phosphate, Menaquinone, CoA, 
reduced ferredoxin, oxidized 
Ferredoxin 

1335 394 209 

4 3 + Peptide 69 FS3 + Peptide 2603 493 307 
5 2 + aa and 

bases 
68 FS2 + all 20 amino acids, 

Adenine, Guanine, Cytosine, 
Thymine and Uracil 

33 19 14 
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Legends for Supplementary Data 
 
Dataset S1 (separate file). Metabolic networks annotated with catalysis rules. (A) Prokaryotic, O2-independent 
global metabolic network (B) subset network of Moorella thermoacetica (C) subset network of Methanococcus 
maripaludis. 
 
Dataset S2 (separate file). Lists of reactions in all maxRAFs predicted for all networks in all food sets. 
 
Dataset S3 (separate file). List and degree of metabolites in the primordial network shown in Fig.4 of the main 
text. 
 
Dataset S4 (separate file). Input file with the global prokaryotic O2-independent network used to run the 
maxRAF algorithm. Food set with all small molecules, abiotic carbon and organic cofactors. 
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