
Supplementary Information for “Decomposing information into copying versus transformation”

Artemy Kolchinsky and Bernat Corominas-Murtra

A. Dcopy
x SATISFIES THE FOUR AXIOMS

Dcopy
x satisfies Axiom 1 by non-negativity of KL.

It satisfies Axiom 2 when pY |x(x) > pY (x) because
d(pY |x(x), pY (x)) ≤ DKL(pY |x‖pY ) by the data processing
inequality for KL divergence [1, Lemma 3.11]. Otherwise,
when pY |x(x) ≤ pY (x), Dcopy

x vanishes and thus satisfies
Axiom 2 trivially.

It satisfies Axiom 3 when pY |x(x) ≤ pY (x) because in
that case Dcopy

x (pY |x‖pY ) = 0 ≤ Dcopy
x (pY |x(x)‖pY ). If

pY |x(x) ≤ pY (x), then note that the derivative of d(a, b) with
respect to a is d

dad(a, b) = log a
b − log 1−a

1−b , which is strictly
positive when a > b.

Finally, we show that Dcopy
x satisfies Axiom 4. For any

prior distribution pY , define the following posterior distribu-
tion pαY |x(y):

pαY |x(y) =

{
α if y = x

1−α
1−pY (x)pY (y) if y 6= x

, (A1)

where α is a parameter that can vary from 0 to 1. It is easy to
verify that for all α ∈ [pY (x), 1],

DKL(p
α
Y |x‖pY ) = d(α, pY (x)) = Dcopy

x (pαY |x‖pY ), (A2)

and thatDcopy
x (pαY |x‖pY ) ranges in a continuous manner from

0 (for α = pY (x)) to − log pY (x) (for α = 1).

B. PROOF OF THEOREM 1

Before proceeding, we first prove two useful lemmas.

Lemma B1. Given Axiom 3, F (pY |x, pY , x) =
F (qY |x, pY , x) if pY |x(x) = qY |x(x).

Proof. Follows from applying Axiom 3 in both directions.

Lemma B2. Given Axioms 1 to 3, if pY |x(x) ≤ pY (x), then
F (pY |x, pY , x) = 0.

Proof. If pY |x(x) ≤ pY (x), then F (pY |x, pY , x) ≤
F (pY , pY , x) by Axiom 3. By Axiom 2, F (pY , pY , x) ≤
DKL(pY ‖pY ) = 0. Combining gives F (pY |x, pY , x) ≤ 0,
while F (pY |x, pY , x) ≥ 0 by Axiom 1.

We then show thatDcopy
x is the largest possible measure that

satisfies Axioms 1 to 3.

Proposition B1. Any F which satisfies Axioms 1 to 3 must
obey F (pY |x, pY , x) ≤ Dcopy

x (pY |x‖pY ).

Proof. Given LemmaB2, without loss of generality we restrict
our attention to the case where pY |x(x) > pY (x). Define the
posterior pαY |x as in Eq. (A1), while taking α = pY |x(x).
Then, by Lemma B1,

F (pY |x, pY , x) = F (pαY |x, pY , x).

At the same time,

F (pαY |x, pY , x) ≤ DKL(p
α
Y |x‖pY )

= d(pY |x(x)‖pY (x)) = Dcopy
x (pY |x‖pY ),

where the first inequality follows fromAxiom2, and the second
equality from Eq. (A2).

We are now ready to prove the main result from Section II B.

Proof of Theorem 1. Consider some pY |x, pY , x, and assume
pY |x(x) > pY (x) (without loss of generality by Lemma B2).
By Axiom 4, there must exist a posterior qY |x such that
qY |x(x) = pY |x(x) and

F (qY |x, pY , x) = DKL(qY |x‖pY ). (B3)

Note that by the data processing inequality for KL divergence,
DKL(qY |x‖pY ) ≥ Dcopy

x (qY |x‖pY ).
Then, by Lemma B1, F (pY |x, pY , x) = F (qY |x, pY , x)

since pY |x(x) = qY |x(x). Similarly, it can be verified that
Dcopy
x (qY |x‖pY ) = Dcopy

x (pY |x‖pY ). Combining the above
results shows that F (pY |x, pY , x) ≥ Dcopy

x (pY |x‖pY ). the
theorem follows by combining with Proposition B1.

C. AXIOMATIC DERIVATION AND SOLUTION OF EQ. 15

1. Axiomatic derivation

We first demonstrate that the generalized copy information
defined in Eq. (15), Gcopy

x (pY |x‖pY ), is the unique measure
that satisfies Axioms 1 and 2 and our modified Axioms 3∗
and 4∗. Our derivation has the same structure as the one in
Section B, and we proceed more quickly.
First, we verify that Gcopy

x satisfies the four axioms. It
satisfies Axiom 1 by non-negativity of KL. It satisfies Ax-
iom 2 because pY |x falls within the feasibility set of Eq. (15),
therefore the minimum Gcopy

x (pY |x‖pY ) has to be less than
or equal to DKL(pY |x‖pY ). It satisfies Axiom 3∗ because
EpY |x [`(x, Y )] ≥ EqY |x [`(x, Y )] means that the feasibility
set of Eq. (15) for qY |x is a subset of the feasibility set for
pY |x, so the minimum Gcopy

x (qY |x‖pY ) has to be greater than
or equal to the minimum F̂ (pY |x, pY , x). To show that it
satisfies Axiom 4∗, note that the distribution wY which opti-
mizes Eq. (15) will achieve EwY [`(x, Y )] = EpY |x [`(x, Y )]
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whenever EpY |x [`(x, Y )] ≤ EpY [`(x, Y )] [2, pp.299-300].
Note also that EpY |x [`(x, Y )] can vary from miny `(x, y)

(for pY |x(y|x) = δ(y, argminy′ `(x, y
′)) to EpY [`(x, Y )] (for

pY |x = pY ).
We now demonstrate that Gcopy

x is the unique measure
that satisfies the four axioms. We begin by showing that
F (pY |x, pY , x) ≤ Gcopy

x (pY |x‖pY ) for any F . Given a choice
of pY |x, pY , and x, let wY be the solution to Eq. (15), so

Gcopy
x (pY |x‖pY ) = DKL(wY ‖pY ). (C4)

Given the definition ofGcopy
x ,EwY [`(x, Y )] ≤ EpY |x [`(x, Y )].

Then, by Axiom 3∗, Axiom 2, and Eq. (C4),

F (pY |x, pY , x) ≤ F (wY , pY , x)
≤ DKL(wY ‖pY ) = Gcopy

x (pY |x‖pY ).

We finish by showing that F (pY |x, pY , x) ≥
Gcopy
x (pY |x‖pY ) for any F . First consider the

case EpY |x [`(x, Y )] ≥ EpY [`(x, Y )]. Then,
Gcopy
x (pY |x‖pY ) = 0 by construction, and therefore

F (pY |x, pY , x) ≥ Gcopy
x (pY |x‖pY ) by Axiom 1.

When EpY |x [`(x, Y )] < EpY [`(x, Y )], by Axiom 4∗ there
must exist a posterior qY |x such that EqY |x [`(x, Y )] =

EpY |x [`(x, Y )] and

F (qY |x, pY , x) = DKL(qY |x‖pY ). (C5)

Then, by definition of Gcopy
x ,

DKL(qY |x‖pY ) ≥ Gcopy
x (pY |x‖pY ). (C6)

Finally, by Axiom 3∗,

F (pY |x, pY , x) ≥ F (qY |x, pY , x) (C7)

Combining Eqs. (C5) to (C7) shows that F (pY |x, pY , x) ≥
Gcopy
x (pY |x‖pY ).
Thus, Gcopy

x is the unique measure that satisfies Axioms 1
and 2 and our generalized Axioms 3∗ and 4∗.

2. Dcopy
x as the solution to Eq. 15 for the 0-1 loss function

Consider the optimization problem:

min
rY ∈∆: rY (x)≥pY |x(x)

DKL(rY ‖pY ). (C8)

When pY (x) ≥ pY |x(x), then the solution rY = pY satisfies
the constraint and achieves DKL(pY ‖pY ) = 0, the minimum
possible. When pY (x) < pY |x(x), we use the chain rule for
KL divergence [3] to write

DKL(rY ‖pY ) = d(rY (x), pY (x))+

(1− rY (x))DKL(rY (Y |Y 6= x)‖pY (Y |Y 6= x)).

The second term is minimized by setting rY (y) ∝ pY (y)
for y 6= x, so that rY (y|Y 6= x) = pY (y|Y 6= x) and

DKL(rY (Y |Y 6= x)‖pY (Y |Y 6= x)) = 0. Thus, in the case
that pY (x) < pY |x(x), we have reduced the optimization prob-
lem of Eq. (C8) to the equivalent problem

min
a∈R: a≥pY |x(x)

d(a, pY (x)). (C9)

Note that the derivative d(a, b)with respect to a is d
dad(a, b) =

log a
b − log 1−a

1−b , which is strictly positive when a > b. Given
the assumption that pY |x(x) > pY (x), Eq. (C9) is minimized
by a = pY |x(x). Thus, d(pY |x(x), pY (x)) is the solution to
Eq. (C8) when pY (x) < pY |x(x).
Combining these two results shows that Dcopy

x (pY |x‖pY ),
as defined in Eq. (8), is the solution to Eq. (C8).

3. Vector-valued loss functions

One can also generalize the approach described in Section III
to vector-valued loss functions, ` : X × Y → Rn, where we
use X and Y to indicate the sets of outcomes of X and Y ,
respectively (recall that these can be different, in the context
of our generalized copy and transformation information mea-
sures). As we’ll see below, one application of vector-valued
loss functions is to definemeasures of copy and transformation
information that are additive when independent channels are
concatenated.
We first discuss which axioms might be expected to hold

for generalized copy information measures with vector-valued
loss functions. Axiom 1 and Axiom 2 do not make reference
to the loss function, and remain unmodified. Then, Axiom 3∗
is still a meaningful requirement, as long as the inequality
EpY |x [`(x, Y )] ≥ EqY |x [`(x, Y )] is taken in an element-wise
fashion. Axiom 4∗ should be dropped for vector-valued func-
tions, for reasons explained below.
Using the derivation found in Section C 1, it can be shown

that the largest measure which satisfies Axiom 1, Axiom 2,
and Axiom 3∗ for a vector-valued loss function is given by

Gcopy
x (pY |x‖pY ) := min

rY
DKL(rY ‖pY ) (C10)

s.t. ErY [`i(x, Y )] ≤ EpY |x [`i(x, Y )] for i = 1..n,

where `i indicates the ith component of the loss function `.
Eq. (C10) is aminimumcross-entropy problemwithn different
constraints. The general solution to this problem will have the
following form [2]:

w(y) =
1

Z(λ1, . . . , λn)
pY (y)e

−
∑
i λi`i(x,y), (C11)

where λi ≥ 0 is the Lagrange multiplier for constraint i and
Z(λ1, . . . , λn) is a normalization constant. The Lagrange
multipliers can be found by using standard convex optimiza-
tion techniques. Note that all λi = 0 if EpY |x [`i(x, Y )] ≥
EpY [`i(x, Y )] for all i, in which case wY = pY . Even if
EpY |x [`(x, Y )] < EpY [`(x, Y )], however, it may be impossi-
ble to make all of the constraints simultaneously tight up to
equality. In other words, it will not always be the case that
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EwY [`i(x, Y )] = EpY |x [`i(x, Y )] for all i = 1..n, and some
(but not all) of themultipliersλi will be equal to 0. For this rea-
son, Axiom 4∗ is not generally achievable for copy information
defined with vector-valued loss functions, and we drop it from
our requirements. This means Gcopy

x , as defined in Eq. (C10),
is not the unique measure which satisfies the remaining three
axioms (Axiom 1, Axiom 2, andAxiom 3∗). For example, they
are also satisfied by the trivial measure F (pY |x, pY , x) = 0
for all pY |x, pY , and x.

Vector-valued loss functions can be used to derive an ad-
ditive measure of copy information. Imagine that source
and destination messages consists of sequences of n sym-
bols. If the source symbols are chosen independently, s(x) =∏n
i=1 si(xi), and transmitted across n independent channels,

p(y|x) =
∏n
i=1 pi(yi|xi), then one can verify that the desti-

nation marginal distribution will also have a product form,

p(y) =

n∏
i=1

pi(yi). (C12)

In that case, one may desire a measure of copy infor-
mation that is additive across the n transmission (see
also discussion in Section II D). This can be achieved
by choosing an n-dimensional loss function, `(x, y) =
〈`(x1, y1), `(x2, y2), . . . , `(xn, yn)〉. It can be seen from
Eq. (C12) and Eq. (C11) that the optimal distribution will
have a product form, w(y) =

∏n
i=1 wi(yi). By Eq. (C10), it

can also be checked that the resulting copy information will
have an additive form,

Gcopy
x (pY |x‖pY ) =

n∑
i=1

Gcopy
x (pYi|xi‖pYi), (C13)

where Gcopy
x (pYi|xi‖pYi) is the generalized copy information

defined for dimension i and loss function `i(xi, yi). Note that
in this case DKL(pY |x‖pY ) =

∑
iDKL(pYi|xi‖pY ). There-

fore, by Eqs. (C13) and (17), the generalized transformation
information Gtrans

x will also be additive.

D. PROOF OF PROP. 1

Before proving Proposition 1, we prove several intermediate
results. We start by proving some useful properties of the roots
of the quadratic polynomial ax2−(a+s)x+sc. In particular,
we consider the two roots

f±(a, s, c) =
a+ s±

√
(a+ s)

2 − 4asc

2a
(D14)

where a ∈ R \ {0}, s ∈ (0, 1], c ∈ (0, 1].

Lemma D1. f+(a, s, c) < 0 when a < 0 and f+(a, s, c) ≥ 1
when a > 0.

Proof. When a < 0, f+(a, s, c) ≤ f−(a, s, c). Vieta’s for-
mula states that

f−(a, s, c)f+(a, s, c) =
sc

a
< 0. (D15)

This implies f+(a, s, c) < 0. When a > 0, we lower bound
the determinant,

(a+ s)2 − 4asc ≥ a2 + 2as+ s2 − 4as = (a− s)2 .
(D16)

This implies

f+(a, s, c) ≥
a+ s+ |a− s|

2a
=

{
1 if a ≥ s
s
a > 1 if s > a > 0

Lemma D2. lima→0 f−(a, s, c) = c.

Proof. By L’Hôpital’s rule,

lim
a→0

f−(a, s, c) = lim
a→0

d
da

(
a+ s−

√
(a+ s)

2−4asc
)

d
da (2a)

=
1

2
− lim
a→0

2(a+ s)− 4sc

2 · 2
√

(a+ s)
2 − 4asc

=
1

2
− s− 2sc

2s
= c.

Lemma D3. f−(a, s, c) is continuous and monotonically de-
creasing in a. It is strictly monotonically decreasing in awhen
f−(a, s, c) < 1.

Proof. First consider the the case when c = 1,

f−(a, s, c) =
a+ s− |a− s|

2a
=

{
s
a if a ≥ s
1 otherwise

which is continuous and monotonically decreasing in a, and
strictly so when f−(a, s, c) < 1 (so a > s).
When c < 1, define the square root of the determinant

η :=

√
(a+ s)

2 − 4asc
(a)
> |a− s| ≥ 0.

Inequality (a) is strict because Eq. (D16) is strict when c < 1.
Then, consider the derivative,

∂
∂af−(a, s, c)

=
1

4a2

[(
1− 1

2

2a+ 2s− 4sc

η

)
2a− 2 (a+ s− η)

]
=

1

2a2

[
−a

2 + sa− 2sca

η
− s+ η

]
∝ −a2 − sa+ 2sca− sη + η2 (D17)
= s [a− 2ac+ s− η] (D18)

∝ a− 2ac+ s

η
− 1 (D19)

≤ |a− 2ac+ s|
η

− 1
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=

√
(a− 2ac+ s)

2

η2
− 1

=

√
1− 4a2c

1− c
η2
− 1 < 0,

where in Eq. (D17) we multiplied by the (positive) term 2a2η,
in Eq. (D18) we plugged in the definition of η and simplified,
and in Eq. (D19) we divided by the (strictly positive) term ηs.
The inequality in the last line uses the fact that 4a2c 1−c

η2 > 0

given that a 6= 0 and 0 < c < 1, and that
√
1− x < 1 for

x > 0.

We now prove the following.

Theorem D1. Let c(x) ∈ [0, 1] indicate a set of values for all
x ∈ A. Then, for any source distribution sX with full support,
there is a channel pY |X that satisfies

p(y|x) =

{
c(x) if x = y
1−c(x)

1−pY (x)pY (y) otherwise,
(D20)

where pY is the marginal pY (y) =
∑
x s(x)p(y|x). The

channel pY |X is unique if c(x) > 0 for all x. Moreover,
Ip(Y :X) = Icopyp (X�Y ) if and only if

∑
x c(x) ≥ 1.

Proof. We will show that there exists a marginal pY that sat-
isfies the consistency conditions of Eq. (D20).

We first eliminate a few edge cases. The solution is trivial
for |A| = 1, so we assume that |A| ≥ 1. If c(x) = 0 for all x,
then for any two states x, x′ ∈ A, the following is a solution:
pY (x) = s(x′)/(s(x)+s(x′)), pY (x′) = s(x)/(s(x)+s(x′)),
pY (x

′′) = 0 for all x′′ ∈ A \ {x, x′}. If c(x) = 0 for
some but not all x, then the problem can be solved for the
reduced outcome space S = {x ∈ A : c(x) > 0}, using the
procedure below. It can then be extended to all outcomes by
keeping pY (x) fixed for x ∈ S and setting pY (x) = 0 for all
x ∈ A \ S . Therefore, without loss of generality, below we
assume c(x) > 0 for all x.
We first plug Eq. (D20) into pY (y) =

∑
x s(x)p(y|x),

pY (x) = s(x)c(x) + pY (x)
∑

x′:x′ 6=x

s(x′)
1− c(x′)
1− pY (x′)

.

(D21)

Define a := 1−
∑
x′ s(x′)

1−c(x′)
1−pY (x′) and rearrange Eq. (D21)

to give

0 = s(x)c(x) + pY (x)

(
−a− s(x) 1− c(x)

1− pY (x)

)
.

Multiplying both sides by 1− pY (x) and simplifying gives

0 = s(x)c(x)− s(x)c(x)pY (x)− apY (x) + apY (x)
2−

[pY (x)s(x)− pY (x)s(x)c(x)]
= apY (x)

2 − (a+ s(x))pY (x) + s(x)c(x). (D22)

Dividing by s(x), then summing over x and rearranging gives

a

[∑
x

pY (x)− pY (x)2

s(x)

]
=

[∑
x

c(x)

]
− 1 . (D23)

Note that the sum inside the brackets on the left hand side is
strictly positive. Thus,we have

a ≥ 0 iff
∑
x

c(x) ≥ 1 ; a < 0 iff
∑
x

c(x) < 1 (D24)

Note also that a = 0 if
∑
x c(x) = 1, in which case pY (x) =

c(x) is the unique solution to Eq. (D22) for all x. Below, we
disregard this simple special case, and assume that

∑
x c(x) 6=

1 and a 6= 0.
We now solve Eq. (D22) for pY (x). First, note that pY (x) =∑
x′ s(x′)p(x|x′) ≥ c(x)s(x) > 0 for all x, since we assume

that s(x) > 0 and c(x) > 0 for all x. Given that |A| > 1, this
also means that pY (x) < 1 for all x (if this were not the case,
then it would be that pY (x) = 0 for all except one x). We then
solve the quadratic equation,

paY (x) =
a+ s(x)−

√
(a+ s(x))

2 − 4as(x)c(x)

2a
, (D25)

where we include the superscript a in paY to make the depen-
dence on a explicit. We chose the negative solution of the
quadratic equation because, by Lemma D1, it is the only one
compatible with the requirement that 0 < paY (x) < 1.
We wish to find the value of a satisfies

∑
x p

a
Y (x) = 1,

which is defined implicitly via

1 =
∑
x

a+ s(x)−
√

(a+ s(x))
2 − 4as(x)c(x)

2a
(D26)

Note that each paY (x) is continuous and strictly monotonically
decreasing in a (Lemma D3), and therefore so is the right hand
side of Eq. (D26). Moreover, amust lie between−1 and 1. To
see why, evaluate the right hand side of Eq. (D26) for a = −1,

∑
x

1− s(x) +
√
(1 + s(x))2 + 4s(x)c(x)

2

≥
∑
x

1− s(x) + (1 + s(x))

2
= n ≥ 1

Then, evaluate it for a = 1,∑
x

1 + s(x)−
√

(1 + s(x))2 − 4s(x)c(x)

2

≤
∑
x

1 + s(x)−
√
(1 + s(x))2 − 4s(x)

2

=
∑
x

1 + s(x)− (1− s(x))
2

=
∑
x

2s(x)

2
= 1

Thus, there is a unique a ∈ [−1, 1] that satisfies Eq. (D26),
resulting in a unique paY and corresponding pY |X in Eq. (D20).
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Now, by definition of Icopy, Ip(Y :X) = Icopyp (X� Y ) if
c(x) ≥ pY (x) for all x. By Lemma D2 and Lemma D3, the
right hand side of Eq. (D25) is greater than c(x) if and only if
a ≥ 0. By Eq. (D24), a ≥ 0 if and only if

∑
x c(x) ≥ 1.

In practice, the value a∗ in the proof of Theorem D1 can
be found by a numerical root finding algorithm, or by trying
values from −1 to 1 in small intervals and selecting the first
value that makes the LHS of Eq. (D26) less than or equal to 1.
The marginal pY and channel pY |X can then be computed in
closed form using Eqs. (D20) and (D25).

We are now ready to prove Proposition 1.

Proposition 1. For any source distribution sX withH(X) <
∞, there exist channels p for all levels of mutual information
Ip(Y :X) ∈ [0, H(X)] such that Icopyp (X�Y ) = Ip(Y :X).

Proof. Consider the proof of Theorem D1. Note that for each
x ∈ A and any γ ∈ [0, 1], Eq. (D22) is satisfied by taking
pY (x) = s(x) and c(x) = γ + s(x)− γs(x).
Let pγY |X represent the channel corresponding to each γ,

as defined in Eq. (D20). It is easy to check that Icopypγ (X�
Y ) = Ipγ (Y : X), with Icopypγ (X � Y ) = 0 for γ = 0 and
Icopypγ (X�Y ) = H(sX) for γ = 1. Note that c(x) is increases
monotonically in γ for all x, from c(x) = s(x) for γ = 0 to
c(x) = 1 for γ = 1. This means that for all γ,

Icopypγ (X�Y ) =
∑
x

s(x)d(c(x), s(x))

≤ −
∑
x

s(x) ln s(x) = H(sX) <∞.

Thus, the sums that define Icopypγ (X�Y ) for each γ converge
uniformly. Therefore, Icopypγ (X� Y ) is continuous in γ. The
proposition follows from the intermediate value theorem.

E. THE BINARY SYMMETRIC CHANNEL

The BSC is a channel over a two-state space (A = {0, 1})
parameterized by a “probability of error” ε ∈ [0, 1]. The BSC

can be represented in matrix form as

pεY |X =

(
1− ε ε
ε 1− ε

)
.

When ε = 0, the BSC is a noiseless channel which copies the
source without error. In this extreme case, MI is large, and
we expect it to consist entirely of copy information. On the
other hand, when ε = 1, the BSC is a noiseless “inverted”
channel, where messages are perfectly switched between the
source and the destination. In this case, MI is again large, but
we now expect it to consist entirely of transformation informa-
tion. Finally, ε = 1/2 defines a completely noisy channel, for
which mutual information (and thus copy and transformation
information) must be 0.

For simplicity, we assume a uniform source distribution,
sX(0) = sX(1) = 1/2, which by symmetry implies a
marginal probability pY (0) = pY (1) = 1/2 at the destination
for any ε. For the BSC with this source distribution, Eq. (8)
states that for both x = 0 and x = 1, Dcopy

x (pεY |x‖pY ) =

Ipε(Y :X=x) and Dtrans
x (pεY |x‖pY ) = 0 when ε ≤ 1/2, and

Dcopy
x (pεY |x‖pY ) = 0 and Dtrans

x (pεY |x‖pY ) = Ipε(Y :X=x)

otherwise. Using the definition of the (total) copy and trans-
formation components of total MI, Eqs. (10) and (11), it then
follows that

Icopypε (X�Y ) =

{
Ipε(Y :X) if ε ≤ 1/2

0 otherwise

Itranspε (X�Y ) =

{
Ipε(Y :X) if ε ≥ 1/2

0 otherwise
.

This confirms intuitions about the BSC discussed in the be-
ginning of this section. The behavior of MI, Icopy(X�Y ) and
Itrans(X�Y ) for the BSC with a uniform source distribution
is shown visually in Fig. 2 of the main text.
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