
ONLINE APPENDIX A

Resource availability set by the resident consumer species in a seasonally varying

environment

Equation (3) specifies the conditions under which a second consumer can invade a community

consisting of a resource species and a resident consumer species:

1
τ

∫ τ
0
eIaI(T (t))RCR

(T (t)) dt
1
τ

∫ τ
0
dI(T (t)) dt

> 1 (A.1)

where aI(T (t)), dI(T (t)) and eI depict, respectively, the invader’s per capita consumption and

mortality rates and its conversion efficiency, and RCR
(T (t)) is the instantaneous resource abun-

dance set by the resident consumer when it is at a stationary state with the resource in the

absence of the invader. Evaluating the invasion criterion requires that we specify RCR
(T (t)).

We know from basic consumer-resource theory that the resource availability set by a consumer

is a function of its birth rate (conversion efficiency times the attack rate) and mortality rate

(Murdoch et al., 2003). In a constant environment, RCR
(T ) = dR(T )

eRaR(T )
, where dR(T )

eRaR(T )
is the

consumer’s R?, i.e., the steady state resource abundance at which the consumer’s birth and

mortality rates are exactly balanced. If a steady-state consisting of the resource and the resident

consumer exists in a seasonally varying environment, we would expect it to constitute a stationary

distribution of abundances, i.e., an annual abundance pattern that repeats itself year after year.

The resource species’ stationary state would then constitute a set of of values of RCR
(T (t))

corresponding to each time point t during the year.

We use an argument inspired by Armstrong and McGehee (1980) to show that when seasonal

variation occurs in a predictable manner (i.e., the mean annual temperature and the amplitude

of fluctuations remain constant over time) and when the consumers exhibit linear (Type I)
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functional responses, RCR
(T (t)) can be approximated by dR(T (t))

eRaR(T (t))
. The argument is as follows.

Since the resource abundance set by the resident consumer is determined by its birth and

death rates regardless of whether the environment is constant or time-varying, the steady state

resource abundance at any time t (i.e., RCR
(T (t))) should also be determined by the resident

consumer’s birth (eRaR(T (t))) and death rate (dR(T (t))) at time t. The temperature response

functions aR(T (t)) and dR(T (t)), which are mechanistically derived based on the underlying

biochemical processes, are continuous functions of temperature. When temperature varies sea-

sonally with a constant mean and amplitude, aR(T (t)) and dR(T (t)) become continuous functions

of time. Since consumer-resource dynamics are described by ordinary differential equations, re-

source abundance R(t) is also a continuous function of time.

Because seasonal variation is sinusoidal with a constant period τ = 365 days, the time-

varying parameters aR(T (t)) and dR(T (t)) return to their original values after a time period τ

with an amplitude determined solely by the amplitude of seasonal fluctuations (Fig. A1(a)-(b)).

Similarly, since seasonal variation is the only source of periodicity in consumer-resource dynamics,

as would be the case when the consumer has a Type I functional response, resource and consumer

abundances also return to their original values after a period of 365 days (Fig. A1(c)-(d)).

Let dC(t)
dt

= Cf(R(t)) where f(R(t)) = 1
C
dC(t)
dt

= eRaR(T (t))R(t) − dR(T (t)) is the resident

consumer’s per capita growth rate. In a seasonally varying environment, the average per capita

growth rate over the year is given by f(R(t)) = 1
τ

∫ τ
0

1
C
dC(t)
dt

dt = 1
τ

∫ τ
0
f(R(t)) dt. Since consumer

abundance returns to its original value after time τ ,
∫ τ
0

1
C
dC(t)
dt

= lnC(τ)−lnC(0) = 0. Therefore,

f(R(t)) = 0.

Note that f(R(t)) = 1
τ

∫ τ
0
eRaR(T (t))R(t) − dR(T (t) dt, which we can rewrite as:

∫ τ

0

eRaR(T (t))R(t) dt =

∫ τ

0

dR(T (t)) dt. (A.2)
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From Equation (A.2) we can see that f(R(t)) = 0 when R(t) = dR(T (t))
eRaR(T (t))

. Mathematically

speaking, R(t) = dR(T (t))
eRaR(T (t))

is not a unique solution because the equality of integrands is not

necessary for Equation (A.2) to hold true (i.e., f(R(t)) can be equal to zero without R(t) =

dR(T (t))
eRaR(T (t))

). In order for R(t) = dR(T (t))
eRaR(T (t))

to be a unique solution, R(t) = dR(T (t))
eRaR(T (t))

has to be true

for all τ . The biological basis of our question helps narrow down the scope of this problem. We

are investigating latitudinal directionality in invasion success. Seasonal temperature variation

with a period of τ = 365 days is, therefore, the thermal regime of relevance to our question, and

the functional forms for aR(T (t)) and d(T (t)) we use in our model are the empirically quantified

thermal reaction norms for attack and mortality rates that have evolved in response to seasonal

temperature variation (Savage et al., 2004; Englund et al., 2011; Amarasekare and Johnson,

2017).

Because we do not know the functional forms of aR(T (t)) and d(T (t)) in thermal environments

other than seasonal variation, we cannot determine whether the equality of integrands holds for

all τ . However, we can verify whether R(t) = dR(T (t))
eRaR(T (t))

is a valid solution when τ = 365. We

use the full dynamical model of the pairwise consumer interaction to determine whether R(t) =

dR(T (t))
eRaR(T (t))

(t = 0, · · · , 365) represents the distribution of resource abundances corresponding to

the stationary state attained by the resource and the resident consumer in a seasonally varying

thermal environment.

The dynamics of the pairwise interaction between the resource and the resident consumer are

given by:

dR(t)

dt
= b(T (t))R(t)

(
1 − q(T (t))R(t)

)
− d(T (t)R(t) − aR(T (t))R(t)CR(t)

dCR(t)

dt
= eRaR(T (t))R(t)CR(t) − dR(T (t))CR(t) (A.3)
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When we numerically integrate Equation (A.3) under seasonal variation, the resource-consumer

interaction attains a stationary distribution of abundances in the form of a limit cycle with a

period of one year. The reason for this is as follows. A pairwise consumer-resource interaction in

which the resource has logistic growth and the consumer has a Type 1 functional response reaches

a steady state with damped oscillations in a constant environment. Since seasonal forcing is the

only form of temporal variation in the system and there are no intrinsically generated consumer-

resource oscillations (such as would occur if the consumer had a saturating functional response),

the system attains a stationary distribution of abundances in which the species’ abundances

return to their original values after a period of one year. As shown in Fig. A1(c)-(d), dR(T (t))
eRaR(T (t))

provides an accurate approximation of the instantaneous resource abundance RCR
(T (t)) in this

limit cycle solution. In general, this approximation works well when the resident consumer is

adapted to exploit the resource in the seasonal thermal regime they experience in common, the

situation pertinent to our question of directionality in invasion success. This occurs when the

maximum resource birth rate (bTopt) is sufficiently high and the response breadth (sb) is suffi-

ciently wide that the consumer can persist on the resource (Fig. A2(a)), the consumer’s intrinsic

mortality rate (dRTR
) is high enough to prevent resource overexploitation (Fig. A2(b)), the con-

sumer’s temperature sensitivities of mortality above the low temperature threshold does not

exceed those of the resource (AdR ≤ Ad; Fig. A2(c)), and when the consumer’s response breadth

(saR) is sufficiently wide relative to that of the resource that it can exploit the resource when it is

available but not so wide as to overexploit it (
saR
sb

≥ 1), and the consumer’s attack rate optimum

aRTopt increases (decreases) as its response breadth decreases (increases) such that the consumer

is able to persist on the resource without overexploiting it (Fig. A2(d)).

In summary, the match between the limit cycle solution to Equation (A.3) (RCR
(T (t))) and

dR(T (t))
eRaR(T (t))

means when the resource and resident consumer reach a stationary state in a seasonally
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varying environment, RCR
(T (t)), the stationary resource abundance at time t (t = 0, · · · , 365) is

well-approximated by dR(T (t))
eRaR(T (t))

. By substituting RCR
(T (t)) = dR(T (t))

eRaR(T (t))
in Equation (3) in the

main text, we can obtain a complete analytical expression for the invasion criterion (Equation

(4) in the main text).

ONLINE APPENDIX B

Temperature responses of species’ traits

Temperature response of mortality

In all ectotherms, density-independent per capita mortality rate increases with temperature

(Savage et al. (2004) and references in Gillooly et al. (2001, 2002)) within which temperature

range the underlying biochemical processes are fully functional and reproduction and develop-

ment can occur (Johnson and Lewin, 1946; Sharpe and DeMichele, 1977; Schoolfield et al., 1981;

Ratkowsky et al., 2005). Below this range, mortality increases with decreasing temperature due

to the freezing of body fluids and other related phenomena (Savage et al. (2004) and references in

Gillooly et al. (2001, 2002); see Fig. 1k and l). The complete mortality response can be described

by the following modification to the Boltzmann-Arrhenius function for reaction kinetics:

dX(T ) = dXTR
e
AdX

(
1

TR
− 1

T

)(
1 + e

AL

(
1

TL
− 1

T

))
(B.1)

where dX(T ) X = R, I is the mortality rate at temperature T (in K), AdX is the Arrhenius

constant, which quantifies how fast the mortality rate increases with increasing temperature,

TRX is a reference (baseline) temperature at which mortality is equal to dXTR
. The reference

temperature occurs within the range where enzymes are 100% active (typically between 20−30◦C,

24 − 25◦C being the most common; Johnson and Lewin (1946); Sharpe and DeMichele (1977);

Schoolfield et al. (1981); Ratkowsky et al. (2005)). The parameter TLX is the temperature
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threshold at which mortality starts to increase with decreasing temperature, and ALX
quantifies

how quickly the mortality rate decreases with decreasing temperature. Note that AdX > 0 and

ALX
< 0.

Temperature response of birth and consumption rates

A large number of studies spanning a range of ectothermic taxa show that per capita birth

and consumption rates exhibit unimodal responses to temperature (Dreyer and Baumgartner,

1996; Carriere and Boivin, 1997; Morgan et al., 2001; Jandricic et al., 2010; Hou and Weng,

2010; Dannon et al., 2010; Dell et al., 2011; Englund et al., 2011; Amarasekare and Savage, 2012;

Amarasekare, 2015). Both are well-described by a Gaussian function:

AX(T ) = AXTopt
e
−

(T−ToptAX
)2

2sAX
2

(B.2)

where ToptAX
(A = a, b,X = R, I) is the temperature at which the birth (consumption) rate is

maximal (AXTopt
), and sAX

determines how fast or slowly the response decays from the optimum

(Fig. 1a and b). It provides a statistically quantifiable index of the response breadth, i.e., the

temperature range over which the species can reproduce and exploit resources.

Temperature response of resource self-limitation

Experiments on insects suggest that the temperature response of the self-limitation (i.e.,

the per capita intra-specific coefficient (q(T ))) can be monotonic or unimodal (Amarasekare

and Coutinho, 2014; Amarasekare, 2015; Johnson et al., 2015)). When self-limitation strength

increases with increasing temperature, as is the case when increasing activity levels increase the

per individual demand for resources, q(T ) is given by the Boltzmann-Arrhenius relationship:

q(T ) = qTRe
Aq

(
1

TR
− 1

T

)
(B.3)
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where q(T ) is the self-limitation strength at temperature T , Aq is the Arrhenius constant, TR

is the reference temperature as described above, and qTR , the self-limitation strength at the

reference temperature.

When self-limitation is strongest at temperatures optimal for reproduction, as is the case

when the demand for resources is most intense during periods of peak reproductive activity

(Amarasekare and Coutinho, 2014; Amarasekare, 2015; Johnson et al., 2015), q(T ) is unimodal

and well-described by a Gaussian function:

q(T ) = qTopte
−

(T−Toptq )2

2sq2 (B.4)

where Toptq is the temperature at which self-limitation is the strongest (qTopt), and sq depicts the

the temperature range over which self-limitation operates. We use the Gaussian form (Equa-

tion (B.4)) in our analyses because empirical evidence (Amarasekare and Coutinho, 2014; Ama-

rasekare, 2015; Johnson et al., 2015; Uszko et al., 2017) suggests this to be the more common

form.

ONLINE APPENDIX C

Invasibility in a seasonally varying environment

The invasion criterion is given by:

1
τ

∫ τ
0
eIaI(T (t)) dR(T (t))

eRaR(T (t))
dt

1
τ

∫ τ
0
dI(T (t)) dt

> 1. (C.1)

where eX , aX(T (t)) and dX(T (t)) (X = R, I) depict, respectively the resident’s and invaders’

conversion efficiency and per capita consumption and mortality rates.

We can incorporate the temperature responses of the resident and invader species’ resource
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consumption and mortality rates (Table 1) to get:

eIaITopt

dITR

dRTR

eRaRTopt

∫ τ
0
e
−

(T (t)−ToptaI
)2

2saI
2 +

(T (t)−ToptaR
)2

2saR
2 +AdR

T (t)−TRR
T (t)TRR

(
1 + e

ALR

T (t)−TLR
T (t)TLR

)
dt∫ τ

0
e
AdI

T (t)−TRI
T (t)TRI

(
1 + e

ALI

T (t)−TLI
T (t)TLI

)
dt

> 1, (C.2)

Which is Equation (5) in the main text. Note that the subscripts R and I denote, respec-

tively, the resident’s and invader’s trait parameters, and (T (t)) denotes the seasonal tempera-

ture regime. The terms outside the integral represent the temperature-independent components

of these factors with
dRTR

eR aRTopt

depicting the resource availability set by the resident consumer

in a constant thermal environment (i.e., its R?), and eIaITopt
and dI depicting, respectively,

the invader’s reproductive and mortality rates. The terms within the integrals determine the

temperature-dependent components, with the numerator depicting the resource availability set

by the resident, given by the resident’s consumption (aR(T (t)) = e
−

(T (t)−ToptaR
)2

2saR
2 ) and mortality

(dR(T (t)) = e
AdR

T (t)−TRR
T (t)TRR

(
1 + e

ALR

T (t)−TLR
T (t)TLR

)
) responses, and the invader’s resource acquisition

ability, given by the temperature response of its consumption rate (aI(T (t)) = e
−

(T (t)−ToptaI
)2

2saI
2 ).

The denominator depicts the invader’s temperature-dependent mortality rate (dI(T (t)).

Now we substitute the characteristics of the seasonal thermal regime ((T (t) = MT −ATS(t))

and the scaling relationships of the response parameters (e.g., ToptaR = MT + x and ToptaI =

MT + x + m; Table C1) into Equation (C.2). Note that the MT terms cancel out for the

consumption rate responses but not for the mortality responses. By doing some algebra and

simplifying, we get the following mechanistic description of the invasion criterion:

f

αδ

∫ τ
0
e

−(AT S(t)+x+m)2

2v2saR
2 +

(AT S(t)+x)2

2saR
2 −

AdR
MT+y

(
AT S(t)+y

MT−AT S(t)

)(
1 + e

−
ALR
MT−z

AT S(t)−z

MT−AT S(t)

)
dt

∫ τ
0
e
−p1

AdR
MT+y+g

(
AT S(t)+y+g

MT−AT S(t)

)(
1 + e

−
p2ALR

MT−z+k

AT S(t)−z+k

MT−AT S(t)

)
dt

> 1, (C.3)
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which is Equation (6) in the main text.

In the numerator of Equation (C.3), the first term inside the integral depicts temperature

effects on the invader’s resource acquisition ability (e
−(AT S(t)+x+m)2

2v2saR
2

), which is determined by the

deviation of its consumption rate optimum from that of the resident (m), and the breadth

of its consumption response relative to that of the resident (v). The second and third terms

denote resource availability set by the resident, which results from the interaction between

the resident’s consumption and mortality responses. The second term denotes the resident’s

resource acquisition ability, given by its consumption response (e
(AT S(t)+x)2

2saR
2

), which is deter-

mined by the deviation of the resident’s thermal optimum from the mean habitat temperature

(x) and its response breadth (saR). The third term denotes the resident’s mortality response

(e

AdR
MT+y

(
AT S(t)+y

MT−AT S(t)

)(
1 + e

−
ALR
MT−z

AT S(t)−z

MT−AT S(t)

)
), which depends on the respective rates at which mor-

tality increases with increasing vs. decreasing temperatures (AdR and AdL), the deviation of the

reference temperature and lower temperature threshold from the mean habitat temperature (y

and z respectively). In the denominator, the term inside the integral depicts the invader’s mor-

tality, which is determined by the respective rates at which its mortality increases with increasing

vs. decreasing temperatures (p1AdR and p2AdL) and the deviation of its reference temperature

and the lower temperature threshold from those of the resident consumer species (g and k re-

spectively).
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Table 1: Table C1. Definitions of scaled temperature response parameters

Thermal regime
MT Mean habitat temperature
AT Amplitude of seasonal fluctuations
Resident consumer
ToptaR = MT + x x = deviation consumption rate optimum from mean habitat temperature

TRR = MT + y y = deviation of reference temperature from mean habitat temperature
TLR = MT − z z = deviation of low temperature threshold from mean habitat temperature

Invading consumer
ToptaI = ToptaR +m m = deviation of invader’s consumption rate optimum from that of resident

saI
= vsaR

v = ratio of invader’s and resident’s consumption response breadths
aITopt

= αaRTopt
α = ratio of invader’s and resident’s maximum consumption rates

eI = feR f = ratio of invader’s and resident’s conversion efficiencies
TRI = TRR + g g = deviation of invader’s reference temperature for mortality from that of the resident
TLI = TLR + k k = deviation of invader’s low temperature threshold from that of the resident
AdI

= p1AdR
p1 = ratio of Arrhenius constants above the low temperature threshold

ALI
= p2ALR

p2 = ratio of Arrhenius constants below the low temperature threshold
dITR

= δdRTR
δ = ratio of the invader’s baseline mortality rate to that of the resident

ONLINE APPENDIX D

Temperature and trait response parameters

Table D1 gives the parameter values used in the model analysis, which are realistic for tropical

and temperate insects (Dreyer and Baumgartner, 1996; Morgan et al., 2001; Deutsch et al., 2008;

Amarasekare and Savage, 2012; Amarasekare and Johnson, 2017).
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Table D1. Temperature response functions and parameter values for tropical and temperate
species.

Tropical Temperate

Thermal regime MT = 299, AT = 1.5 MT = 285, AT = 10

Resident community: resource species

Toptb 300 292
sb 3.0 7.0
bTopt 25 25
Toptq 300 292
sq 3.0 5.0
qTopt 0.02 0.02
TR 298 292
TL 288-90 273
Ad 10000 10000
AL -15000 -7500
Resident community: consumer species

eR 1.0 1.0
saR

3.0 7.0
aRTopt

1.0-5.0 1.0
dRTR

0.05-0.2 0.1-0.2
AdR

10000 10000
ALR

-15000 -7500
ToptaR = MT + x x = 1 x = 7

TRR = MT + y y = −1 y = 7
TLR = MT − z z = 9 z = 12
Invading consumer

saI
= vsaR

v < 1 v > 1
aITopt

= αaRTopt
α = 1.0 − 5.0 α = 0.1 − 1.0

eI = feR f = 0.1 − 1.0 f =0.1-1.0
dITR

= δdRTR
δ ≤ 1 δ ≥ 1

AdI
= p1AdR

p1 ≤ 2 p1 ≤ 2
ALI

= p2ALR
p2 ≥ 1 p2 ≤ 1

ToptaI = ToptaR +m m > 0 m < 0

TRI = TRR + g g > 0 g < 0
TLI = TLR + k k > 0 k < 0
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Fig. A1. Dynamics of a pairwise consumer-resource interaction in which the resource ex-

periences self-limitation and the resident consumer exhibits a Type I functional response and

the species experience a seasonally varying thermal environment (Equation (A.3), Appendix A).

Panels (a) and (b) show, respectively, that the temperature response functions of the resident

consumer’s attack and mortality rates return to their original values after a period of one year.

Panels (c) and (d) show that resource and consumer abundances settle into an annual limit cycle

with the same minimum and maximum values attained after a period of one year. The insets

in each panel show that all initial conditions converge to the same periodic oscillation, i.e., the

oscillations constitute a stationary state for the consumer-resource system. Panels (e) shows the

congruence between the instantaneous resource abundance (RCR
(t)) in the limit cycle solution

of Equation (A.3) and the quantity dR(T (t))
eRaR(T (t))

. Parameter values are as follows. Resource species:

Toptb = 292K, sb = 7.0, bTopt = 25.0, Ad = 10000, AL = −10000, Toptq = Toptb , sq = 5.0, qTopt =

0.02; consumer species: ToptaR = 292K, saR = 7.0, aRTopt
= 1.0, eR = 1.0,AdR = 10000, ALR

=

−10000, TRR
= 292K,TLR

= 273K, dRTR
= 0.2,MT = 285K,AT = 10.

Fig. A2. Comparison between the instantaneous resource abundance RCR
(t) in the limit

cycle solution of Equation (A.3) and the quantity dR(T (t))
eRaR(T (t))

(t = 0, · · · , 365) over key parameter

values of the temperature response functions. In all panels, the black circles depict the statistical

correlation between the two time series. Panel (a) depicts the correlation between the two time

series as a function of maximum resource birth rate (bTopt) and response breadth (sb), panel

(b), as a function of maximum resource birth rate (bTopt) and the intrinsic mortality rate of the

resident consumer (dRTR
), panel (c), the ratios of temperature sensitivity of mortality below and

above the low temperature threshold (
AdR

Ad
and

ALR

AL
) and panel (d), maximum consumer attack

rate (aRTopt
) and the ratio of the attack response breadth to that of resource birth rate (

saR
sb

).

Note that the correlation between the limit cycle solution and dR(T (t))
eRaR(T (t))

approaches unity when
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the consumer is well adapted to the resource, i.e., maximum resource birth rate and/or response

breadth are high enough to allow the consumer to persist on the resource, the consumer’s intrinsic

mortality rate is high enough to prevent resource overexploitation, its temperature sensitivity

of mortality above the low temperature threshold does not exceed that of the resource, and its

maximum attack rate and/or response breadth are high enough for it to subsist on the resource

without overexploiting it. Parameter combinations for which data are missing are those that do

not allow resource-consumer coexistence. Common parameter values are as follows. Resource

species: Toptb = 292K,Ad = 10000, AL = −25000, Toptq = Toptb , sq = sb, qTopt = 0.02; consumer

species: ToptaR = 292K, saR = 7.0, aRTopt
= 1.0, e1 = 1.0,AdR = 10000, ALR

= −25000, TRR
=

292K,TLR
= 273K,MT = 285K,AT = 10.
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Figure A1
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Figure A2
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