Number	Annotation	Orf number	Fold change (pPTop3β/5'∆5N-Pac)*
1	VSP	113304	65.66
2	VSP	113163	40.28
3	Hypothetical protein	31366	16.43
4	Cyst wall protein 1	5638	11.69
5	Hypothetical protein	5206	9.48
6	Hypothetical protein	3731	9.29
7	Cyst wall protein 2	5435	9.10
8	Hypothetical protein	16622	8.65
9	Ceramide	11642	<u> 9</u> 40
	glucosyltransferase	11642	8.40
10	VSP	41472	8.33
11	VSP with INR	113450	8.01
12	Glucose 6-phosphate	14259	8.01
	N-acetyltransferase	14239	8.01
13	High cysteine membrane protein Group 6	113512	7.50
14	VSP with INR	16501	7.30
15	VSP	114162	6.81
16	Hypothetical protein	27652	6.34
17	Hypothetical protein	14690	6.19
18	Hypothetical protein	4984	5.98
19	VSP, putative	114286	5.54
20	Hypothetical protein	11120	5.35
21	VSP	112867	5.25
22	Hypothetical protein	7374	5.08
23	Hypothetical protein	135270	5.07
24	Hypothetical protein	35638	4.64
25	Hypothetical protein	115669	4.55
26	Hypothetical protein	8505	4.49
27	Hypothetical protein	112575	4.45
28	Hypothetical protein	9605	4.40
29	VSP	11521	4.37
30	VSP presumed INR	137714	4.32
31	VSP with INR	11470	4.19

Table S1. Genes up or down regulated by Top3 β overexpression.

32	Retinoic acid induced 17-like protein	11930	4.01
33	VSP	137708	3.89
34	Sugar transport family protein	9046	3.88
35	Hypothetical protein	32657	3.88
36	Hypothetical protein	28112	3.83
37	CEGP1 protein	17120	3.82
38	Hypothetical protein	116201	3.51
39	Adenylate cyclase	14367	3.46
40	Hypothetical protein	119703	3.45
41	Hypothetical protein	16078	3.37
42	Zinc finger domain	2116	3.35
43	Hypothetical protein	113303	3.31
44	Hypothetical protein	13878	3.20
45	VSP	115796	3.13
46	VSP, putative	118133	3.12
47	High cysteine membrane protein Group 1	32607	3.12
48	VSP	101765	3.11
59	Hypothetical protein	8960	2.99
50	Hypothetical protein	23934	2.96
51	Hypothetical protein	119224	2.92
52	Cathepsin B-like cysteine proteinase 3 precursor	114165	2.92
53	Hypothetical protein	36883	2.90
54	High cysteine membrane protein Group 6	114470	2.84
55	Protein 21.1	4846	2.73
56	Nicotinamide-nucleotide adenylyltransferase	92618	2.71
57	Hypothetical protein	101768	2.59
58	VSP	122566	2.58
59	Hypothetical protein	2860	2.55
60	Hypothetical protein	11050	2.52
61	Hypothetical protein	2605	2.51
62	Hypothetical protein	8325	2.51

63	VSP	112801	2.49
64	VSP with INR	113439	2.48
65	Glucosamine-6-phosphat	8245	2.44
	e deaminase	8243	2.44
66	VSP with INR	115797	2.43
67	Hypothetical protein	2692	2.41
68	VSP	26894	2.39
69	Chorein	87358	2.38
70	Furin precursor putative	2897	2.38
	serine protease	2071	2.38
71	UDP-glucose	7982	2.37
	4-epimerase	1962	2.37
72	High cysteine membrane	11309	2.36
	protein Group 1	11507	2.30
73	Hypothetical protein	33672	2.33
74	Hypothetical protein	114210	2.30
75	Hypothetical protein	29757	2.29
76	Protein Kinase	4033	2.25
77	Protein 21.1	92983	2.21
78	Hypothetical protein	2404	2.21
79	Hypothetical protein	7598	2.17
80	Hypothetical protein	10425	2.14
81	Fatty acid elongase 1	92729	2.14
82	Hypothetical protein	117068	2.12
83	Hypothetical protein	11148	2.11
84	Dolichol-phosphate		
	mannosyltransferase,	3180	2.10
	putative		
85	High cysteine protein	94003	2.08
86	Variant-specific surface	11690	2.08
	protein	11070	2.00
87	UDP-N-acetylglucosamin	16217	2.07
	e pyrophosphorylase		2.07
88	DNA topoisomerase III	15190	2.06
89	Hypothetical protein	119599	2.06
90	Hypothetical protein	10552	2.06

91	Variant-specific surface protein	9276	2.05
92	Hypothetical protein	15532	2.04
93	Hypothetical protein	14833	2.00
94	DNA topoisomerase III	7615	0.02
95	VSP	137617	0.20
96	VSP	40571	0.24
97	VSP with INR	119707	0.24
98	VSP	34357	0.24
99	VSP	90215	0.24
100	VSP with INR	40592	0.32
101	VSP	41539	0.34
102	VSP	115047	0.35
103	Hypothetical protein	92625	0.37
104	VSP	114065	0.38
105	High cysteine membrane protein Group 3	112126	0.38
106	High cysteine protein	87706	0.39
107	VSP	111903	0.39
108	VSP	113093	0.39
109	VSP	99743	0.40
110	Protein 21.1	15965	0.40
111	VSP	137612	0.40
112	VSP	121070	0.41
113	Cytosine deaminase, putative	2486	0.42
114	VSP	116477	0.42
115	DNA-damage inducible protein DDI1-like	7718	0.43
116	VSP	34196	0.43
117	VSP	41401	0.44
118	Hypothetical protein	19870	0.44
119	VSP	112678	0.44
120	High cysteine membrane protein Group 3	114891	0.45
121	VSP	137611	0.45
122	Hypothetical protein	125106	0.45

123	VSP	41349	0.45
124	VSP	118900	0.45
125	Hypothetical protein	123980	0.46
126	Hypothetical protein	17241	0.47
127	High cysteine membrane protein Group 1	10659	0.47
128	VSP	111874	0.48
129	VSP	137607	0.48
130	VSP	101410	0.49
131	Kinase, NEK	9870	0.49
132	Hypothetical protein	31420	0.49
133	Hypothetical protein	99726	0.50

**p* values were determined to be <0.05 for groups in which the average means changed by a factor of ≥ 2.0 or ≤ 0.5 .

Name	Sequence (5'>3')
$top3\beta F$ (pcr1f)	CACCATGATCCTTCTCATTGCA
$top3\beta R$ (PCR1R)	TCTGTGTTTGCGACCCCT
top3βHAF	CAGACAGTATCTGAGTAC
HAR	AGCGTAATCTGGAACATCGTATGGGTA
cwp1F	ATGATGCTCGCTCTCCTT
cwp1R	TCAAGGCGGGGTGAGGCA
cwp2F	ATGATCGCAGCCCTTGTTCTA
cwp2R	CCTTCTGCGGACAATAGGCTT
cwp3F	ATGTTTTCTCTGCTTCTTCT
cwp3R	TCTGTAGTAGGGCGGCTGTA
myb2F	ATGTTACCGGTACCTTCTCAGC
myb2R	GGGTAGCTTCTCACGGGGAAG
ranF	ATGTCTGACCCAATCAGC
ranR	TCAATCATCGTCGGGAAG
top3βrealF	GGAGGGGGACAGACCAAG
top3βrealR	CGTGAGGGATTAGCCCAGT
cwp1realF	AACGCTCTCACAGGCTCCAT
cwp1realR	AGGTGGAGCTCCTTGAGAAATTG
cwp2realF	TAGGCTGCTTCCCACTTTTGAG
cwp2realR	CGGGCCCGCAAGGT
cwp3realF	GCAAATTGGATGCCAAACAA
cwp3realR	GACTCCGATCCAGTCGCAGTA
myb2realF	TCCCTAATGACGCCAAACG
myb2realR	AGCACGCAGAGGCCAAGT
ranrealF	TCGTCCTCGTCGGAAACAA
ranrealR	AACTGTCTGGGTGCGGATCT
18SrealF	AAGACCGCCTCTGTCAATCAA
18SrealR	GTTTACGGCCGGGAATACG
top3βNF	GGCCGGCTAGCTCGGTGTCGATGTGCCAAAGC

Table S2. Oligonucleotides used for construction of plasmids and PCR.

top3βMR	GGCCGACGCGTTCGGTGTCGATGTGCCAAAGC
top3β865F	CGCCCTTGCCAATGA
top3β926R	GAGAGACCGAGCACCGTTGA
top3βm1F	CTGGATACATTTCTTTCCCAAGAACTGAGTC
top3βm1R	GACTCAGTTCTTGGGAAAGAAATGTATCCAG
top3βm2MR	GGCCGACGCGTAATAGAGGTAAACTTCGCGT
top3βm3MR	GGCCGACGCGTTGTTGCCAGGAAGTGCTTAG
top3β5HF	GGCGGAAGCTTTACTAACTATGACTCTAGGGC
top3β5NR	GGCGGCCATGGGAATTATTTTTAGCATCCCAG
top3β3XF	GGCGGCTCGAGTGACCATCAAGTGCTTGCTATTAT
top3β3KR	GGCGGGGTACCCTGGCTATCCTTGTAGCATCC
top3β-guide	GAGAGCGGGTACCCTAGCTTATTGAAAAAGCGAGAGGCCATTGAGATGACTCGCCT
	GATTGCAATAGCAAACAGTGTCTATAGTCTAATTGTGGACAACAGAGGGCTTATTG
	CAACGTTGATGACCAAGTTCAACAAGGGCGTCGCCTCCTATGAGCAGGTCATTCGG
	AATTTCGACGACCGGTAGCGTCCCCAGAGTAAACCATTTTAAATTGAAATAGGCGG
	TTGGAAATAAAAGCGCGCC GACCTTCATGTGTACTT<i>CTG</i>GTTTTAGAGCTAGAAAT
	AGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGG
	TGCTTTTTTGAATTCGAGAGCG, underlined region is U6 promoter, bold
	region is for annealing, underlined and bold region is upstream 3nt of PAM,
	other region is scaffold RNA
top3βm2R	
	AATAGAGGTAAACTTCGCGT
top3βm3R	TGTTGCCAGGAAGTGCTTAG
PCR2F	
	TGTTGCCAGGAAGTGCTTAG
PCR2F	TGTTGCCAGGAAGTGCTTAG AAGGACCGCGCGACCTGG
PCR2F PCR2R	TGTTGCCAGGAAGTGCTTAG AAGGACCGCGCGACCTGG CGTCTCCACATGGTATGACCG
PCR2F PCR2R top3β5F	TGTTGCCAGGAAGTGCTTAG AAGGACCGCGCGACCTGG CGTCTCCACATGGTATGACCG TTGGGGGGATGATGGTATCTTC
PCR2F PCR2R top3β5F top3β5R	TGTTGCCAGGAAGTGCTTAG AAGGACCGCGCGCCTGG CGTCTCCACATGGTATGACCG TTGGGGGGATGATGGTATCTTC GCATCCCAGCCCTCAGCC
PCR2F PCR2R top3β5F top3β5R 18S5F	TGTTGCCAGGAAGTGCTTAG AAGGACCGCGCGACCTGG CGTCTCCACATGGTATGACCG TTGGGGGATGATGGTATCTTC GCATCCCAGCCCTCAGCC CCAAAAAAGTGTGGTGCAGG
PCR2F PCR2R top3β5F top3β5R 18S5F 18S5R	TGTTGCCAGGAAGTGCTTAG AAGGACCGCGCGCGCGGG CGTCTCCACATGGTATGACCG TTGGGGGGATGATGGTATCTTC GCATCCCAGCCCTCAGCC CCAAAAAAGTGTGGTGCAGG GCCGGGCGGGGCGCCGCGG
PCR2F PCR2R top3β5F top3β5R 18S5F 18S5R cwp15F	TGTTGCCAGGAAGTGCTTAGAAGGACCGCGCGCGCGGGCGTCTCCACATGGTATGACCGTTGGGGGATGATGGTATCTTCGCATCCCAGCCCTCAGCCCCAAAAAAGTGTGGTGCAGGGCCGGGCGCGGGGCGCCGCGGCAACGGCTTACTAAATCATTCTCTTG
PCR2F PCR2R top3β5F top3β5R 18S5F 18S5R cwp15F cwp15R	TGTTGCCAGGAAGTGCTTAGAAGGACCGCGCGCGCGGGCGTCTCCACATGGTATGACCGTTGGGGGGATGATGGTATCTTCGCATCCCAGCCCTCAGCCCCAAAAAAGTGTGGTGCAGGGCCGGGCGGGGCGCGCGGGCAACGGCTTACTAAATCATTCTCTTGTTCTGTGTTTCTTGATCTGAGAGTTGT
PCR2F PCR2R top3β5F top3β5R 18S5F 18S5R cwp15F cwp25F	TGTTGCCAGGAAGTGCTTAGAAGGACCGCGCGACCTGGCGTCTCCACATGGTATGACCGTTGGGGGATGATGGTATCTTCGCATCCCAGCCCTCAGCCCCAAAAAAGTGTGGTGCAGGGCCGGGCGCGGGGCGCGCGGGCAACGGCTTACTAAATCATTCTCTTGTTCTGTGTTTCTTGATCTGAGAGTTGTCACTTTGATGAGAGCATGGG

cwp35R	ATCAGTAGTAACTTATTTTTGGGAAAGAC
myb25F	TGGCTATGTATTTTTTTTTCTTCTACAGCT
myb25R	TAGCAGTACAGAGTAATTATTATTTAGTA
U65F	TTGAGATGACTCGCCTGATTG
U65R	GAAATTCCGAATGACCTGCTC
iscsF	CACCATGATTTACCTGGACAAC
iscsR	GTCATGCTTCCACTCTAT
bipF	CACCATGACGTCTAGTCACGTTAA
bipR	GAGTTCATCTTTTTCTGCAT

Gl15190 Gl7615 HsTOP3b MmTOP3b HsTOP3a ScTOP3 EcTOP3 EcTOP1 EcTOP3	1	- MILLIAEKPSIAEMISRNYGEG A - MNRVILCVTEKNSVAAEVSNVISKGSYSK - MKTVLMVAEKPSLAQSTAKILSRGSLSS - MKTVLMVAEKPSLAQSTAKILSRGSLSS MIFPVARYALRWLRRPEDRAFSRAAMEMALRGVRKVLCVAEKNDAAKGIADLLSNGRMRR MIFPVTLLAFQWHRRPGGRALSRAAMEVAFRGVRKVLCVAEKNDAAKGIADLLSNGRMRR - MKVLCVAEKNSIAKAVSQILGGGRSTS - MGKALVIVESPAKAKTINKYLGSDYVVK - MSKKVKKYIVVESPAKAKTIKSILGNEYEVF - MKLFIAEKPAVANDIVKALGGNFTRH
Gl15190 Gl7615 HsTOP3b MmTOP3b HsTOP3a MmTOP3a ScTOP3 ECTOP1 TmTOP1 ECTOP3	30 29 29 61 61 28	
Gl15190 Gl7615 HsTOP3b MmTOP3b MmTOP3a MmTOP3a ScTOP3 EcTOP1 EcTOP3	85 84 116 116 88 81 55	RGHVHYSFTDSGSTVAKHUKSIGGKAMQLILCLDNDREGENICFEVLKVLKPTLRSDCR- CGVHFKANAVFKKHVLRPNAAETNVLVLMLDADREGENIGYDIIEIFCSVLPADTLL QAPTEKKEANPKLNMVKFLQVEGRGCDYIVLWLDCDKEGENICFEVLDAVLPVMNKAHGG QAPTEKKEANPKLNMVKFLQVEGRGCDYVVLWLDCDKEGENICFEVLDAVLPVMNNAHNG AEIEKYCPENF-VDIKKTLERETRQCQALVIWTDCDREGENIGFEIHVCKAVKPNL AEIEKYCPENF-UDIKKTLERETHCQALVIWTDCDREGENIGFEIHVCKAVKPNL AFLNEIMNNNQ-KKIASNIKREARNADYLMIWTDCDREGEYIGWEIWQEAKRGNRLIQND AHYEVLPGKEKVVSEKQLAEKADHIYLATDLDREGEAIAWHLREVIGGDDARYSR- PEFAVIKGKEKVVEKKDLAKKGE-LLIASDMDREGEAIAWHIARVTN-TLGRKNR- VKYQPVESAEKQVKTIIEIR-RADVTEIIHAGDPDDEGQLLVDEVLEYAGNTKPVKRVL
Gl15190 Gl7615 HsTOP3b HsTOP3a MmTOP3a ScTOP3 EcTOP3 EcTOP1 TmTOP1 EcTOP3		VRRARFSAVTKAETQNAFRNLD DIRPARLPKIRSPTEHTLRHILAADHVPSQTSVKRTIIVKRARFFGLTYPELTSAVYNAG EKTVFRARFSSITDTDICNAMACLG EK
Gl15190 Gl7615 HsTOP3b HsTOP3a MmTOP3a ScTOP3 EcTOP3 EcTOP1 TmTOP1 EcTOP3	159 202 169 195 195 170 156 128 148	EPD HNEALS <mark>VDARQELDLRIGC</mark> AFTRFQTKYFQGKYGDLDSS EPD QRVSDAVDVRQELDLRIGAAFTRFQTLRLQRIFPEVLAEQ EPD QRVSDAVDVRQELDLRIGAAFTRFQTLRLQRIFPEVLAEQ RLD MKSVHAVGTRIEIDLRAGVTFTRLLTETLRNKLRNQATMTKDGAKHRGGNKNDSQ
Gl15190 Gl7615 HsTOP3b MmTOP3b HsTOP3a MmTOP3a ScTOP3 EcTOP1 TmTOP1 EcTOP3	201 250 211 238 238 293 165 189	VISYGPCQTPTLSECVSRHDEIQRERPKQIFSL PISFGPCQVPTLGLWHSNDLLSLKNHQSSSFTLHLVCDPRPLQTHSGSVFKGLADALKRW LISFGPCQTPTLGFCVE

G115190 234 G17615 310 HsTOP3b 244 MmTOP3b 244 HsTOP3a 271 MmTOP3a 271	DVCALIG - DQPHSLRWQGVPSESREVIE EKRTGLFGKSATKCLKVLSFKSSKST DSKHRNEKDDLQGLVFSPIDTSHFKSYLGSLPVLKLVFDTLQNQKRIVVVSDVEEKPYT QAKVNTDK - DRSLLLDWDRVRVFDREIAQ MFLN MTKLEKEROVEATSRKEKA QAKVHTDK - ESLLLDWDRVRVFDWEIAQ MFLN MTKLEKEROVEATSRKEKA KVTHDHKD - GIVEFNWKRHRLFNHTACL VLYQL - CVEDP - MATVVEVRSKPKS KVTHDHKD - GTVEFNWKRYRLFNHTACL VLYQL - CWEDP - MATVVEVRSKPKS QLVVENKDNGGTTTFOWDRGHLFDRLSVL TFYET - CIETAGNVA OVVDLKSKPTT DASTTPSGEALALQVTHQNDKPFRPVNK EQTQAAVSLLEKARYSVLEREDKPTT TVN FDGLTAEIDVKEKKEFDAETL KEIQSIDELVVEEKKVSVKKFAPP - TGHFQRGADVIRANWKPGEFAPLTDRKLLDK TWANGTATSLAGKPFTVEAAATDDKK
	-
	LPRPLPMNTVALLKAASTVLGLSPNSAMALAERLYIAGYISYPRTESTTYPS VPRPHPVSTLDMQRALSESLSSQSVMTIAESLYTAGYISYPRTETKSYPN KQRPLALNTVEMLRVASSSLGMGPQHAMQTAERLYTQGYISYPRTETHYPE KQRPLALNTVEMLRVASSALGMGPQHAMQIAERLYTQGYISYPRTETHYPE KWRPQALDTVELEKLASRKLRINAKETMRIAEKLYTQGYISYPRTETNIFPR KWRPQALDTVELEKLASRKLRINAKETMRIAEKLYTQGYISYPRTETNIFPR KWRPQALDTVELEKLASRKLRINAKETMRIAEKLYTQGYISYPRTETNIFPK KYRPLPLTTVELQKNCARYLRINAKETMRIAEKLYT
ECTOP3 332	GYNIREIVLALKESSSTRISQCAONLIPSSKKSSDESVRYTNPRRGTDQGD TYNLSYFKQLVDKLAHMPPNVSPLCALLADYAQVLLDDSPGNPYTLQLPRSNSASTDNAH NFDLKGSLRQOANHPYWADTVKRLLAEGINRPRKGHDAGD NFDLKGSLRQOANHPYWADSVKQLLAEG
	HPPIMPTG-LIPHDVSSNELSLYNLITKHFLATVSPDAVYSHSSLTLQSVDMPSETFLLS LPIHELACPSRPUDKDEELVYGYITRSFLASVSPDARGTRMTMRTRLDKCEFVAT HPPITPMKSATEAELGGDAWRLYEYITRHFIATVSHDCKYLQSTISFRIGPELFTCS HPPITPMKSATEAELGGDAWRLYEYITRHFIATVSHDCKYLQSTISFRIGPEHFTCM PPIHETKYTNNLQGDEQRLYEFIVRHFLACCSQDAQGQETTVEIDIAQERFVAH PPIHETKYTSGLQGDDRRLYEFIVRHFLACCSQDAQGQETTVEIDIAQERFVAH PPIHEIVSLGPEANVSPVERRVYEYVARHFLACCSCDAKGQSMTLVLDWAVERFSAS PSDVNVMAESL-KDMEADAQKLYQLIWRQFVACQMTPAKYDSTTLTVG-AGDFRLKARGR PTNVFMTPEEAGKYENSDQKKLYELIWKRFLASQMKPSQYEETRFVLR-TKDGKYRFKGR TATIFTVSVFDVNALSTDERNVYLAIAQHYLVQFMPEKAYQEVSVAIQCGDESEYAR
	ITDVVDQCWKALYSATEFSSMRDNDLSDDLADESISLSKETLQAISATCATLTIASAAIK QNSLTFDCFKRILRKSLEEAG
Gl15190 509 G17615 581 HsTOP3b 485 MmTOP3b 509 MmTOP3a 509 ScTOP3 522 EcTOP1 468 TmTOP1 436 EcTOP3 481	AGMIKPEGYLSESDILGLME KHGIGTDASMATHIG VLQAPYKQFFGTQDIHIINP TANDESELLASSIVW EKQTNPEDYLTEAELITIME KHGIGTDASIPVHIN EKQTNPEDYLTEAELITIME KHGIGTDASIPVHIN DGETSPPKLLTEADLIALME KHGIGTDATHAEHIE DGETSPPKLLTEADLIALME KHGIGTDATHAEHIE QHTKPARSES KHGIGTDATIAEHIE QHTKPARSES KHGIGTPATAEHIE RGTAPPKPMTESELLMD KHGIGTPATHAEHIE GETSPPKLLTEADLIALME KHGIGTPATHAEHIE GETSPFKLKESE KHGIGTPATHAEHIE GETSPFKKESS KESSIS KHGIGTPATHAEHIE KHGIGTPATHAEHIE GETSPFKKESS KHGIGTPATHAEHIE GETSPFKATSSAS KKELE KHGIGTPATASIS KHGIGTPATASIS

G115190	544	NIVTRAYVELRVTGRRRCLVPTSMCISLIHCYQLIDGDLSSPQLRASIERDVTRIAEC
G17615	616	DGDAQSLVIDIDSSDESEQIHAEENVHPPEPVMVNDREDPSNSTSQFSTELVPLPMK
HsTOP3b	520	NICQRNYVTVESGRR IKPTNIGIVIVHGYYKTDAELV LPTIRSAVEKQLNITAQG
MmTOP3b	520	NICQRNYVTVESGRRLKPTNLGIVLVHGYYKIDAELVLPTIRSAVEKQLNLIAQG
HsTOP3a	544	TIKARMYVGLTPDKRFLPGHLGMGLVEGYDSMGYEMSKPDLRAELEADLKLICDG
MmTOP3a	544	TIKARMYVGLTSDKRFLPGHLGMGLVEGYDSMGYEMSKPDLRAELEADLKLICEG
ScTOP3	557	KIQVRNYVRSEKVGKETYLOPTTLGVSLVHGFEAIGLEDSFAKPFQRREMEQDLKKICEG
EcTOP1	503	THODISGNARVENERFYAEKMIGEIVTDELEENFRISLMNYDFTSOMISN SINDOVANH
TmTOP1	471	LLLNRGYIKKIRGYLYPTIVGSVVMDYLEKKYSDVVSVSFTAEMEKDLDEVEQG
EcTOP3	541	TLKKRNYITLEKGKLIPTDTGYALIDALPD AVNPDMTALWAEKQTLIENG
ECIOP5	JII	
G115190	602	KIRKDVLVNQVLSKELTKELHFKQNIGKLEALLNAKFTSIKKAGRPFILC
G17615	673	ESALLLAMDQHGIGTDATMSDHIALITDR EYINSKKQVVSLGAELLQFY
HsTOP3b	575	ESALLLAMDQHGIGTDATMSDHIALITDREYINSKKQVVSLGAELLQFY KADYRQVLGHTLDVFKRKFHYFVDSIAGMDELMEVSFSPLAATGKPLSRC KADYHQVLGHTLDIFKRKFHYFVDSIAGMDELMEVSFSPLAATGKPLSRC
MmTOP3b	575	KADYHOVLGHTLDIFKRKFHYFVDSIAGMDELMEVSFSPLAATGKPLSRC
HsTOP3a	599	KKDKFVVLRQQVQKYKQVFIEAVAKAKKLDEALAQYFGNGTELAQQEDIYPAMPEPIRKC KKDKFQVLRQQVQKYKQVFIEAVAKAKKLDEALSQYLGERTEMAQQEEIYPAMPEPVRKC
MmTOP3a	599	KENKENVERÖNVÖKYKÖVETEAVAKAKKLEEALSÖYLGERTEMAÖÖFETYPAMPEDVRKO
ScTOP3	617	
		HASKTDVVKDIVEKYRKYWHKTNACKN EAEWKAVLDHFFSDTQQLDKAEKDPEEGGMRPNQMVLTSIDCPTCERKMGIR
EcTOP1	557	EAEWKAVIDHFFSDETQQLDKAEKDPEEGGMRPNQMVLTSIDCPTCERKMGIR
TmTOP1	525	KATDAIVEREFIESUSSVEDRADAIVVDFPIN
EcTOP3	592	EMTIEQFVDELYNDLIPMISNANSAEIKVSPSAPSGQSQRLS
G115190	652	GECHRYTDLIEQYPPRVYCVTCDKLYTIPMRGTFIEIPSRKCPYDGWPLILHMAEATQKR
G17615	722	KQTPMGVQALSCSYRSMLEHGMHLICEGQIDCKSVHDDCIRWGMKLYDSIDRLQVIKVG-
HsTOP3b	625	GKGHRFMKYIQAKPSRLHCSHCDETYTLPQNGTIKLYKELRCPLDDFELVLWSSGSRGS
MmTOP3b	625	GKCHRFMKYIQAKPSRLHCSHCDETYTLPQNGTIKLYKELRCPLDDFELVLWSSGSRGKS
HsTOP3a	659	PQ G NKDMVLKTKKNGGFYLSCMGFPECRSAVWLPDSVLEASRDSSVCPVCQPHPVYRL <mark>K</mark> L
MmTOP3a	659	PQ C NKDMVLKTKKSGGFYLSCMGFPECRSAVWFPDSVLEASRDNSVCSVCQPPPVYRL <mark>K</mark> L
ScTOP3		
EcTOP1	610	TASTGVFLGCSGYALPPKERCKTTINLVPENEVLNVLEGEDAETNALRAKRRCPKCGTAM
TmTOP1	557	
ECTOP3		SPCP
101013	0.5.1	
G115190	712	TFFCLHCYTFGLNKEEALTQLQTVAADGSTDIEQTKAITCGMCLNSLC O MS U LKTQV G AC
G17615	781	
HsTOP3b	685	YPLCPYCYNHPPFRDMKKGMGCNECTHPSCOHSISMLGIGQC
MmTOP3b	685	YPLCPYCYNHPPFRDMKKGMGCNECTHPTCOHSISMLGICOC
HsTOP3a	719	KFKRGSLPPTMPLEFVCCIGGCDDTLREILDLRFSGGPPRASQPSGRLOANQSLNRMDNS
MmTOP3a	719	KFKRGSLPPAMPLEFVGCIGGCDETLKEIFGLRFPRALPRASOPSGHLOASOALNRMDSS
ScTOP3	, 20	
	670	
EcTOP1	670	
TmTOP1	561	CGKEMR ^I SFGKY <mark>G</mark> FY SCGK Q IVIRPK
EcTOP3	638	SCGKOIVIRPK
G115190	772	WHENADGRPMLSVNRDGPDSSPGATNDTLAVARSPEAQEQTPEKSAELASAPVQPKKISI
G17615	801	YHSATDGTALVSKRROKEAOPVRVRGTF
HsTOP3b	727	WHCNADGRPMLSVNRDGPDSSPGATNDTLAVARSPEAQEQTPEKSAELASAPVQPKKISI YHSATDGTALVSKRR
MmTOP3b	727	VEGENG
HsTOP3a	779	QHPQPADSRQTGSSKALAQTLPPPTAAGESNSVTCNCGQEAVLLTVRKEGPNRGRQFF
	779	Que - I QI AD BART DORADA QI I DITA A DE ANGUTANA ADDITI A KAOI MAGAZI
MmTOP3a	119	QHNLSQPLVNRHTRPSKTVAQALLPPTTAGESNSVTCNCGREAVLLTVRKQGPNQGRHFY
ScTOP3		
EcTOP1	729	
TmTOP1	576	LKCECGKTRSVK-NDEIA
EcTOP3	649	SY
G115190	832	TIKPOAKISLNIPOANKSSGSASAVPSPNKASSLARLVGAVLCLDVATAPPLP
G17615	829	
	747	
HsTOP3b		A ONKCNVVARCEBNARKVKVSADTCSVCBAALLDVDFNKAKSPLPGDETQHMG
MmTOP3b	747	AGNTCNVVAHCFENAHKVKVSADTCNTCEAALLDVDFNKAKSPLPGNETQHTG
HsTOP3a	837	
MmTOP3a	839	Keshebeni Flwkbssksiederi Skseppessvechssveskaber estesbabeer
ScTOP3		
EcTOP1	771	
TmTOP1	593	VIDDGKIFLGRKDSESGSP
EcTOP3	651	VLRDGAAGVFLAANTFPKSRETRAPLVEELYRFRDRLPEKLRYLADAPQQDPECNKTMVR VIDDGKIFLGRKDSESGSPDCRSVEGKCN SCTGCEFKIWNEFSGKKITQAQAEKLIKSGKTDLIKCFKKKSGCTYDAVL
201013	0.01	STOOL ALMAN BOART LANGUART ADD ALDURAT ARABUTIDAVI

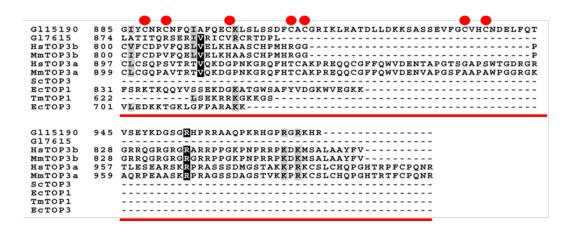
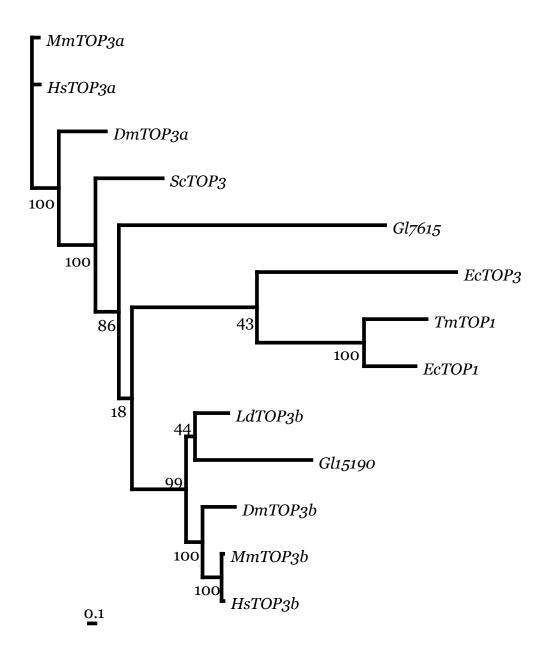



Fig. S1. Alignment of the type IA topoisomerases. The type IA topoisomerases from different orgasms, including *Mus musculus* (Mm), *Homo sapiens* (Hs), *Drosophila melanogaster* (Dm), *Saccharomyces cerevisiae* (Sc), *G. lamblia* (Gl), *Escherichia coli* (Ec), *Thermotoga Maritima* (Tm), and *Leishmania donovani* (Ld), are analyzed by ClustalW 1.83 with all default settings. GenBank *accession* numbers for MmTOP3α, MmTOP3β, HsTOP3α, HsTOP3β, DmTOP3α, DmTOP3β, ScTOP3, LdTOP3β, EcTOP1, EcTOP3, TmTOP1, Gl7615, and Gl15190 are <u>NP_033436.1</u>, <u>NP_035754.1, NP_004609.1, NP_003926.1, NP_523602.2, NP_511059.2, NP_013335.1, ACX31684.1, WP_097426177.1, WP_024221956.1, WP_004082962.1, XP_001709812.1, and XM_001709742.1, respectively. Black boxes, gray boxes and hyphens indicate identical amino acids, conserved amino acids and gaps in the respective proteins, respectively. The catalytic important Tyrosine 328 is pointed by a red arrow. The decatenation loop of EcTOP3 (residues 502–519) is indicated by a purple line. The zinc ribbon domains are indicated by red lines. The cysteine residues in the zinc ribbon domains are indicated by red filled circles.</u>

<u>Fig. S2.</u> Phylogenetic analysis of the type IA topoisomerases. A neighbor-joining phylogenetic tree was obtained from alignment of type IA topoisomerases from

various organisms as described. The bootstrap values determined from 1000 trees are not shown. Values are higher than 400.

Figure S3

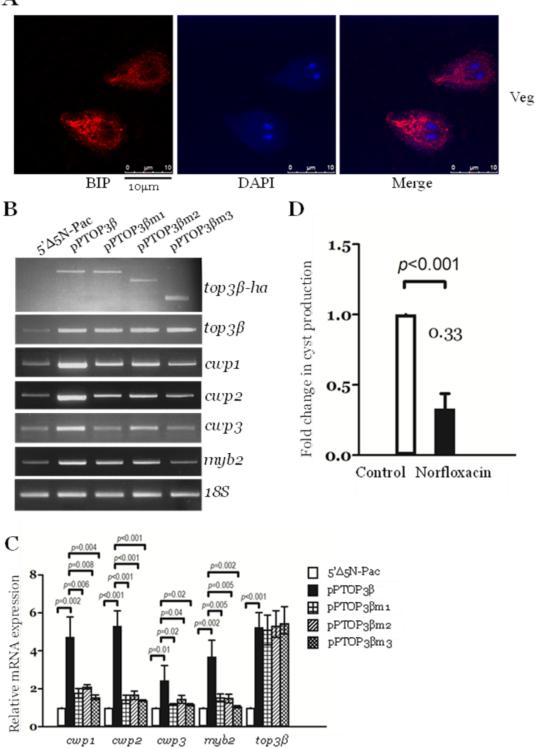
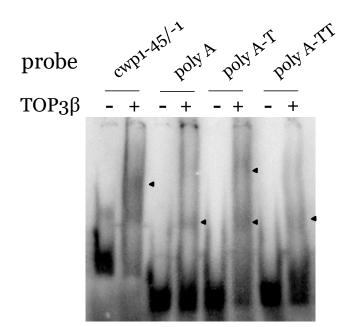



Fig. S3. Induction of *cwp1-3* and *myb2* gene expression in the

TOP3β-overexpressing cell line during encystation and inhibition of cyst formation by norfloxacin. (A) ER staining as determined by BIP localization. The wild-type WB trophozoites were cultured in growth medium and then subjected to immunofluorescence assays. The endogenous BIP protein was detected by anti-BIP antibody. The left panel shows that the BIP protein is localized to ER. The middle panel shows that the DAPI staining of cell nuclei. The right panel shows the merged image. The BIP staining did not overlap with DAPI. (B) RT-PCR analysis of gene expression in the TOP3 β - and TOP3 β mutants-expressing cell lines during encystation. The 5'Δ5N-Pac, pPTOP3β, pPTOP3βm1-3 stable transfectants were cultured in encystation medium and then subjected to RT-PCR analysis using primers specific for top3 \beta-ha, top3 \beta, cwp1, cwp2, cwp3, myb2, and 18S ribosomal RNA genes, respectively. Representative results are shown. (C) The intensity of bands from three RT-PCR assays was quantified using Image J. The ratio of each target gene over the loading control (18S ribosomal RNA gene) is calculated. Fold change is calculated as the ratio of the difference between the pPTOP3 β /m1-3 sample and control sample, to which a value of 1 was assigned. Results are expressed as means \pm 95% confidence intervals (error bars) of at least three separate experiments. p < 0.05 was considered significant and the value was shown. (D) The addition of norfloxacin decreased cyst formation. The wild-type nontransfected WB cells were cultured in growth medium containing 497µM norfloxacin, or the same volume of Me2SO for 24h and then subjected to cyst count as described under "Materials and Methods" and Fig. 3D.

<u>Fig. S4.</u> TOP3β may bind to AT-rich sequence. Electrophoretic mobility shift assays were performed using purified TOP3β and various ³²P-end-lableled oligonucleotide probes cwp1-45/-1, poly A, poly A-T, and poly A-TT as described. Components in the binding reaction mixtures are indicated above the lanes. The arrowhead indicates the shifted complex.

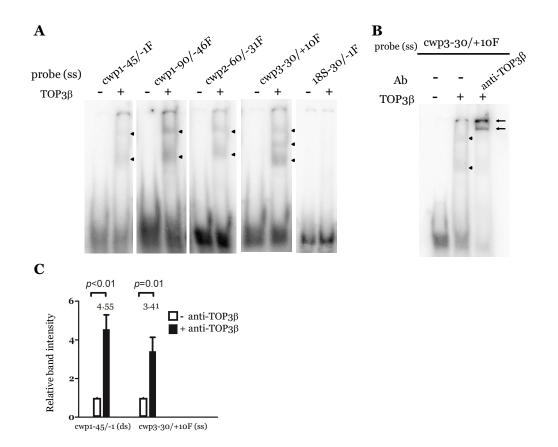
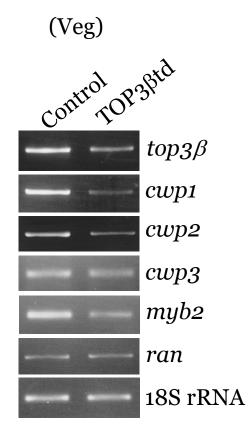
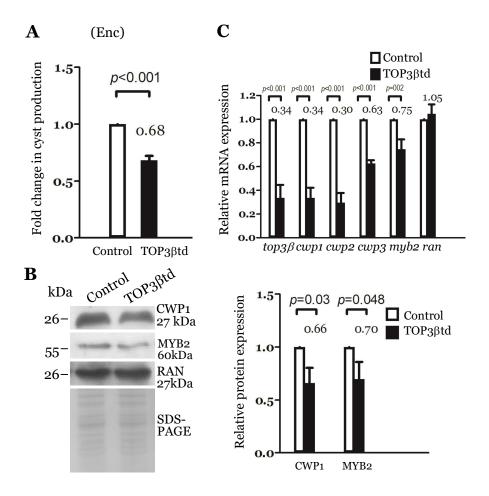


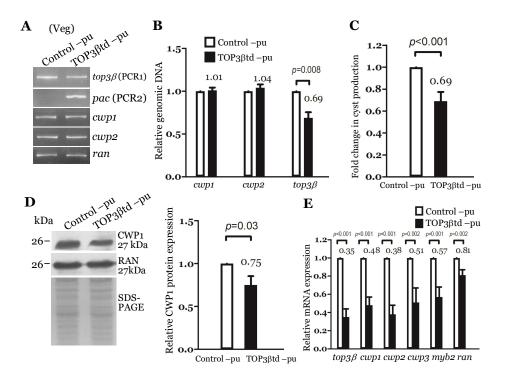
Figure S5


<u>Fig. S5.</u> Single-stranded DNA-binding and cleavage ability of TOP3 β . (A) Single-stranded DNA-binding ability of TOP3 β . Electrophoretic mobility shift assays were performed using purified TOP3 β and ³²P labeled single-stranded (ss) oligonucleotide probes, such as cwp1-45/-1F (the forward single strand of the cwp1-45/-1). Components in the binding reaction mixtures are indicated above the lanes. The arrowheads indicate the shifted complexes. (B) The single-stranded DNA-binding activity of TOP3 β was validated by supershift assays. Some reaction

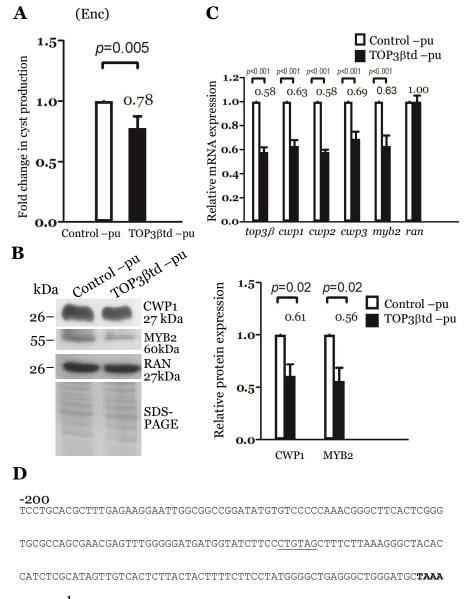
mixtures contained $0.8\mu g$ of anti-TOP3 β antibody as indicated above the lanes. (C) Quantitation of the intensity of anti-TOP3 β supershift bands as indicated by arrows in Fig. 5C and Fig. S5B. The intensity of bands from three assays with double-stranded (ds) cwp1-45/-1 probe and single-stranded (ss) cwp3-40/+10F probe was quantified using Image J. Fold change is calculated as the ratio of the difference between the + anti-TOP3 β sample and – anti-TOP3 β sample, to which a value of 1 was assigned. Results are expressed as means \pm 95% confidence intervals (error bars) of at least three separate experiments. *p*<0.05 was considered significant and the value was shown.

ATGGGCACCGAGTACAAGCCCACGGTGCGCCTCGCCACCCGCGACGACGTCCCCCGGGCCG TACGCACCCTCGCCGCGCGTTCGCCGACTACCCCGCCACGCGCCACACCGTCGACCCGGA CCGCCACATCGAGCGGGTCACCGAGCTGCAAGAACTCTTCCTCACGCGCGTCGGGCTCGAC ATCGGCAAGGTGTGGGTCGCGGACGACGGCGCGCGGTGGCGGTCTGGACCACGCCGGAGA GCGTCGAAGCGGGGGGGGGGTGTTCGCCGAGATCGGCCCGCGCATGGCCGAGTTGAGCGGTTC CCGGCTGGCCGCGCAGCAACAGATGGAAGGCCTCCTGGCGCCGCACCGGCCCAAGGAGCCC GCGTGGTTCCTGGCCACCGTCGGCGTCTCGCCCGACCACCAGGGCAAGGGTCTGGGCAGCG CCGTCGTGCTCCCCGGAGTGGAGGCGGCCGAGCGCGCGGGGGGGCCCGCCTTCCTGGAGAC CTCCGCGCCCCGCAACCTCCCCTTCTACGAGCGGCTCGGCTTCACCGTCACCGCCGACGTC GAGTGCCCGAAGGACCGCGCGCGCCTGGTGCATGACCCGCAAGCCCGGTGCCCTCGAGTGAC ${\tt catcaagtgcttgctattatgtaaactacttcctactccattaaatatttagacgcgcagt}$ tctggctatgggaccgaaacttttgaagagcgagtcagctatgagtttatggatgaaaacg cagttcaatcagatcgtgcggtatataagtataagatacataaccgtagagtgctaatcac gctagttcaatttgtgcttcggactttagatctgctgatctagactttattccactaacgg atacttttagatcagttgttcaccacttggtggtactctctgtgacgtcaccttgtgcgtg atgcagtgccccagttccgcctgttgctgctgccaatggaggcccgccataacgttctacg cagtctttctgatcagccttgcgctccaactggcgacagaggagtgcacaaccgtctctgg tgatcagcccgacacttgcaaggcctgtagcgccgtcatcaacggcaagaagtactgctcc acgaatgcccctaaaagaacaacggagtatgtacacagtgcgctcatgagtccttcatgta caagagcggatgctacaaggatagccaggcacctggcaacacgatgtgtgaaacagcaact gatggagtgtgcacactaactaaggctggatacttcgtgccgccgggcgcagacgcctctc accagtcgtcataccatgtggagacg


Fig. S6. Replacement of the $top3\beta$ gene with the *pac* gene in the TOP3 β td cell line confirmed by PCR and sequencing. Genomic DNA was isolated from the TOP3 β td and control cell lines cultured in growth medium. PCR was performed using primers specific for *pac* (PCR2 in Fig. 8A), which are PCR2F for bold region 1 and PCR2R for bold region 2, to verify the integration of the *pac* gene into the correct region in genomic DNA. The sequence results obtained from the PCR2 product are shown as underlined letters. Capital letters indicate the coding sequence for the *pac* gene, which starts at ATG and stops at TGA. This indicates the replacement of the *top3β* gene with the *pac* gene. The region used to clone the *top3β* 3' region into the pTOP3βtd plasmid for HR is shown in red, which is also between the sequence of top3β3XF and top3β3KR. The underlined and lower case letters, which are downstream and outside of the red region of top3β3XF and top3β3KR, indicate that HR occurred in the sequence of *top3β* 3' region and that the *pac* gene was integrated in the genomic DNA.


<u>Fig. S7.</u> RT-PCR analysis of gene expression in the TOP3 β td cell line. The control and TOP3 β td cell lines were cultured in growth medium and then subjected to RT-PCR analysis using primers specific for *top3\beta*, *cwp1*, *cwp2*, *cwp3*, *myb2*, *ran*, and 18S ribosomal RNA genes, respectively. The *ran* mRNA levels did not significantly change.

<u>Fig. S8.</u> Decrease in expression of *cwp1-3* and *myb2* by targeted disruption of the *top3β* gene during encystation. (A) Cyst formation decreased by targeted disruption of the *top3β* gene in the TOP3βtd cell line during encystation. The control and TOP3βtd cell lines were cultured in encystation medium for 24h (Enc) and then subjected to cyst count as described under "Materials and Methods" and Fig. 3D. (B) Targeted disruption of the *top3β* gene decreased the CWP1 and MYB2 levels in the TOP3βtd


cell line during encystation. The control and TOP3 β td cell lines were cultured in encystation medium for 24h and then subjected to SDS-PAGE and Western blot analysis as described in Fig. 3A. The blot was probed with anti-CWP1, anti-MYB2, and anti-RAN antibodies, respectively. The intensity of bands from three Western blot assays was quantified as described in Fig. 3A. (C) Decrease in expression of *cwp1-3* and *myb2* by targeted disruption of the *top3* β gene in the TOP3 β td cell line during encystation. The control and TOP3 β td cell lines were cultured in encystation medium for 24h and then subjected to quantitative real-time RT-PCR analysis using primers specific for *top3* β , *cwp1*, *cwp2*, *cwp3*, *myb2*, *ran*, and 18S ribosomal RNA genes, respectively, as described in Fig. 1B.

<u>Fig. S9.</u> Decrease in expression of *cwp1-3* and *myb2* by targeted disruption of the *top3β* gene after the removal of puromycin during vegetative growth. (A) Partial replacement of the *top3β* gene with the *pac* gene in the TOP3β –pu cell line confirmed by PCR. Puromycin was removed from the TOP3βtd and control cell lines to obtain the TOP3βtd –pu and control –pu cell lines, respectively. Genomic DNA was isolated from the TOP3βtd –pu and control -pu cell lines cultured in growth medium (vegetative growth, Veg). PCR was performed using primers specific for *top3β* (PCR1), *pac* (PCR2), *cwp1*, *cwp2*, and *ran* genes, respectively, as described in Fig. 8B. (B) Partial disruption of the *top3β* gene in the TOP3βtd -pu cell line confirmed by real-time PCR. Real-time PCR was performed using genomic DNA and primers specific for *top3β*, *cwp1*, *cwp2*, and *ran* genes, respectively, as described in

Fig. 8C. (C) Cyst formation decreased by targeted disruption of the *top3β* gene in the TOP3βtd –pu cell line during vegetative growth. The control –pu and TOP3βtd –pu cell lines were cultured in growth medium and then subjected to cyst count as described under "Materials and Methods" and Fig. 3D. (D) Targeted disruption of the *top3β* gene decreased the CWP1 and MYB2 levels in the TOP3βtd –pu cell line during vegetative growth. The control –pu and TOP3βtd –pu cell lines were cultured in growth medium and then subjected to SDS-PAGE and Western blot analysis as described in Fig. 3A. The blot was probed with anti-CWP1, anti-MYB2, and anti-RAN antibodies, respectively. The intensity of bands from three Western blot assays was quantified as described in Fig. 3A. (E) Decrease in expression of *cwp1-3* and *myb2* by targeted disruption of the *top3β* gene in the TOP3βtd –pu cell line during vegetative growth. The control –pu and TOP3βtd –pu cell line during vegetative growth. The control –pu and TOP3βtd –pu cell line during segurities as described in Fig. 3A. (E) Decrease in expression of *cwp1-3* and *myb2* by targeted disruption of the *top3β* gene in the TOP3βtd –pu cell line during vegetative growth. The control –pu and TOP3βtd –pu cell lines were cultured in growth medium and then subjected to quantitative real-time RT-PCR analysis using primers specific for *top3β*, *cwp1*, *cwp2*, *cwp3*, *myb2*, *ran*, and 18S ribosomal RNA genes, respectively, as described in Fig. 1B.

Figure S10

-1 AATAATTC

<u>Fig. S10.</u> Decrease in expression of *cwp1-3* and *myb2* by targeted disruption of the $top3\beta$ gene after the removal of puromycin during encystation. (A) Cyst formation decreased by targeted disruption of the $top3\beta$ gene in the TOP3 β td –pu cell line during encystation. The control –pu and TOP3 β td –pu cell lines were cultured in

encystation medium for 24h (Enc) and then subjected to cyst count as described under "Materials and Methods", as described in Fig. 3D. (B) Targeted disruption of the $top3\beta$ gene decreased the CWP1 and MYB2 levels in the TOP3 β td –pu cell line during encystation. The control -pu and TOP3Btd -pu cell lines were cultured in encystation medium and then subjected to SDS-PAGE and Western blot analysis as described in Fig. 3A. The blot was probed with anti-CWP1, anti-MYB2, and anti-RAN antibodies, respectively. The intensity of bands from three Western blot assays was quantified as described in Fig. 3A. (C) Decrease in expression of cwp1-3 and *myb2* by targeted disruption of the $top3\beta$ gene in the TOP3 β td –pu cell line during encystation. The control -pu and TOP3Btd -pu cell lines were cultured in encystation medium and then subjected to quantitative real-time RT-PCR analysis using primers specific for top3*β*, cwp1, cwp2, cwp3, myb2, ran, and 18S ribosomal RNA genes, respectively, as described in Fig. 1B. (D) The MYB2 binding site in the $top3\beta$ promoter. The 200-bp 5' untranslated region of the $top3\beta$ promoter is shown. The AT-rich promoter element is in bold. The underlined sequence, CTGTAG, is the reverse sequence of the MYB2 binding sequence, CTACAG.