Table S1. Genes up or down regulated by $Top3\beta$ overexpression.

Number	Annotation	Orf number	Fold change (pPTop3β/5'Δ5N-Pac)*
1	VSP	113304	64.34
2	VSP	113163	39.80
3	Hypothetical protein	31366	14.44
4	Cyst wall protein 1	5638	11.94
5	Hypothetical protein	5206	9.48
6	Cyst wall protein 2	5435	9.11
7	Hypothetical protein	16622	8.65
8	Ceramide	11642	0.40
	glucosyltransferase	11642	8.40
9	VSP	41472	8.33
10	Glucose 6-phosphate	14259	7.98
	N-acetyltransferase	14239	7.90
11	VSP with INR	113450	7.86
12	High cysteine membrane	113512	7.50
	protein Group 6	113312	7.30
13	VSP with INR	16501	7.50
14	VSP	114162	6.90
15	Hypothetical protein	27652	6.34
16	Hypothetical protein	14690	6.19
17	Hypothetical protein	3731	6.19
18	Hypothetical protein	4984	5.98
19	VSP, putative	114286	5.44
20	Hypothetical protein	11120	5.35
21	VSP	112867	5.17
22	Hypothetical protein	7374	5.08
23	Hypothetical protein	135270	5.07
24	Hypothetical protein	8505	4.93
25	Hypothetical protein	102575	4.45
26	VSP	11521	4.39
27	Hypothetical protein	9605	4.38
28	Hypothetical protein	115669	4.30
29	VSP presumed INR	137714	4.29
30	VSP with INR	11470	4.25
31	VSP	137708	3.89

22			
32	Sugar transport family protein	9046	3.89
33	Hypothetical protein	32657	3.89
34	Hypothetical protein	28112	3.89
35	CEGP1 protein	17120	3.89
36	Adenylate cyclase	14367	3.58
37	Hypothetical protein	119703	3.45
38	Hypothetical protein	116201	3.44
39	Hypothetical protein	16078	3.37
40	Zinc finger domain	2116	3.35
41	Hypothetical protein	113303	3.32
42	VSP	115796	3.13
43	VSP, putative	118133	3.12
44	High cysteine membrane protein Group 1	32607	3.12
45	VSP	101765	3.11
46	Hypothetical protein	36883	3.03
47	Hypothetical protein	13878	2.98
48	Hypothetical protein	8960	2.96
49	Hypothetical protein	23934	2.96
50	Hypothetical protein	119224	2.92
51	Cathepsin B-like cysteine proteinase 3 precursor	114165	2.92
52	High cysteine membrane protein Group 6	114470	2.84
53	Protein 21.1	4846	2.73
54	Nicotinamide-nucleotide adenylyltransferase	92618	2.71
55	Hypothetical protein	35638	2.67
56	Hypothetical protein	101768	2.59
57	Hypothetical protein	11050	2.54
58	Hypothetical protein	2860	2.53
59	VSP	122566	2.51
60	Hypothetical protein	2605	2.49
61	VSP with INR	113439	2.48
62	VSP	112801	2.45
63	Glucosamine-6-phosphat	8245	2.44

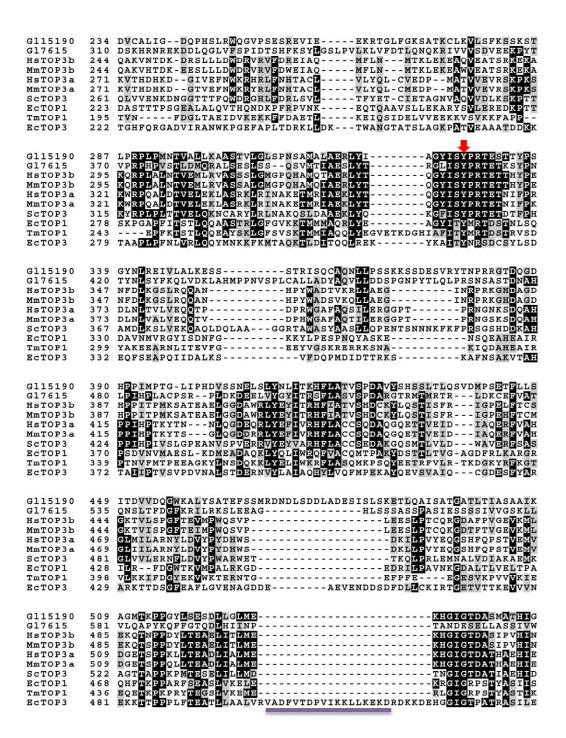
	e deaminase		
64	Hypothetical protein	2692	2.41
65	Retinoic acid induced		
	17-like protein	11930	2.39
66	VSP with INR	115797	2.39
67	VSP	26894	2.37
68	Furin precursor putative	2005	2.25
	serine protease	2897	2.37
69	UDP-glucose	7002	2 27
	4-epimerase	7982	2.37
70	High cysteine membrane	11309	2.36
	protein Group 1	11307	2.30
71	Hypothetical protein	33672	2.33
72	Hypothetical protein	114210	2.31
73	Hypothetical protein	29757	2.29
74	Protein Kinase	4033	2.25
75	Protein 21.1	92983	2.21
76	Hypothetical protein	2404	2.21
77	Hypothetical protein	8325	2.21
78	Hypothetical protein	7598	2.17
79	Hypothetical protein	10425	2.14
80	Fatty acid elongase 1	92729	2.14
81	Hypothetical protein	11148	2.14
82	Hypothetical protein	117068	2.12
83	Hypothetical protein	14833	2.11
84	High cysteine protein	94003	2.10
85	DNA topoisomerase III	15190	2.10
86	Hypothetical protein	119599	2.09
87	Variant-specific surface	11690	2.08
	protein	11090	2.06
88	Hypothetical protein	10552	2.06
89	Dolichol-phosphate		
	mannosyltransferase,	3180	2.06
	putative		
90	Variant-specific surface	9276	2.05
0.1	protein	7210	2.03
91	Hypothetical protein	15532	2.04

92	UDP-N-acetylglucosamin e pyrophosphorylase	16217	2.03
93	Chorein	87358	2.01
94	DNA topoisomerase III	7615	0.02
95	VSP	137617	0.20
96	VSP	40571	0.24
97	VSP with INR	119707	0.24
98	VSP	34357	0.24
99	VSP	90215	0.24
100	VSP with INR	40592	0.32
101	VSP	41539	0.34
102	VSP	115047	0.35
103	Hypothetical protein	92625	0.37
104	VSP	114065	0.38
105	High cysteine membrane protein Group 3	112126	0.38
106	High cysteine protein	87706	0.39
107	VSP	111903	0.39
108	VSP	113093	0.39
109	VSP	99743	0.40
110	Protein 21.1	15965	0.40
111	VSP	121070	0.41
112	VSP	137612	0.42
113	VSP	116477	0.42
114	Cytosine deaminase, putative	2486	0.43
115	DNA-damage inducible protein DDI1-like	7718	0.43
116	VSP	34196	0.43
117	VSP	41401	0.44
118	Hypothetical protein	19870	0.44
119	VSP	112678	0.44
120	High cysteine membrane protein Group 3	114891	0.45
121	Hypothetical protein	125106	0.45
122	VSP	41349	0.45
123	VSP	118900	0.45

124	VSP	137611	0.46
125	Hypothetical protein	123980	0.46
126	Hypothetical protein	17241	0.47
127	High cysteine membrane protein Group 1	10659	0.47
128	VSP	137607	0.47
129	VSP	111874	0.48
130	VSP	101410	0.49
131	Kinase, NEK	9870	0.49
132	Hypothetical protein	31420	0.49
133	Hypothetical protein	99726	0.50

^{**}p values were determined to be <0.05 for groups in which the average means changed by a factor of ≥ 2.0 or ≤ 0.5 .

Table S2. Oligonucleotides used for construction of plasmids and PCR.


Name	Sequence (5'>3')
top3βF (PCR1F)	CACCATGATCCTTCTCATTGCA
top3βR (PCR1R)	TCTGTGTTTGCGACCCCT
top3βHAF	CAGACAGTATCTGAGTAC
HAR	AGCGTAATCTGGAACATCGTATGGGTA
cwp1F	ATGATGCTCGCTCTCTT
cwp1R	TCAAGGCGGGTGAGGCA
cwp2F	ATGATCGCAGCCCTTGTTCTA
cwp2R	CCTTCTGCGGACAATAGGCTT
cwp3F	ATGTTTTCTCTGCTTCTTCT
cwp3R	TCTGTAGTAGGGCGGCTGTA
myb2F	ATGTTACCGGTACCTTCTCAGC
myb2R	GGGTAGCTTCTCACGGGGAAG
ranF	ATGTCTGACCCAATCAGC
ranR	TCAATCATCGTCGGGAAG
top3\betarrowsprealF	GGAGGGGACAGACCAAG
top3βrealR	CGTGAGGGATTAGCCCAGT
cwp1realF	AACGCTCTCACAGGCTCCAT
cwp1realR	AGGTGGAGCTCCTTGAGAAATTG
cwp2realF	TAGGCTGCTTCCCACTTTTGAG
cwp2realR	CGGGCCCGCAAGGT
cwp3realF	GCAAATTGGATGCCAAACAA
cwp3realR	GACTCCGATCCAGTCGCAGTA
myb2realF	TCCCTAATGACGCCAAACG
myb2realR	AGCACGCAGAGGCCAAGT
ranrealF	TCGTCCTCGGGAAACAA
ranrealR	AACTGTCTGGGTGCGGATCT
18SrealF	AAGACCGCCTCTGTCAATCAA
18SrealR	GTTTACGGCCGGGAATACG
top3βNF	GGCCGGCTAGCTCGATGTGCCAAAGC

top3βMR	GGCCGACGCGTTCGGTGTCGATGTGCCAAAGC
top3β865F	CGCCCTTGCCAATGA
top3β926R	GAGAGACCGAGCACCGTTGA
top3βm1F	CTGGATACATTTCTTTCCCAAGAACTGAGTC
top3βm1R	GACTCAGTTCTTGGGAAAGAAATGTATCCAG
top3βm2MR	GGCCGACGCGTAATAGAGGTAAACTTCGCGT
top3βm3MR	GGCCGACGCGTTGTTGCCAGGAAGTGCTTAG
top3β5HF	GGCGGAAGCTTTACTAACTATGACTCTAGGGC
top3β5NR	GGCGGCCATGGGAATTATTTTTAGCATCCCAG
top3β3XF	GGCGGCTCGAGTGACCATCAAGTGCTTGCTATTAT
top3β3KR	GGCGGGGTACCCTGGCTATCCTTGTAGCATCC
top3β-guide	GAGAGCGGGTACCCTAGCTTATTGAAAAAGCGAGAGGCCATTGAGATGACTCGCCT
	GATTGCAATAGCAAACAGTGTCTATAGTCTAATTGTGGACAACAGAGGGCTTATTG
	CAACGTTGATGACCAAGTTCAACAAGGGCGTCGCCTCCTATGAGCAGGTCATTCGG
	AATTTCGACGACCGGTAGCGTCCCCAGAGTAAACCATTTTAAATTGAAATAGGCGG
	TTGGAAATAAAAGCGCGCC GACCTTCATGTGTACTT<i>CTG</i> GTTTTAGAGCTAGAAAT
	AGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGG
	TGCTTTTTTGAATTCGAGAGCG, underlined region is U6 promoter, bold
	region is for annealing, underlined and bold region is upstream 3nt of PAM,
	-
top3βm2R	region is for annealing, underlined and bold region is upstream 3nt of PAM,
top3βm2R top3βm3R	region is for annealing, underlined and bold region is upstream 3nt of PAM, other region is scaffold RNA
	region is for annealing, underlined and bold region is upstream 3nt of PAM, other region is scaffold RNA AATAGAGGTAAACTTCGCGT
top3βm3R	region is for annealing, underlined and bold region is upstream 3nt of PAM, other region is scaffold RNA AATAGAGGTAAACTTCGCGT TGTTGCCAGGAAGTGCTTAG
top3βm3R PCR2F	region is for annealing, underlined and bold region is upstream 3nt of PAM, other region is scaffold RNA AATAGAGGTAAACTTCGCGT TGTTGCCAGGAAGTGCTTAG AAGGACCGCGCGACCTGG
top3βm3R PCR2F PCR2R	region is for annealing, underlined and bold region is upstream 3nt of PAM, other region is scaffold RNA AATAGAGGTAAACTTCGCGT TGTTGCCAGGAAGTGCTTAG AAGGACCGCGCGACCTGG CGTCTCCACATGGTATGACCG
top3βm3R PCR2F PCR2R top3β5F	region is for annealing, underlined and bold region is upstream 3nt of PAM, other region is scaffold RNA AATAGAGGTAAACTTCGCGT TGTTGCCAGGAAGTGCTTAG AAGGACCGCGCGACCTGG CGTCTCCACATGGTATGACCG TTGGGGGATGATGGTATCTTC
top3βm3R PCR2F PCR2R top3β5F top3β5R	region is for annealing, underlined and bold region is upstream 3nt of PAM, other region is scaffold RNA AATAGAGGTAAACTTCGCGT TGTTGCCAGGAAGTGCTTAG AAGGACCGCGCGACCTGG CGTCTCCACATGGTATGACCG TTGGGGGATGATGGTATCTTC GCATCCCAGCCCTCAGCC
top3βm3R PCR2F PCR2R top3β5F top3β5R 18S5F	region is for annealing, underlined and bold region is upstream 3nt of PAM, other region is scaffold RNA AATAGAGGTAAACTTCGCGT TGTTGCCAGGAAGTGCTTAG AAGGACCGCGCGACCTGG CGTCTCCACATGGTATGACCG TTGGGGGATGATGGTATCTTC GCATCCCAGCCCTCAGCC CCAAAAAAAGTGTGGTGCAGG
top3βm3R PCR2F PCR2R top3β5F top3β5R 18S5F	region is for annealing, underlined and bold region is upstream 3nt of PAM, other region is scaffold RNA AATAGAGGTAAACTTCGCGT TGTTGCCAGGAAGTGCTTAG AAGGACCGCGCGACCTGG CGTCTCCACATGGTATGACCG TTGGGGGGATGATGGTATCTTC GCATCCCAGCCCTCAGCC CCAAAAAAAGTGTGGTGCAGG GCCGGGCGCGGGGCCCGCGG
top3βm3R PCR2F PCR2R top3β5F top3β5R 18S5F 18S5F cwp15F	region is for annealing, underlined and bold region is upstream 3nt of PAM, other region is scaffold RNA AATAGAGGTAAACTTCGCGT TGTTGCCAGGAAGTGCTTAG AAGGACCGCGCGACCTGG CGTCTCCACATGGTATGACCG TTGGGGGATGATGGTATCTTC GCATCCCAGCCCTCAGCC CCAAAAAAGTGTGGTGCAGG GCCGGGCGCGGGCCCGCGG CAACGGCTTACTACAATCATTCTCTTG
top3βm3R PCR2F PCR2R top3β5F top3β5R 18S5F 18S5R cwp15F cwp15R	region is for annealing, underlined and bold region is upstream 3nt of PAM, other region is scaffold RNA AATAGAGGTAAACTTCGCGT TGTTGCCAGGAAGTGCTTAG AAGGACCGCGCGACCTGG CGTCTCCACATGGTATGACCG TTGGGGGGATGATGGTATCTTC GCATCCCAGCCCTCAGCC CCAAAAAAGTGTGGTGCAGG GCCGGGCGCGGGCCGCGG CAACGGCTTACTAAATCATTCTCTTG TTCTGTGTTTCTTGATCTGAGAGTTGT
top3βm3R PCR2F PCR2R top3β5F top3β5R 18S5F 18S5R cwp15F cwp15R cwp25F	region is for annealing, underlined and bold region is upstream 3nt of PAM, other region is scaffold RNA AATAGAGGTAAACTTCGCGT TGTTGCCAGGAAGTGCTTAG AAGGACCGCGCGACCTGG CGTCTCCACATGGTATGACCG TTGGGGGATGATGTATCTTC GCATCCCAGCCCTCAGCC CCAAAAAAGTGTGGTGCAGG GCCGGGCGCGGGCGCGCGG CAACGGCTTACTAAATCATTCTCTTG TTCTGTGTTTCTTGATCTGAGAGGTTGT CACTTTGATGAGAGAGCATGGG

cwp35R	ATCAGTAGTAACTTATTTTTTGGGAAAGAC
myb25F	TGGCTATGTATTTTTCTTCTTCTACAGCT
myb25R	TAGCAGTACAGAGTAATTATTTTTAGTA
U65F	TTGAGATGACTCGCCTGATTG
U65R	GAAATTCCGAATGACCTGCTC
iscsF	CACCATGATTTACCTGGACAAC
iscsR	GTCATGCTTCCACTCTAT
bipF	CACCATGACGTCTAGTCACGTTAA
bipR	GAGTTCATCTTTTTCTGCAT

Figure S1

G115190 G17615 HsTOP3b MmTOP3b HsTOP3a MmTOP3a ScTOP3 EcTOP1 TmTOP1 EcTOP3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MILLIAEKPSIAEMISRNYGEGA
G115190 G17615 HsTOP3b MmTOP3b HsTOP3a MmTOP3a ScTOP3 ECTOP1 TmTOP1 ECTOP3	28	KKLDNVSFPTYTFVQSFEGSKETFMCTSVAGHVFEIDFDAELN-GSSVPQERLFE KQLVQYFNEYKFTHSEEEHGPAQQYVVVHAQGHMLELE-PDEGYEMGKCSPSDLFT HKGLNGACSVHEYTGTFAGQPVRFKMTSVCGHVMTLDFLGKYNKWDKVDPAELFS HKGLNGACSVHKYTGTFAGQPVHFKMTSVCGHVMTLDFLGKYNKWDKVDPAELFS HEGLSKFNKIYEFDYHLYGQNVTMVMTSVSGHLLAHDFQMQFRKWQSCNPLVLFE KEGLSKFNKIYEFDYHLYGQNVTMVMTSVSGHLLAHDFQMQFRKWQSCNPLVLFE RDSGYMYVKNYDFMFSGFPFARNGANCEVTMTSVAGHLLAHDFQMQFRKWQSCNPLVLFE RDSGYMYVKNYDFMFSGFPFARNGANCEVTMTSVAGHLTGIDFSHDSHGWGKCAIQELFD SSVGHIRDLPTSGSAAKKSADSTSTKTAKKPKKDERGALVNRMGVDPWHNWE ASMGHIIDLPKSKFGVDLEKDFE DGWFESDNTIVTNCFGHI
G115190 G17615 HsTOP3b MmTOP3b HsTOP3a MmTOP3a ScTOP3 EcTOP1 TmTOP1 EcTOP3	85 84 84 116 116 88	RGHVHYSFTDSGSTVAKHLKSIGGKAMQLILCLDNDREGENICFEVLKVLKPTLRSDCR-CGVHFKANAVFKKHVLRPNAAETNVLVLMLDADREGENIGYDIIEIFCSVLPADTLL QAPTEKKEANPKLNMVKFLQVEGRGCDYIVLWLDCDKEGENICFEVLDAVLPVMNKAHGG QAPTEKKEANPKLNMVKFLQVEGRGCDYVVLWLDCDKEGENICFEVLDAVLPVMNNAHNG AEIEKYCPENF-VDIKKTLERETRQCQALVIWTDCDREGENIGFEIHVCKAVKPNL AEIEKYCPENF-IDIKKTLERETHHCQALVIWTDCDREGENIGFEIHVCKAVKPNL APLNEIMNNNQ-KKIASNIKREARNADYLMIWTDCDREGENIGFEIHVCKAVKPNL APLNEIMNNNQ-KKIASNIKREARNADYLMIWTDCDREGEYIGWEIWQEAKRGNRLIQND AHYEVLPGKEKVVSELKQLAEKADHIYLATDLDREGEAIAWHLREVIGGDDARYSR-PEFAVIKGKEKVVEKLKDLAKKGE-LLIASDMDREGEAIAWHIARVTN-TLGRKNR-VKYQPVESAEKQVKTIIELIR-RADVTEIIHAGDPDDEGQLLVDEVLEYAGNTKPVKRVL
G115190 G17615 HsTOP3b MmTOP3b HsTOP3a MmTOP3a SCTOP3 ECTOP1 TmTOP1 ECTOP3		DIRPARLPKIRSPTEHTLRHILAADHVPSQTSVKRTIIVKRARFFGLTYPELTSAVYNAG EKTVFRARFSSITDTDICNAMACLG EKTVFRARFSSITDTDICNAMTRLS Q
Gl15190 Gl7615 HsTOP3b MmTOP3b HsTOP3a MmTOP3a ScTOP3 EcTOP1 TmTOP1 EcTOP3	159 202 169 169 195 170 156 128 148	
G115190 G17615 HsTOP3b MmTOP3b HsTOP3a MmTOP3a ScTOP3 EcTOP1 TmTOP1 EcTOP3	211 211 238 238 228	AGRVOSVAVRLVVE

Gl15190 Gl7615 HsTOP3b MmTOP3b HsTOP3a MmTOP3a ScTOP3 EcTOP1 TmTOP1 EcTOP3	544 NIVIRAYVELRVTGRRRCIVPTSMGISLIHGYQLIDGDLS - SEQLRASIERDVTRIAEG 616 DGDAQSLVIDIDSSDESEQIHAEENVHPPEPVMVNDREDP SNSTSQFSTELVPLPMK 520 NICQRNYVTVESGRR IKPTNIGIVLVHGYYKIDAELV - LPTIRSAVEKQLNLIAQG 520 NICQRNYVTVESGRR IKPTNIGIVLVHGYYKIDAELV - LPTIRSAVEKQLNLIAQG 540 NICQRNYVTVESGRR IKPTNIGIVLVHGYYKIDAELV - LPTIRSAVEKQLNLIAQG 544 TIKARMYVG LTPDKRFLPGHLGMGLVEGYDSMGYEMS - KPDLRAELEADLKLICDG 544 TIKARMYVG LTSDKRFLPGHLGMGLVEGYDSMGYEMS - KPDLRAELEADLKLICEG 557 KIQVRNYVRSEKVGKETYIQPTTLGVSLVHGFEAIGLEDSFAKPFQRREMEQDLKKICEG 558 TIQDRGVVR VENRRFYAEKMGELVTDRLEENFRELMN - YDFTAQMENSLDQVANH 471 LLLNGGYLK KIRGYLYPTIVGSVVMDYLEKKYSDVVS - VSFTAEMEKDLDEVEQG 541 TLKKRNYIT LEKGKLIPTDTGYALIDALPDIAVNPD MTALWAEKQTLIENG	
G115190 G17615 HSTOP3b MmTOP3b HSTOP3a MmTOP3a ScTOP3 ECTOP1 TmTOP1 ECTOP3	602 GIRKDVLVNQVLSKELTKELHFKQNIGKLE	
G115190 G17615 HsTOP3b MmTOP3b HsTOP3a MmTOP3a ScTOP3 ECTOP1	652 GECHRYTDLIEQYPPRVYCVTCDKLYTIPMRGTFIEIPSRKCPYDGWPLILHMAEATQKR 722 KQTPMGVQALSCSYRSMLEHGMHLICEGQIDCKSVHDDCIRWGMKLYDSIDRLQVIKVG- 625 GKCHRFMKYIQAKPSRLHCSHCDETYTLPQNGTIKLYKELRCPLDDFELVLWSSGSRGKS 625 GKCHRFMKYIQAKPSRLHCSHCDETYTLPQNGTIKLYKELRCPLDDFELVLWSSGSRGKS 659 PQCNKDMVLKTKKNGGFYLSCMGFPECRSAVWLPDSVLEASRDSSVCPVCQPHPVYRLKL 659 PQCNKDMVLKTKKSGGFYLSCMGFPECRSAVWLPDSVLEASRDSSVCPVCQPPPVYRLKL	
TmTOP1 EcTOP3	610 TASTGVFLGCSGYALPPKERCKTTINLVPENEVLNVLEGEDAETNALRAKRRCPKCGTAM 557QKCS 634 SPGP	
G115190 G17615 HsTOP3b MmTOP3b HsTOP3a ScTOP3 EcTOP1 TmTOP1 EcTOP3	712 TFFCLHCYTFGLNKEEALTQLQTVAADGSTDIEQTKAITCGMCLNSLCOMSILKTQVCAC 781	
Gl15190 Gl7615 HsTOP3b MmTOP3b HsTOP3a MmTOP3a ScTOP3 EcTOP1 TmTOP1 EcTOP3	772 WHCNADGRPMLSVNRDGPDSSPGATNDTLAVARSPEAQEQTPEKSAELASAPVQPKKISI 801 YHSATDGTALVSKRR	
Gl15190 Gl7615 HsTOP3b MmTOP3b HsTOP3a MmTOP3a ScTOP3 EcTOP1 TmTOP1 EcTOP3	832 TIKPQAKISLNIPQANKSSGSASAVPSPNKASSLAELVGEYLCLDVETARRLP 829 TECGERCSRNSLAGSCAACGKAFQIPRTDGVIVVLNEECDNCGLS 747 ACMKCNVVAHCFENAHRVRVSADTCSVCEAALLDVDFNKAKSPLPGDETQHMG 747 ACNTCNVVAHCFENAHRVRVSADTCNTCEA	

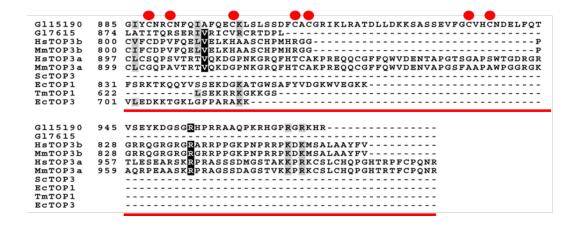
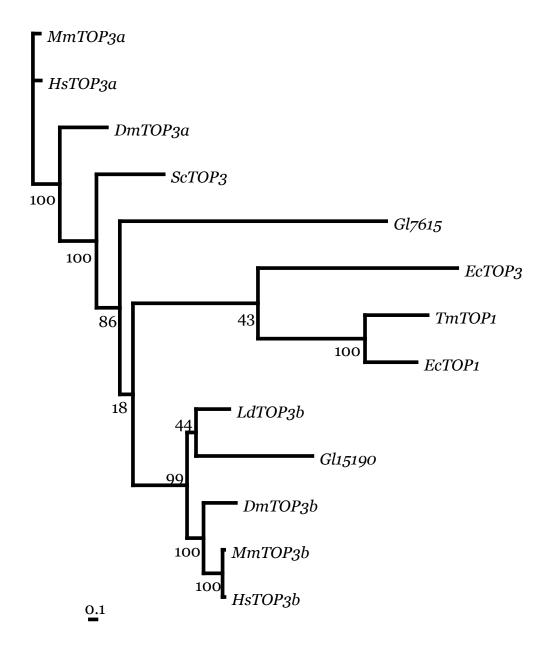



Fig. S1. Alignment of the type IA topoisomerases. The type IA topoisomerases from different orgasms, including *Mus musculus* (Mm), *Homo sapiens* (Hs), *Drosophila melanogaster* (Dm), *Saccharomyces cerevisiae* (Sc), *G. lamblia* (Gl), *Escherichia coli* (Ec), *Thermotoga Maritima* (Tm), and *Leishmania donovani* (Ld), are analyzed by ClustalW 1.83 with all default settings. GenBank *accession* numbers for MmTOP3α, MmTOP3β, HsTOP3α, HsTOP3β, DmTOP3α, DmTOP3β, ScTOP3, LdTOP3β, EcTOP1, EcTOP3, TmTOP1, Gl7615, and Gl15190 are NP 033436.1, NP 035754.1, NP 004609.1, NP 003926.1, NP 523602.2, NP 511059.2, NP 013335.1, ACX31684.1, WP 097426177.1, WP 024221956.1, WP 004082962.1, XP 001709812.1, and XM 001709742.1, respectively. Black boxes, gray boxes and hyphens indicate identical amino acids, conserved amino acids and gaps in the respective proteins, respectively. The catalytic important Tyrosine 328 is pointed by a red arrow. The decatenation loop of EcTOP3 (residues 502–519) is indicated by a purple line. The zinc ribbon domains are indicated by red filled circles.

Figure S2

<u>Fig. S2.</u> Phylogenetic analysis of the type IA topoisomerases. A neighbor-joining phylogenetic tree was obtained from alignment of type IA topoisomerases from

various organisms as described. The bootstrap values determined from 1000 trees are not shown. Values are higher than 400.

Figure S3

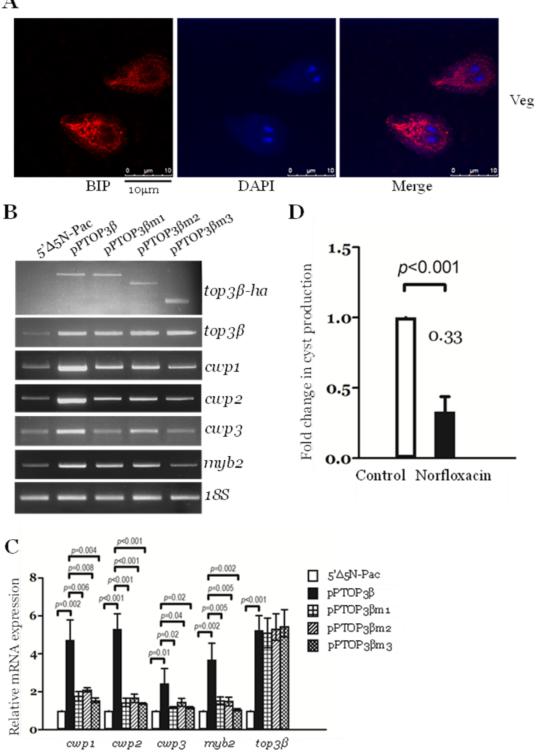
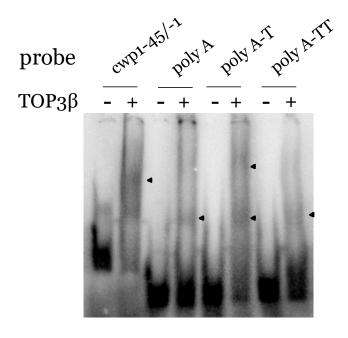



Fig. S3. Induction of *cwp1-3* and *myb2* gene expression in the TOP3β-overexpressing cell line during encystation and inhibition of cyst formation by norfloxacin. (A) ER staining as determined by BIP localization. The wild-type WB trophozoites were cultured in growth medium and then subjected to immunofluorescence assays. The endogenous BIP protein was detected by anti-BIP antibody. The left panel shows that the BIP protein is localized to ER. The middle panel shows that the DAPI staining of cell nuclei. The right panel shows the merged image. The BIP staining did not overlap with DAPI. (B) RT-PCR analysis of gene expression in the TOP3β- and TOP3β mutants-expressing cell lines during encystation. The 5'Δ5N-Pac, pPTOP3β, pPTOP3βm1-3 stable transfectants were cultured in encystation medium and then subjected to RT-PCR analysis using primers specific for top3β-ha, top3β, cwp1, cwp2, cwp3, myb2, and 18S ribosomal RNA genes, respectively. Representative results are shown. (C) The intensity of bands from three RT-PCR assays was quantified using Image J. The ratio of each target gene over the loading control (18S ribosomal RNA gene) is calculated. Fold change is calculated as the ratio of the difference between the pPTOP3β/m1-3 sample and control sample, to which a value of 1 was assigned. Results are expressed as means \pm 95% confidence intervals (error bars) of at least three separate experiments. p<0.05 was considered significant and the value was shown. (D) The addition of norfloxacin decreased cyst formation. The wild-type nontransfected WB cells were cultured in growth medium containing 497µM norfloxacin, or the same volume of Me2SO for 24h and then subjected to cyst count as described under "Materials and Methods" and Fig. 3D.

Figure S4

cwp1-45/-1	GTTTACAACTCTCAGATCAAGAAACACAG <u>AAATAÃAATAT</u> CAGGG
poly A	AAAAAAAAAAAAAAAAAA
poly A-T	AAAAAAAAATAAAAAAAAAA
poly A-TT	AAAAAAAATTAAAAAAAAA

<u>Fig. S4.</u> TOP3β may bind to AT-rich sequence. Electrophoretic mobility shift assays were performed using purified TOP3β and various 32 P-end-lableled oligonucleotide probes cwp1-45/-1, poly A, poly A-T, and poly A-TT as described. Components in the binding reaction mixtures are indicated above the lanes. The arrowhead indicates the shifted complex.

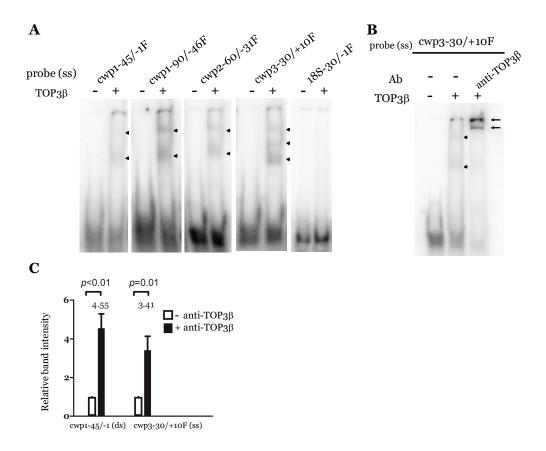


Fig. S5. Single-stranded DNA-binding and cleavage ability of TOP3β. (A) Single-stranded DNA-binding ability of TOP3β. Electrophoretic mobility shift assays were performed using purified TOP3β and ³²P labeled single-stranded (ss) oligonucleotide probes, such as cwp1-45/-1F (the forward single strand of the cwp1-45/-1). Components in the binding reaction mixtures are indicated above the lanes. The arrowheads indicate the shifted complexes. (B) The single-stranded DNA-binding activity of TOP3β was validated by supershift assays. Some reaction

mixtures contained $0.8\mu g$ of anti-TOP3 β antibody as indicated above the lanes. (C) Quantitation of the intensity of anti-TOP3 β supershift bands as indicated by arrows in Fig. 5C and Fig. S5B. The intensity of bands from three assays with double-stranded (ds) cwp1-45/-1 probe and single-stranded (ss) cwp3-40/+10F probe was quantified using Image J. Fold change is calculated as the ratio of the difference between the + anti-TOP3 β sample and - anti-TOP3 β sample, to which a value of 1 was assigned. Results are expressed as means \pm 95% confidence intervals (error bars) of at least three separate experiments. p<0.05 was considered significant and the value was shown.

ATGGGCACCGAGTACAAGCCCACGGTGCGCCTCGCCACCCGCGACGACGTCCCCCGGGCCG TACGCACCCTCGCCGCGTTCGCCGACTACCCCGCCACGCGCCACACCGTCGACCCGGA CCGCCACATCGAGCGGGTCACCGAGCTGCAAGAACTCTTCCTCACGCGCGTCGGGCTCGAC ATCGGCAAGGTGTGGGTCGCGGACGACGCCGCGCGGTGGCGGTCTGGACCACGCCGGAGA GCGTCGAAGCGGGGGGGTGTTCGCCGAGATCGGCCCGCGCATGGCCGAGTTGAGCGGTTC CCGGCTGGCCGCAGCAACAGATGGAAGGCCTCCTGGCGCCGCACCGGCCCAAGGAGCCC GCGTGGTTCCTGGCCACCGTCGGCGTCTCGCCCGACCACCAGGGCAAGGGTCTGGGCAGCG CCGTCGTGCTCCCCGGAGTGGAGGCGGCCGAGCGCCCGGGGTGCCCGCCTTCCTGGAGAC $\mathtt{CTCCGCGCCCCGCAACCTCCCCTTCTACGAGCGGCTCGGCTTCACCGTCACCGCCGACGTC}$ GAGTGCCCG**AAGGACCGCGCGACCTGG**TGCATGACCCGCAAGCCCGGTGCCCTCGAGTGAC catcaagtgcttgctattatgtaaactacttcctactccattaaatatttagacgcgcagt tctggctatgggaccgaaacttttgaagagcgagtcagctatgagtttatggatgaaaacg cagttcaatcagatcgtgcggtatataagtataagatacataaccgtagagtgctaatcac gctagttcaatttgtgcttcggactttagatctgctgatctagactttattccactaacgg atacttttagatcagttgttcaccacttggtggtactctctgtgacgtcaccttgtgcgtg atgcagtgcccagttccgcctgttgctgctgccaatggaggcccgccataacgttctacg cagtctttctgatcagccttgcgctccaactggcgacagaggagtgcacaaccgtctctgg tgatcagcccgacacttgcaaggcctgtagcgccgtcatcaacggcaagaagtactgctcc acgaatgcccctaaaagaacaacggagtatgtacacagtgcgctcatgagtccttcatgta caagagcggatgctacaaggatagccaggcacctggcaacacgatgtgtgaaacagcaact gatggagtgtgcacactaactaaggctggatacttcgtgccgccgggcgcagacgcctctc accagt cggtcataccatgtggagacg

Fig. S6. Replacement of the *top3β* gene with the *pac* gene in the TOP3βtd cell line confirmed by PCR and sequencing. Genomic DNA was isolated from the TOP3βtd and control cell lines cultured in growth medium. PCR was performed using primers specific for *pac* (PCR2 in Fig. 8A), which are PCR2F for bold region 1 and PCR2R for bold region 2, to verify the integration of the *pac* gene into the correct region in genomic DNA. The sequence results obtained from the PCR2 product are shown as underlined letters. Capital letters indicate the coding sequence for the *pac* gene, which

starts at ATG and stops at TGA. This indicates the replacement of the $top3\beta$ gene with the pac gene. The region used to clone the $top3\beta$ 3' region into the pTOP3 β td plasmid for HR is shown in red, which is also between the sequence of top3 β 3XF and top3 β 3KR. The underlined and lower case letters, which are downstream and outside of the red region of top3 β 3XF and top3 β 3KR, indicate that HR occurred in the sequence of $top3\beta$ 3' region and that the pac gene was integrated in the genomic DNA.

Figure S7

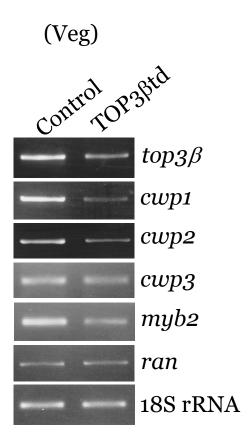


Fig. S7. RT-PCR analysis of gene expression in the TOP3βtd cell line. The control and TOP3βtd cell lines were cultured in growth medium and then subjected to RT-PCR analysis using primers specific for *top3β*, *cwp1*, *cwp2*, *cwp3*, *myb2*, *ran*, and 18S ribosomal RNA genes, respectively. The *ran* mRNA levels did not significantly change.

Figure S8

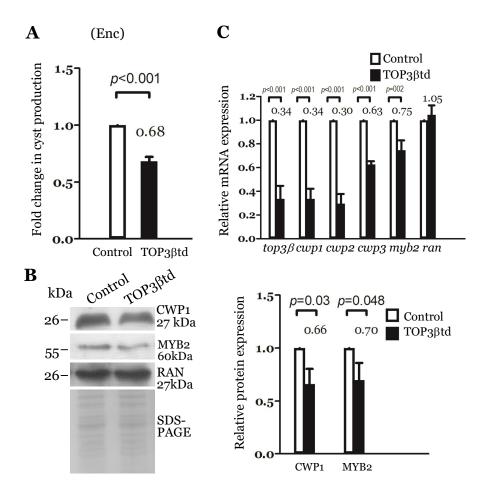
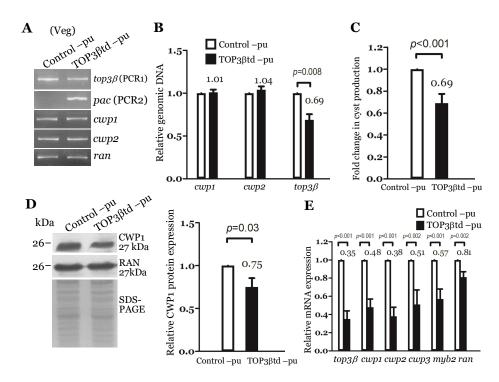



Fig. S8. Decrease in expression of cwp1-3 and myb2 by targeted disruption of the $top3\beta$ gene during encystation. (A) Cyst formation decreased by targeted disruption of the $top3\beta$ gene in the TOP3βtd cell line during encystation. The control and TOP3βtd cell lines were cultured in encystation medium for 24h (Enc) and then subjected to cyst count as described under "Materials and Methods" and Fig. 3D. (B) Targeted disruption of the $top3\beta$ gene decreased the CWP1 and MYB2 levels in the TOP3βtd

cell line during encystation. The control and TOP3 β td cell lines were cultured in encystation medium for 24h and then subjected to SDS-PAGE and Western blot analysis as described in Fig. 3A. The blot was probed with anti-CWP1, anti-MYB2, and anti-RAN antibodies, respectively. The intensity of bands from three Western blot assays was quantified as described in Fig. 3A. (C) Decrease in expression of *cwp1-3* and *myb2* by targeted disruption of the *top3\beta* gene in the TOP3 β td cell line during encystation. The control and TOP3 β td cell lines were cultured in encystation medium for 24h and then subjected to quantitative real-time RT-PCR analysis using primers specific for *top3\beta*, *cwp1*, *cwp2*, *cwp3*, *myb2*, *ran*, and 18S ribosomal RNA genes, respectively, as described in Fig. 1B.

<u>Fig. S9.</u> Decrease in expression of cwp1-3 and myb2 by targeted disruption of the $top3\beta$ gene after the removal of puromycin during vegetative growth. (A) Partial replacement of the $top3\beta$ gene with the pac gene in the TOP3β –pu cell line confirmed by PCR. Puromycin was removed from the TOP3βtd and control cell lines to obtain the TOP3βtd –pu and control –pu cell lines, respectively. Genomic DNA was isolated from the TOP3βtd –pu and control -pu cell lines cultured in growth medium (vegetative growth, Veg). PCR was performed using primers specific for $top3\beta$ (PCR1), pac (PCR2), cwp1, cwp2, and ran genes, respectively, as described in Fig. 8B. (B) Partial disruption of the $top3\beta$ gene in the TOP3βtd -pu cell line confirmed by real-time PCR. Real-time PCR was performed using genomic DNA and primers specific for $top3\beta$, cwp1, cwp2, and ran genes, respectively, as described in

Fig. 8C. (C) Cyst formation decreased by targeted disruption of the $top3\beta$ gene in the TOP3 β td –pu cell line during vegetative growth. The control –pu and TOP3 β td –pu cell lines were cultured in growth medium and then subjected to cyst count as described under "Materials and Methods" and Fig. 3D. (D) Targeted disruption of the $top3\beta$ gene decreased the CWP1 and MYB2 levels in the TOP3 β td –pu cell line during vegetative growth. The control –pu and TOP3 β td –pu cell lines were cultured in growth medium and then subjected to SDS-PAGE and Western blot analysis as described in Fig. 3A. The blot was probed with anti-CWP1, anti-MYB2, and anti-RAN antibodies, respectively. The intensity of bands from three Western blot assays was quantified as described in Fig. 3A. (E) Decrease in expression of cwp1-3 and cwp1-3 and cwp1-3 gene in the TOP3cwp1-3 gene in the TOP3cwp1-3 and cwp1-3 and cwp1-3 are the top3cwp1-3 gene in the TOP3cwp1-3 and cwp1-3 and cwp1-3 gene growth. The control –pu and TOP3cwp1-3 cell lines were cultured in growth medium and then subjected to quantitative real-time RT-PCR analysis using primers specific for cwp1-3, cwp1-3, cwp2-3, cwp3-3, cwp3-3,

Figure S10

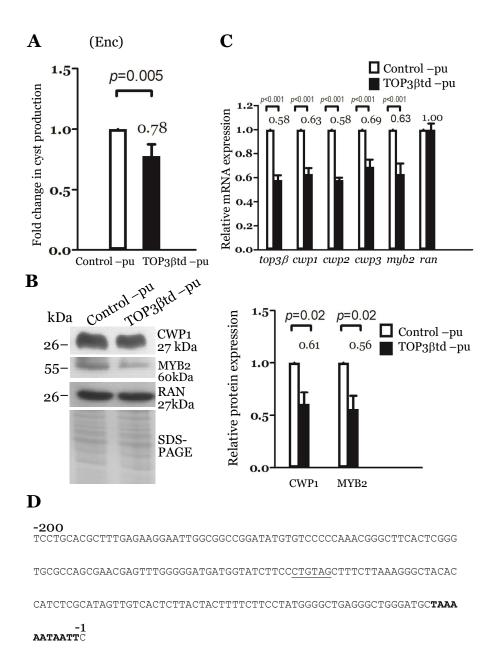


Fig. S10. Decrease in expression of cwp1-3 and myb2 by targeted disruption of the $top3\beta$ gene after the removal of puromycin during encystation. (A) Cyst formation decreased by targeted disruption of the $top3\beta$ gene in the TOP3 β td –pu cell line during encystation. The control –pu and TOP3 β td –pu cell lines were cultured in

encystation medium for 24h (Enc) and then subjected to cyst count as described under "Materials and Methods", as described in Fig. 3D. (B) Targeted disruption of the $top3\beta$ gene decreased the CWP1 and MYB2 levels in the TOP3 β td –pu cell line during encystation. The control –pu and TOP3βtd –pu cell lines were cultured in encystation medium and then subjected to SDS-PAGE and Western blot analysis as described in Fig. 3A. The blot was probed with anti-CWP1, anti-MYB2, and anti-RAN antibodies, respectively. The intensity of bands from three Western blot assays was quantified as described in Fig. 3A. (C) Decrease in expression of cwp1-3 and myb2 by targeted disruption of the $top3\beta$ gene in the TOP3 β td –pu cell line during encystation. The control –pu and TOP3βtd –pu cell lines were cultured in encystation medium and then subjected to quantitative real-time RT-PCR analysis using primers specific for top3\beta, cwp1, cwp2, cwp3, myb2, ran, and 18S ribosomal RNA genes, respectively, as described in Fig. 1B. (D) The MYB2 binding site in the $top3\beta$ promoter. The 200-bp 5' untranslated region of the $top3\beta$ promoter is shown. The AT-rich promoter element is in bold. The underlined sequence, CTGTAG, is the reverse sequence of the MYB2 binding sequence, CTACAG.