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1 Mechanical testing of suspended epithelial monolayers
Experiments were performed on suspended MDCK II epithelial monolayers generated as described
in [1]. Cells stably expressing E-Cadherin-GFP were used. After digestion of collagen substrate,
monolayers were tested at room temperature in Leibovitz’s L15 medium (Gibco, ThermoFisher)
supplemented with 10% FBS (Sigma).

Relaxation experiments were performed as described in [2]. Briefly, a mechanical testing setup
assembled on top of an inverted microscope (Olympus IX-71) was used. First, the Petri dish
containing the stretcher device was secured to the microscope stage. Next, an opto-mechanical
force transducer (SI-KG7A, WPI) with a tweezer-shaped mounting hook (SI-TM5-KG7A-97902,
WPI) was mounted on a motorized translation stage (M126-DG1, Physike Instrumente). The
tip of the mounting hook was then brought into contact with the flexible arm of the stretcher
device. The monolayer, suspended between the two arms of the device, was stretched by moving
the flexible arm away from the rigid arm, using the motorized stage. Monolayers were extended
to 30% strain at a rate of 75%/s. The deformation was then maintained constant during stress
relaxation. The force applied to the monolayer was calculated by subtracting the force applied by
the flexible arm from the total measured force. Ramp experiments were conducted on the same
setup and monolayers were extended at a rate of 1%/s. Force measurements in both tests was
acquired at 6.7 Hz.

For creep experiments, the setup was slightly adapted (figure S1). The deformation was con-
trolled by moving the rigid arm connected to one extremity of the monolayer while the force was
measured on the other static arm. Monolayers were prestretched by 10% prior to experiments and
left to rest for 5 minutes before starting testing. Then, an initial stretch step was applied at 1.5
mm/s (about 100%/s) and the force reached was clamped using a feedback algorithm (Labview,
National Instruments) and updated at 7.5 Hz.

To monitor the shape of the tissue and ensure its integrity during the tests, bright-field images
were taken at a rate of 1 image/s using a 2X objective (2X PLN, Olympus) and a CCD camera
(PointGrey, Grasshopper 3).

2 The fractional element: springpot
The spring-pot rheological element exploits the mathematical concept of fractional derivative to
model behaviours that are intermediate between a spring and a dashpot (see figure S2). Different
definitions of fractional differentiation are available. Here we use the Caputo’s derivative definition;
it has shown a better applicability to real problems, where initial conditions are known in terms of
derivative of integer index [3]. If we assume that the system is at rest for time t ≤ 0, the fractional
derivative is given by [4]

dβε(t)

dtβ
=

1

Γ(1− β)

∫ t

0

(t− t)−β dε(t)
dt

dt, (S1)

where Γ(·) is the Gamma function and 0 < β < 1. Note that in order to get the value of the
derivative at a given time t, it is necessary to integrate from t = 0. Thus, the response of the
springpot is determined by its whole deformation history. This highlights the hereditary feature
of such an element.

From a graphical representation of the linear viscoelastic model as a network of springs, dash-
pots and springpots, we can establish the time-dependent differential equation describing the re-
lation between stress and strain. For the model presented here the temporal evolution is given by
[5]

σ(t) +
η

cβ

d1−βσ(t)

dt1−β
= η

dε(t)

dt
+ kε(t) +

ηk

cβ

d1−βε(t)

dt1−β
, (S2)
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Figure S1: Set up of the creep experiment. (a) A millimetric MDCK epithelial monolayer devoid
of substrate is suspended between two test rods. The device is glued to the Petri dish. The force
is monitored on one side of the tissue, while the deformation is imposed on the other side. (b) A
constant stress in the tissue is maintained by monitoring the traction force on the tissue through a
force transducer (right) and adjusting its length in real time via a motorized stage. A PID feedback
algorithm ensures the control of the stress.

where η is the viscosity of the dashpot, cβ and β are the parameters of the spring-pot and k the
stiffness of the spring.

Many solutions of fractional differential equations obtained based on generalized viscoelastic
models admit a closed form involving the Mittag-Leffler function [5]. Such a function is defined as

Ea,b (z) =

∞∑
k=1

zk

Γ(ak + b)
(a > 0, b > 0). (S3)

Its qualitative behaviour for the parameters of the soft material analyzed here is plotted in figure
S3.

For clarity, we briefly discuss the qualitative behaviour of the the dissipative Fractional Maxwell
arm, whose relaxation modulus is given by

G(t) = cβt
−βE1−β,1−β

(
−cβ
η
t1−β

)
, (S4)

where cβ and β are the spring-pot parameters and η the dashpot viscosity. When β is equal to zero,
then the model corresponds to a traditional Maxwell model, whose relaxation modulus assumes
an exponential form (figure S4 (a), straight blue line in semi-logarithmic scale). When β increases
the Fractional Maxwell model exhibits a relaxation modulus that is initially power-law, followed
by a second regime where the dissipation occurs at higher rate (figure S4, black and blue curves).

3 Curve fitting and prediction
Relaxation curves collected during stress relaxation tests were analyzed using the open source
library RHEOS [6] developed in Julia language [7].

During a typical experimental test, the strain ε(t) is rapidly applied at a constant rate until it
reaches 30% and then maintained constant. The stress is obtain from the Boltzman integral, given
by the convolution between the relaxation modulus and the derivative of the strain

σ(t) =

∫ t

0

G(t− t)dε(t)
dt

dt. (S5)

where G(t) is the relaxation modulus which takes the form reported in equation (2.1) in the
manuscript.
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Figure S2: (a) Sketch of the fractional element–spring-pot. The spring-pot interpolates between
a spring and a dashpot. When β = 0, the spring-pot reduces to a spring; whilst when β = 1
it becomes a dashpot. Consequently, the material constant cβ represents respectively the elastic
constant of a spring, k (Pa) and the viscosity of a dashpot, η (Pa s). (b) Responses of a springpot
when subjected to a step in stain and (c) to a step in stress. The red curves are for a spring
(β = 0), the grey curves are for increasing values of β from 0.1 to 0.9 (where orange is 0.3, green,
0.5, yellow 0.8) and the blue curves are for a dashpot (β = 1).

The viscoelastic model presented here is consistent with the empirical function introduced in
[2]

σ(t) = At−αe−
t
τ +B, (S6)

where B is the residual stress, α is the power exponent and τ is the characteristic time. To
demonstrate this, we first re-fited the relaxation response using the same fitting procedure as in
[2]. Thus k is fixed at the residual stress after reaching the plateau defined as the average of the
stress for 70 s < t < 75 s. The parameters obtained for the viscoelastic model and the empirical
expression are similar (see table S1). If k is left free during the fitting, a variation in the relaxation
characteristic time is noticed between the two approaches, especially in the Y27632 parameters.
This discrepancy could be associated to the lack of a clear plateau in the experimental time-window.
For the analysis presented in this work, we have used those parameters obtained by letting k free
during the fitting.
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Figure S3: Mittag-Leffler function. Plot of the Mittag-Leffler function with parameters similar to
those obtained for epithelial sheets (β = 0.22, cβ = 1.3 × 103 Pa sβ , η = 1.0 × 104 Pa s) in (a)
linear, (b) semilogarithmic and (c) logarithmic scales.
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Figure S4: Relaxation modulus of the Fractional Maxwell model (dissipating branch) in (a) semi-
logarithmic scale and (b) log-log scale. cβ and η have been set to one. The blue curve is the
relaxation modulus of the Maxwell model, β = 0, which shows an exponential behaviour at all
time (straight line in the semi-logarithmic scale); the red curve is the modulus for β = 0.2, a
typical value of the exponent for epithelial monolayers; the black curve is for an intermediate value
of β = 0.1.

Table S1: Comparison within the parameters β power exponent, k stiffness of the spring and τ
characteristic relaxation time obtained from the fitting of: (a) the empirical function in [2], (b) the
model presented here when k is fixed, as done in [2] and (c) when k is free.

Sample Control DMSO Y27362 CK666 SMIFH2

β
Empirical 0.28± 0.02 0.29± 0.03 0.26± 0.05 0.31± 0.01 0.29± 0.02
k fixed 0.30± 0.03 0.27± 0.02 0.287± 0.01 0.29± 0.02 0.28± 0.02
k free 0.28± 0.03 0.27± 0.02 0.296± 0.05 0.30± 0.02 0.29± 0.03

k (Pa)
Empirical 820± 373 1130± 327 303± 97 1290± 340 1213± 323
k fixed 850± 364 1270± 492 300± 101 1286± 340 1212± 321
k free 840± 376 1200± 428 187± 101 1290± 337 1194± 348

τ (s)
Empirical 11.3± 3.8 13.3± 5.5 23.3± 7.4 16.8± 6.2 19.5± 3.5
k fixed 17.2± 7.1 11.8± 4.31 24.2± 12.7 20.42± 13 21.2± 11.5
k free 20± 15.2 13.58± 11.6 213.83± 246 19.51± 14 34.27± 34
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Figure S5: Comparison of the quality of fit between the Standard Linear Solid model (upper row)
and the fractional viscoelastic model introduced here (bottom row). The fits are plotted in both
semi-logarithmic and log-log scale, and in lin-lin scale for the Standar linear Solid model.

To predict the response to a slow ramp, the Boltzman integral reported in equation S5 is used.
The relaxation modulus G(t) takes the form reported in equation (2.1) in the manuscript, while
the derivative of the strain will be equal to the applied strain rate. Note that the parameters of
the relaxation modulus are those predicted from the fitting of the relaxation experiments.

The prediction of the creep response is obtained by solving the Boltzman integral

ε(t) =

∫ t

0

J(t− t)dσ(t)

dt
dt. (S7)

where J(t) is the creep modulus. To calculate the creep modulus we use the same parameters
as extracted from the fitting of the relaxation experiments. The predicted creep response for the
treated monolayers Y27632 is reported in figure S6 in the Supplementary materials.

4 Pharmacological treatment of monolayers
assess the generality of the fractional viscoelastic model, we analysed data resulting from a range
of relevant pharmacological treatments on the MDCK monolayers as recently presented in [2].
All drugs are dissolved in Dimethylsulfoxide (DMSO), and monolayers treated with DMSO alone
were used as a control to assess the effect of each drug. Y27632 has a significant effect on the
materials rheology, as discussed in the main paper. Treatment with CK666, that prevents actin
polymerisation through Arp2/3, does not show any effect of the treatment on the relaxation re-
sponse. Monolayers treated with SMIFH2, that prevents formins-mediated actin polymerisation,
revealed that formin inhibition slightly increases the relaxation characteristic time (see table S1);
we can attribute such increment to a higher viscosity η, whilst all the other parameters remain
almost unchanged S7. Similarly, the two most abundant actin crosslinkers identified in previous
RNAseq experiments [2] were perturbed. The inhibition of either F-actin crosslinkers filamin A
(FLNAShRNA) or α-actinin 4 (ACTNShRNA) do not affect stress dissipation S8, suggesting that
crosslinkers do not play a role in the relaxation response. These results are broadly in agreement
with the analysis presented in [2].
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5 Master curve for the relaxation response
The fact that untreated and treated monolayer can be fitted with the same model, sharing similar
values of the exponent β, suggests the possibility of identifying a master curve that describes all
the experimental data. For this purpose, we simplify the analysis by assuming that the loading
is instantaneously applied, thus the stress can be written as σ(t) = G(t)ε0, where G(t) is the
relaxation modulus and ε0 the applied stress. By re-writing the relaxation modulus in equation
2.1 in the main manuscript in terms of the characteristic relaxation time and removing the shift
introduced by the addition of a spring in parallel

G(t)∗ = G(t)− k = cβτ
−β
1

(
t

τ1

)−β
E1−β,1−β

(
−
(
t

τ1

)1−β
)
, (S8)

we can identify the additional non-dimensionalising factor for the relaxation modulus keff

keff = cβτ
−β
1 =

(
cβ
ηβ

)1/(1−β)

, (S9)

which represents the effective stiffness of the Fractional Maxwell Model (FMM), the dissipative
branch. Note that τ1 can be also derived from the definition of the characteristic relaxation time
for the Maxwell model as τ1 = η/keff . τ1 is independent from the spring stiffness since the stiffness
k only shifts the stress towards higher values, as seen in equation 2.1.

The nondimensionalized relaxation modulusG(t)∗ = (G(t)−k)/keff is now a function of only two
parameters G(t)∗ = g(t/τ1, β), where the time has been nondimensionalized using the characteristic
relaxation time τ1, while the relaxation modulus has been normalized using the effective stiffness
keff . Consistent with the observation that their short time-scale response is comparable, after
rescaling the relaxation curves in figure 2 (b)-(c), all the curves collapse onto one master curve
(see figure S9 (a)). From the fitting of the relaxation responses of treated monolayers, we observe
that β remains constant. Therefore, the nondimensional relaxation modulus can be considered a
function of only one parameter G(t)∗ = g(t/τ1), because β remains constant. Because of this, all
the responses obtained for the other treatments collapse to one master curve (figure S9 (b)).

6 Statistical analysis
Statistical analysis of the data was performed in Julia language using a Wilcoxon rank-sum test.
Changes with statistical power greater than 0.01 were considered non-significant (ns). Dataset
different p< 0.01 are denoted by an asterisk (*).

The material parameters measured from the relaxation experiment show some variability. We
assume that they follow a Gaussian distribution. To take this into account, we take an interval
for each of the parameters equal to Mean ±1.96σ/

√
n, where σ here is the standard deviation and

n the number of samples. The colored areas within the two curves obtained by taking lower and
upper bounds of the parameters is where the predicted response of the material will lay.

7 Mechanical testing of single epithelial cells
Experiments were performed on MDCK II epithelial cells previously trypsinised and plated in a
Petri dish and left to settle for 10-30 minutes. Before cells started to spread, they were tested
while still in rounded shape.

Relaxation experiments were performed as described in [2]. A CellHesion 200 Atomic Force
Microscope was mounted on a scanning laser confocal microscope. Tipless silicon SPM-Sensor
cantilevers with nominal spring constant of 0.03N m−1 were used to perform the experiments. The
cantilever spring constant for each experiment was calibrated using the thermal noise fluctuation
method and it ranged between 0.055-0.06 N m−1.

The target force required to indent the cell by ∼ 30% was estimated by approximating the cell
height. The latter was given by the difference between the force-displacement curves acquired on
the cell and a glass region close to it. Cells were subjected to the target force of 5-40 nN at a rate
of 75% s−1. The cantilever beam was maintained at constant height for 150 s while the evolution
of the force was recorded.
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Figure S6: (a) Predicted stress response of the Y27632 treated monolayers when subjected to
a slow stretch (1%/s) using the mechanical parametrization determined from stress relaxation
experiments. The predicted responses (95% confidence interval red areas and 70% yellow areas)
are in good agreement with the experimental data (black curves). (b) The creep response of
epithelial monolayers in which actomyosin contractility is inhibited. The creep is performed at 60
Pa (blue area) and 230 Pa (green area). The black lines are the experimental results. (c) ξ value for
untreated and treated monolayers which give raise to different qualitative behaviours (p < 0.01).

Figure S7: Boxplots comparing the model parameters of monolayers subjected to chemical treat-
ments targeting the actomyosin cytoskeleton. β: p = 0.64 for Y27632, p = 0.019 for CK666, p =
0.98 for SMIFH2, cβ : p = 0.015 for Y27632, p = 0.053 for CK666, p = 0.50 for SMIFH2, η: p =
0.04 for Y27632, p = 0.053 for CK666, p = 0.022 for SMIFH2, k: p < 0.01 for Y27632, p = 0.19
for CK666, p = 0.60 for SMIFH2, for all compared to DMSO.
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Figure S8: Boxplots comparing the model parameters of monolayers in which the F-actin crosslink-
ers filamin A (FLNAShRNA) or α-actinin 4 (ACTNShRNA) were perturbed. β: p = 0.03 for
ACTNShRNA and p = 0.18 for FLNAShRNA, cβ : p = 0.71 for ACTNShRNA and p = 0.018 for
FLNAShRNA, η: p = 0.28 for ACTNShRNA and p = 0.09 for FLNAShRNA, k: p = 0.78 for
ACTNShRNA and p = 0.25 for FLNAShRNA, compared to their respective controls, ACTNCtrl-
ShRNA and FLNACtrlShRNA.
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Figure S9: Master curve for the relaxation response. (a) Experimental relaxation curves scaled
using the characteristic time τ1 and the effective stiffness of the Fractional Maxwell Model keff .
The red curves are the experimental data for the untreated monolayers, while the blue curves are
the experimental data for the Y27632 treated monolayers. All the data collapse onto a master
curve demonstrating that they possess a similar value of β. (b) Scaling of the relaxation responses
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master curve since they possess a similar value of β, the springpot exponent.
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8 The complex modulus of the novel generalized fractional model
Although the relaxation modulus G(t) and the creep compliance J(t) each fully summarize the
viscoelastic linear response of a material, the time-dependent response is often characterized using
the complex elastic modulus, which captures the ratio and phase difference between stress and
strain under oscillatory deformation, which is particularly relevant to biomaterials because these
are often subjected to cyclical stresses. The complex modulus can be decomposed into a real G′(ω)
and an imaginary G′′(ω) part, which represent respectively the storage modulus that accounts for
the elastic response, and the loss modulus that accounts for the dissipative response. The complex
modulus of the viscoelastic model presented here can be derived from the Laplace transform of the
creep compliance J(s) and is given by:

G′(ω) + iG′′(ω) =
k
[
iωτ2 + 1 + (iωτ1)1−β]

1 + (iωτ1)1−β . (S10)

By evaluating the real and imaginary parts of the equation above, we find that the storage and
loss moduli are respectively given by

G
′
(ω) = k

[
(ωτ1)1−β(ωτ2) sin

(
(1− β)π2

)
1 + (ωτ1)1−β

[
(ωτ1)1−β + 2 cos

(
(1− β)π2

)] + 1

]
(S11)

and

G
′′
(ω) = k

(ωτ2)
[
1 + (ωτ1)1−β cos

(
(1− β)π2

)]
1 + (ωτ1)1−β

[
(ωτ1)1−β + 2 cos

(
(1− β)π2

)] . (S12)

Storage and loss moduli predicted for the monolayers using the parameters obtained from the
relaxation experiments both show a power-law behaviour at high frequencies with the same ex-
ponent, as shown in figure S11. By contrast, at low frequencies the material exhibits solid-like
behaviour [14, 15]. Two special cases can be distinguished at the upper and lower limit of β; when
the two moduli reduce respectively to those of the Standard Linear Solid model and the Kelvin-
Voigt model, as confirmed in figure S11 (b). By letting β vary between 0 and 1, we can observe
transitory behaviours between an SLS and a Kelvin-Voigt model (see figure S12).
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Figure S11: Storage and loss moduli of the fractional model shown in figure 2 (a). (a) The blue and
red lines are respectively the storage and loss modulus of the viscoelastic model introduced here
using the material parameters extracted from the relaxation experiment for epithelial monolayers
shown on figure 1 (a) (β = 0.22, cβ = 1.3× 103 Pa sβ , k = 760 Pa, η = 1.4× 104 Pa s, τ1/τ2 = 1).
(b) Moduli for two extreme cases. When β = 0 the model behaves as a Standard Linear Solid
model (top), when β = 1 the model behaves as a Kelvin mode (bottom). The other parameters
have been kept constant.

10 -3 10 -2 10 -1 10 0 10 1

Frequency, ω (Hz)

10 0

10 1

10 2

10 3

10 4

10 5

S
to

ra
g

e
 a

n
d

 l
o

ss
 m

o
d

u
lu

s,
G

′
a

n
d

G
′′

(P
a

)

Figure S12: Intermediate behaviours from Kelvin model to Standard Linear Solid Model (cβ =
1.3 × 103 Pa sβ , k = 800 Pa, η = 1 × 104 Pa s, β = 0, 0.2, 0.4, 0.6, 0.8, 1. The blue and red
lines are respectively the storage and loss moduli. Note that by changing the value of β the
ratio between the two characteristic time scales changes and it is respectively given by τ1/τ2 =
0.46, 0.85, 2.08, 12.5, 270,∞. The thicker curves are the behaviours of the Kelvin and Standard
Linear Solid Model.
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Figure S13: Examples of the application of the fractional viscoelastic model for the analysis of the
mechanical response in biology. (a) Fitting of the creep response of C2-7 myogenic cells derived
from skeletal muscle of adult CH3 mice (original data from [10]) with a special case of the model
presented here. Fitted parameters: η = 4× 105 Pa s, cβ = 885 Pa sβ , β = 0.26 (b) The prediction
of the storage and loss modulus (respectively blue and red dashed lines) of C2-7 cells using the
parameters obtained from the fitting of the creep response in (a) are in good agreement with the
experimental data obtained from [16] (c) Fitting of the creep and recovery response (red line) of
the cytoplasm of the blastomere, and (d) the yolk cell (original data from [11], black dots) using
the viscoelastic model presented here. Fitted parameters for cytoplasm: η = 35 Pa s, cβ = 0.7
Pa sβ , β = 0.3, k = 0.156 Pa. Fitted parameters yolk cell: η = 16 × 103 Pa s, cβ = 0.62 Pa sβ ,
β = 0.15, k = 0.52 Pa.
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Figure S14: Fitting of storage and loss moduli from a single cell dynamic test of human primary
immune cells. Original data from [13]. Fitted parameters: η =∞ Pa s, cβ = 600 Pa sβ , β = 0.26,
k = 0. Note that the high viscosity and the zero value of the spring are directly obtained from the
fitting, without constrains on the parameters.
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Figure S15: Comparison of the relaxation spectra of three different models with experimental data
digitized from Fischer-Friedrich et al. [12] (green curve). The blue spectrum is calculated based
on the fractional model parameters presented in figure 4 (c); the vertical grey line indicates the
transition time τ1. The orange spectrum represents the theoretical model used by Fischer-Friedrich
et al.. The red curve corresponds to a power-law model.
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