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Patterns in Heterogeneous Domains via WKBJ” by A. L. Krause, V. Klika, T. E. Woolley, and E. A. Gaffney

S1. REDERIVATION OF TURING INSTABILITY WITH SPATIAL HOMOGENEITY.

The standard derivation of the Turing conditions in the homogeneous setting with Neumann boundary conditions considers
the separable Fourier solution

w ∝ exp(λ t)cos(kx), (S.1)

with wave number k, and finds the associated growth rate, λ . The conditions for a Turing instability then arise from the
requirement that:

(i) there is stability when k = 0, indicating a stable steady state without diffusion,

(ii) a range of k �= 0 generates an instability, at least providing k/π is a non-zero integer within this range.

In the heterogeneous case, the conditions associated with stability in the absence of diffusion are derived analogously to the
homogeneous case. However, for instability, the Fourier solutions do not decouple and we seek an alternative approach. Pro-
ceeding, we firstly summarise the calculation of the homogeneous Turing conditions, where the fundamental equation arising
from the substitution of (S.1) into (3) is given by

det[ε2k2D−J+λ I] = det[ε2k2D−Jλ ] = 0, (S.2)

where we denote Jλ = J−λ I. This condition is equivalent to

det[−D−1Jλ + ε2k2I] = 0.

Hence, given ε and the wave number k, we can determine the growth rate λ . For a perturbation to grow we require values of k2

and λ such that

Re(λ )> 0, for k2 = n2π2 > 0, (S.3)

with n a non-zero integer, subject to Equation (S.2). Instead of following the normal approach where we vary k to ensure
ℜ(λ ) > 0, we can instead vary λ to deduce conditions under which requiring k2 to be real and positive implies the normal
Turing conditions. The relationship between λ and k2 is computed from the dispersion relation (S.2).

Non-real growth rates. Permissible values of k2 are real and positive, or else we could not satisfy k2 = n2π2 for an integer
n �= 0. Thus, we can exclude cases where ε2k2 is not strictly real. We also neglect cases where Re(λ ) < 0 as we are only
interested in instability. However we have

−tr(ε2k2D−J) = [ fu +gv − ε2k2(1+d)]< 0, (S.4)

for permissible k2, given that the homogeneous steady state is stable, so that tr(J) = fu +gv < 0. We also have from (S.2) that λ
satisfies,

λ =−tr(ε2k2D−J)±
�
[tr(ε2k2D−J)]2 −4det[ε2k2D−J]. (S.5)

Hence, if λ is non-real, its real part is negative as follows from (S.4)-(S.5). Thus, without loss of generality, we can consider
real λ , as complex growth solutions with permitted wave numbers, if they exist, are stable.

Real growth rates. Recalling the notation B0 = D−1J, the transition to instability occurs when λ = 0, whence

ε2k2 =
1
2

�
tr(B0)±

�
[tr(B0)]2 −4det(B0)

�
, (S.6)

where the two roots ε2k2 are the eigenvalues of B0. Therefore, to generate an inhomogeneous instability consistent with the
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stability of the zero mode (conditions (4)) we require

tr(B0)−
�
[tr(B0)]2 −4det(B0)> 0. (S.7)

There are two roots for ε2k2 and these are the eigenvalues of B0. If both are negative, there is no permissible value of k2, and
thus there is no instability. If the smaller eigenvalue is negative and the larger is positive, then from the shape and behaviour of
Re(λ ) as a function of ε2k2, one must have Re(λ ) = λ > 0 for ε2k2 = 0. However, this possibility will be excluded as we require
the mode associated with k = 0 to be stable. Thus we require that inequality (S.7) holds in order to generate an inhomogeneous
instability consistent with the stability of the zero mode. In analogy to the standard derivation of the Turing condition, the
requirement that k/π is a non-zero integer is only considered a posteriori. From the conditions for the stability of the zero mode,
(4), we have that det(J)> 0, and hence det(D−1J)> 0. The remaining conditions for an inhomogeneous instability are then

tr(D−1J)> 0, [tr(D−1J)]2 −4det(D−1J)> 0, (S.8)

which are equivalent to the standard Turing conditions (5) given in Criterion (1).

S2. SINGULARITIES OF WKBJ MODES

Here we show properties of the solution near internal singular points in detail, denoting such a point as x∗. At any singular
point, where sT

∗ p∗ = 0, the expression for Q0, (10), becomes ill-defined, and hence we examine the structure of the solution near
such a singular point.

With J∗λ denoting Jλ (x∗) and similarly B∗
λ = Bλ (x∗), we focus on the case when tr(J∗)< 0, det(J∗)> 0, tr(B∗

λ )> 0 which is
the case of interest as this will be the boundary of Tλ (see Proposition 4). Further, the zero of [tr(Bλ )]

2−4det(Bλ ) is generically
a simple one at x = x∗, as a non-simple zero would require mathematical fine-tuning in the model and parameter choices for
smooth kinetic functions. Then for fixed y �= x∗ with sT

∗ p∗ �= 0 in (x∗,y), the integral

exp
�� y

x

s∗(x̄)T p�
∗(x̄)

s∗(x̄)T p∗(x̄)
dx̄
�

has a singularity which scales with 1/|x− x∗|1/4 as x → x∗.

Proposition 9 Let λ be a non-negative real growth rate. We assume tr(J∗) < 0, det(J∗) > 0, and tr(B∗
λ ) > 0 with J∗λ denoting

Jλ (x∗). Additionally, we assume that the zero of [tr(Bλ )]
2 − 4det(Bλ )) is a simple one at x = x∗. Then with fixed y �= x∗ the

integral

exp
�� y

x

s∗(x̄) ·p�
∗(x̄)

s∗(x̄) ·p∗(x̄)
dx̄
�

has a singularity which scales with 1/|x− x∗|1/4 as x → x∗.

Proof. By (19) we have

µ±
λ (x∗) =

1
2

tr(B∗
λ ),

which is a double root at x = x∗, so we have,

[−µ±
λ (x∗)I+D−1Jλ ] =




fu −λ −µ±
λ fv

gu

d
gv −λ

d
−µ±

λ


 , ( fu −λ −µ±

λ )

�
gv −λ

d
−µ±

λ

�
− 1

d
fvgu = 0. (S.9)

With sign choices that are without loss of generality, we compute

p∗(x) =
1

Rp

�
− fv

fu −λ −µ±
λ

�
, Rp =

�
f 2
v + | fu −λ −µ±

λ |2
�1/2

,
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with

s∗(x) =
1
Rs

�
−gu/d, fu −λ −µ±

λ
�
, Rs =

��gu

d

�2
+ | fu −λ −µ±

λ |2
�1/2

.

We will need Rp ∼ O(1) near x = x∗, and so must show that Rp(x∗) �= 0. We proceed by contradiction and assume that Rp = 0 at
x = x∗. Then fu −λ −µ±

λ = 0 = fv. So therefore fu > λ > 0, but we have det(J∗) = fugv > 0 and tr(J∗) = fu +gv < 0, which
cannot be simultaneously satisfied, and hence we must have Rp �= 0 at x = x∗. An analogous proof also shows that Rs �= 0 at
x = x∗.

Letting x = x∗+X with |X |� 1, and defining

αλ =
∂
∂x

�
[tr(Bλ )]

2 −4det(Bλ )
�����

x=x∗
,

we have from equation (19) that near x = x∗

µ±
λ (x) :=

1
2

� �
tr(B∗

λ )±|αλ X |1/2 +O(X)
�

αλ X > 0�
tr(B∗

λ )± i|αλ X |1/2 +O(X)
�

αλ X < 0

�
:= µ0∗

λ +
1
2

�
±|αλ X |1/2 +O(X) αλ X > 0
±i|αλ X |1/2 +O(X) αλ X < 0

�
, (S.10)

where µ0∗
λ = tr(B∗

λ ) is constant in X . We do not consider the degenerate case of αλ = 0 as this corresponds to a non-simple root
of det([−µ±

λ (x)I+D−1Jλ ]) at x = x∗. From this expansion, we have (denoting derivatives with respect to X as � ≡ ∂X )

(µ �±
λ )(x) =

1
4





±
���αλ

X

���
1/2

+O(1) αλ X > 0

±i
���αλ

X

���
1/2

+O(1) αλ X < 0




. (S.11)

Specialising in the first instance to the case αλ X > 0, and on noting fu = f ∗u +O(|X |), fv = f ∗v +O(|X |) near x = x∗, while
R∗

p = Rp(x∗)∼ O(1), R∗
s = Rs(x∗)∼ O(1), the contraction of s∗(x) and p∗(x) yields

s∗(x) ·p∗(x) =
1

RpRs

�
1
d

fvgu +( fu −λ −µλ )
2
�

= s∗(x∗) ·p∗(x∗)∓
1

R∗
pR∗

s (1+O(|X |1/2))

�
( f ∗u −λ −µ0∗

λ )|αλ X |1/2 +O(|X |)
�

= ∓ 1
R∗

pR∗
s
( f ∗u −λ −µ0∗

λ )|αλ X |1/2 +O(|X |), as X → 0.

Further, on differentiating p∗(x), one finds

p�
∗(x) =

1
Rp

�
− fv

fu −λ −µλ

��
−

R�
p

R2
p

�
− fv

fu −λ −µλ

�
=

1
4R∗

p




O(1)

∓
���αλ

X

���
1/2


+O(1)−

R�
p

Rp
p∗(x).

Contracting with s∗(x) yields

s∗(x) ·p�
∗(x) =∓ 1

4R∗
pR∗

s

�
f ∗u −λ −µ0∗

λ
����αλ

X

���
1/2

+O(1)−
R�

p

Rp
s∗(x) ·p∗(x) =∓ 1

4R∗
pR∗

s

�
f ∗u −λ −µ0∗

λ
����αλ

X

���
1/2

+O(1),

on noting that

R�
p ∼ O

����αλ
X

���
1/2
�
, s∗(x) ·p∗(x)∼ O

�
|X |1/2

�
, as X → 0.
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Hence

s∗(x) ·p�
∗(x)

s∗(x) ·p∗(x)
=

1
4|X |

�
1+O(|X1/2|)

�
, (S.12)

and the above calculations hold for arbitrary αλ �= 0 and thus equation (S.12) also holds for αλ X < 0. In turn, we have for
x = x∗+X , X > 0,

Q0(x∗+X)

Q0(1)
∝ exp

�
−
� x ∗+X

1

s∗(x̄) ·p�
∗(x̄)

s∗(x̄) ·p∗(x̄)
dx̄
�
= exp

�� 1

x ∗+X

1
4(x̄− x∗)

+O
�

1
(x̄− x∗)1/2

�
dx̄
�
∼ O

�
1

|X |1/4

�
,

and the same scaling holds for X < 0.
On approaching such a singular point x∗, solutions and their derivatives become unbounded and the asymptotic assumptions

inherent in the WKBJ approximation (that the diffusion term is subleading), breaks down. In contrast, the second derivative of
such solutions near x ≈ x∗ will scale with 1/|x− x∗|9/4, and hence the transport term is no longer asymptotically small when
|x− x∗| ∼ ε8/9. Hence boundary layers are present around x∗. However, the interior boundary layer problem is not tractable
analytically, and thus we only consider the outer WKBJ solutions. Nonetheless, we require boundedness of the outer solutions
on approaching the boundary layer, otherwise such solutions will be arbitrarily large for sufficiently small ε . In turn the outer
region is valid for |x− x∗|∼ ε4/9 � ε8/9, where the WKBJ solution scales with 1/|x− x∗|1/4 ∼ 1/ε1/9 → ∞ as ε → 0. Solution
boundedness requires the expression in (11) to take the form of a sin function near the singular point x∗, and a cos function is
used at a zero-flux boundary.

S3. RELATIONSHIP BETWEEN n± AND λ AND THE SUPPORT OF NON-TRIVIAL WKBJ MODES

Here we show that λ decreases with n+ in the positive branch of WKBJ solutions, and outline how the negative branch
behaves.

Proposition 10 The value of the non-negative growth rate λ decreases with n+ for the positive branch of WKBJ solutions.

Proof. We proceed by differentiating the fundamental constraint (16) with respect to n± to find

λ �(n±)


b�(λ )

�
µ±

λ (b(λ ))−a�(λ )
�

µ±
λ (a(λ ))+

� b(λ )

a(λ )

∂λ (µ±
λ )(x̄)

2
�

µ±
λ (x̄)

dx̄


= πε > 0. (S.13)

By Proposition 8 we have that a�(λ ) ≥ 0 and b�(λ ) ≤ 0, which implies that the first two terms of (S.13) are together negative
and we must only check the sign of the third term. For the positive branch, this term is negative by the proof of Proposition 5, as
∂λ µ+

λ < 0, hence, for this branch we must have λ �(n+)< 0.
Any non-trivial WKBJ solution has a support (in space) demarcated by singular points x∗(λ (n±)) =: x∗(λ ) or the domain

boundaries. Therefore the support of the n+-th mode also decreases (or remains the same) as n+ is increased, due to the
monotonicity of Tλ . We can conclude that Tλ (n+) shrinks with increasing n+, and that the largest permissible n+ will correspond
to the smallest value of λ and the largest spatial support, whereas the smallest n+ will have the smallest support, but largest
growth rate.

For the negative branch n−, the calculation in the proof of Proposition 10 reveals that a competition between two terms of
different signs takes place, and the overall picture is more complicated. First, note that if there is no singular point within the
domain [0,1] for a range of λ , then the first two boundary terms of (S.13) vanish and the last term was shown to be positive via
the proof in Proposition 5 for µ−

λ . Hence, in this scenario, λ would increase with increasing n−. In the case when there is an
internal singular point, we know that Tλ decreases with increasing λ . Additionally, near the maximal permissible λ , the support
of the fastest growing mode is very small and becomes a strict subset of [0,1]. Further, for such maximal admissible λ , both
n± = 1 as µ±

λ (x) is a continuous function in λ and in x ∈ [a,b] including the boundaries, while we know that Tλ is monotonic in
λ . Hence, the left hand side of equation (27) is arbitrarily small and as a result n± = 1 for the largest admissible λ . Therefore,
close to this maximal value, λ has to decrease with n−. Finally, as all the terms determining the sign of λ �(n−) have a fixed sign,
we know that there is at most one extremum of λ (n−), which then completes the picture for the negative branch.

In Fig. S1 we show the support of each discrete mode alongside its corresponding growth rate for both solution branches.
We highlight regions corresponding to the four modes of each branch given in Fig. 6. We note in particular that the fastest
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(a) (b)

FIG. S1: The “structure” of a patterned state linear analysis showing the intervals where a given WKBJ solution from the positive branch
((a), solid lines) and from the negative branch ((b), dashed lines) will dominate. The discreteness of the steps is highlighted together with the
value of growth rate λ . For each mode we plot an opaque rectangle with the horizontal side being the support of the mode,i.e. the interval
(x∗(λ (n±)),1), while the vertical side is the value of the growth rate for a given mode λ (n±). Note that the highlighted rectangles in colors
correspond to the modes depicted in Fig 6. Hence, there are subintervals where many modes exist. The envelope of the largest λ values then
forms then the topmost black line at the boundary, which we conjecture to have a relation to the amplitude envelope of emerging patterned
solutions.

growing mode in any given spatial region is the mode which is highest in any given region in Fig. S1, and hence this changes
as each subsequent mode becomes permissible (i.e. moving left to right each new mode has a larger value of λ ). Hence we
conjecture that if all modes are approximately excited by the same amount, then the envelope of unstable modes should scale
with the fastest growing mode locally, which is qualitatively observed in Fig. 4. Additionally, in the homogeneous setting, close
to a supercritical bifurcation any patterned state should have an amplitude which scales with λ raised to a power, and hence this
provides an intuition for the final small-amplitude patterns observed in Figs. 2-3, as again the envelope of the oscillations should
scale with λ . However, we do not formally deduce a relationship between the envelope of the final patterned state with λ , and
instead leave this as future work.


