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Supplementary Information 

1.1 The homeostatic mechanics framework 

Here, we provide a brief overview of the homeostatic mechanics framework of Shishvan et al. 

[1]. The aim is to provide the reader the key aspects of the framework required for fully 

appreciating the computational results presented in the main text, and to also emphasise the 

differences in the present formulation compared to the work of Shishvan et al. [1]. Readers are 

referred to Shishvan et al. [1] for a more complete treatment including the derivations of the 

relevant equations. 

 

Making the ansatz that living cells are entropic, Shishvan et al. [1] introduced the concept of 

the homeostatic ensemble with cellular homeostasis providing the additional constraints and 

mechanisms for entropy maximisation. This defined the notion of a (dynamic) homeostatic 

equilibrium state that intervenes to allow living cells to elude thermodynamic equilibrium. 

They thus developed a statistical mechanics framework for living cells using the notions of 

statistical inference applicable over a timescale from a few hours to a few days as long as the 

cell remains as a single undivided entity (i.e. the interphase period of the cell cycle). The key 

ideas behind the framework can be summarised as follows. A system comprising the cell and 

the extracellular matrix (ECM) is an open system with the cell exchanging nutrients with the 

surrounding bath. These nutrients fuel a large number of coupled biochemical reactions that 

include actin polymerisation, treadmilling and dendritic nucleation that effect changes to the 

cell morphology. These biochemical reactions change the morphology of the cell but are not 

precisely controlled, and this manifests via the observed morphological fluctuations of the cell. 

Shishvan et al. [1] made the ansatz that these biochemical reactions provide the mechanisms 

to maximise the morphological entropy of the cell, but constrained by the fact that the cell 

maintains a homeostatic state1 over the interphase period. Showing that the homeostatic 

constraint translates to a constraint on the average Gibbs free-energy, Shishvan et al. [1] 

developed a statistical mechanics framework to analyse the fluctuating response of cells. It is 

this framework that we extend to analyse stem cell differentiation. 

 

Controlling only macro variables (i.e. macrostate) such as the temperature, pressure and 

nutrient concentrations in the nutrient bath results in inherent uncertainty (referred to here as 

missing information) in micro variables (i.e. microstates) of the system. This includes a level 

of unpredictability in homeostatic process variables, such as the spatio-temporal distribution of 

chemical species, that is linked to Brownian motion and the complex feedback loops in the 

homeostatic processes. Thus, this system not only includes the usual lack of precise information 

on the positions and velocities of individual molecules associated with the thermodynamic 

temperature, but also an uncertainty in cell shape resulting from imprecise regulation of the 

                                                           
1 Cellular homeostasis is the ability of cells to actively regulate their internal state, and maintain the concentration 

of all internal species at specific average values over their morphological fluctuations independent of the 

environment. 

 



3 
 

homeostatic processes. The consequent entropy production forms the basis of this new 

statistical mechanics framework motivated by the following two levels of microstates: 

(i) Molecular microstates. Each molecular microstate has a specific configuration (position and 

momentum) of all molecules within the system.  

(ii) Morphological microstates (Fig. 1 in the main text). Each morphological microstate is 

specified by the mapping (connection) of material points on the cell membrane to material 

points on the substrate and/or within the adhesive island geometry. In broad terms, a 

morphological microstate specifies the shape and size of the cell. 

 

Shishvan et al. [1] identified the (dynamic) homeostatic or equilibrium state of the system by 

entropy maximisation. Subsequently, we shall simply refer to this state as an equilibrium state 

to emphasise that it is a stationary macrostate of the system inferred via entropy maximisation 

as in conventional equilibrium analysis. The total entropy of the system is written in terms of 

the conditional probability 𝑃(𝑖|𝑗) of the molecular microstate (𝑖) given the morphological 

microstate (𝑗) and the probability 𝑃(𝑗) of morphological microstate (𝑗) as 

 𝐼T = ∑𝑃(𝑗)𝐼M
(𝑗)

𝑗

+ 𝐼Γ. (1.1) 

In Eq. (1.1), 𝐼M
(𝑗)

≡ −∑ 𝑃(𝑖|𝑗) ln 𝑃(𝑖|𝑗)
𝑖∈𝑗  and 𝐼Γ ≡ −∑ 𝑃(𝑗) ln 𝑃(𝑗)

𝑗  are the entropies of 

molecular microstates in morphological microstate (𝑗) and the morphological microstates, 

respectively. Equilibrium then corresponds to molecular and morphological macrostates that 

maximise 𝐼T subject to appropriate constraints. The molecular macrostate evolves on the order 

of seconds, limited by processes such as the diffusion of unbound actin. By contrast, 

transformation of the morphological macrostate involves cell shape changes and therefore, the 

morphological macrostate evolves on the order of minutes, limited by co-operative cytoskeletal 

processes within the cell such as meshwork actin polymerisation and dendritic nucleation. The 

evolutions of the molecular and morphological macrostates are therefore temporally 

decoupled, and Shishvan et al. [1] showed that Eq. (1.1) can be maximised by independently 

maximising 𝐼M
(𝑗)

 at the smaller timescale to determine the equilibrium distribution of molecular 

microstates for a given morphological microstate, and then maximising 𝐼Γ at the larger 

timescale to determine the equilibrium distribution of the morphological microstates. 

 

Over the (short) timescale on the order of seconds, the only known constraint on the system is 

that it is maintained at a constant temperature, pressure and strain distribution. The equilibrium 

of a given morphological microstate (𝑗) obtained by maximising 𝐼M
(𝑗)

 (denoted by 𝑆M
(𝑗)

) 

corresponds to molecular arrangements that minimise the Gibbs free-energy with 𝐺(𝑗). Since 

the connection between the cell and the substrate is fixed for a given morphological microstate, 

the determination of 𝐺(𝑗) is a standard boundary value problem as described in Section 1.2. 

Over the (long) timescale on the order of several minutes to hours, the equilibrium distribution 

𝑃eq
(𝑗)

 is determined by maximising 𝐼Γ, but now with the additional constraint that the cell is 

maintained in its homeostatic state. For the case of a cell on an ECM in a constant temperature 

and pressure nutrient bath, the homeostatic constraint translates to the fact that the average 
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Gibbs free-energy of the system over all the morphological microstates it assumes, is equal to 

the equilibrium Gibbs free-energy 𝐺S of an isolated cell in suspension (free-standing cell), i.e. 

the homeostatic processes maintain the average biochemical state of the system equal to that 

of a cell in suspension. In deriving this result, Shishvan et al. [1] did not consider every 

individual homeostatic process, but rather used just the coarse-grained outcome of the 

homeostatic processes. The application of this coarse-grained constraint is the key element of 

the homeostatic mechanics framework, with the morphological entropy 𝐼Γ parameterising the 

information lost by not modelling all variables associated with the homeostatic processes. 

 

The maximisation of 𝐼Γ while enforcing ∑ 𝑃(𝑗)𝐺(𝑗) = 𝐺S𝑗  gives the homeostatic equilibrium 

state such that 

 𝑃eq
(𝑗)

=
1

𝑍
exp(−𝜁𝐺(𝑗)), (1.2) 

where 𝑍 ≡ ∑ exp(−𝜁𝐺(𝑗))𝑗  is the partition function of the morphological microstates, and the 

distribution parameter 𝜁 follows from the homeostatic constraint 

 
1

𝑍
∑𝐺(𝑗)

𝑗

exp(−𝜁𝐺(𝑗)) = 𝐺S . (1.3) 

The collection of all possible morphological microstates that the system assumes while 

maintaining its homeostatic equilibrium state is referred to as the homeostatic ensemble. The 

homeostatic ensemble can therefore be viewed as a large collection of copies of the system, 

each in one of the equilibrium morphological microstates. The copies (𝑗) are distributed in the 

ensemble such that the free-energies 𝐺(𝑗) follow an exponential distribution 𝑃eq
(𝑗)

 with the 

distribution parameter 𝜁. 

The equilibrium morphological entropy 𝑆Γ = −∑ 𝑃eq
(𝑗)

ln 𝑃eq
(𝑗)

𝑗  (i.e. the maximum value of 𝐼Γ) 

follows from (1.2) and (1.3) as 

 𝑆Γ = 𝜁𝐺S + ln 𝑍, (1.4) 

where 𝑃eq
(𝑗)

 is substituted from Eq. (1.2). Thus, 𝑆Γ is related to 𝜁 via the conjugate relation 

𝜕𝑆Γ/𝜕𝐺S = 𝜁. Thus, analogous to 1/𝑇 that quantifies the increase in uncertainty of the 

molecular microstates (i.e. molecular entropy 𝑆M
(𝑗)

) with average enthalpy, 𝜁 specifies the 

increase in uncertainty of the morphological microstates (i.e. morphological entropy 𝑆Γ) with 

the average Gibbs free-energy. We therefore refer to 1/𝜁 as the homeostatic temperature with 

the understanding that it quantifies the fluctuations on a timescale much slower than that 

characterised by 𝑇. 

 

1.2     The equilibrium Gibbs free-energy of a morphological microstate 

Similar to conventional statistical mechanics calculations that require a model for the energy 

of the system, the homeostatic statistical mechanics framework requires a model for the Gibbs 

free-energy 𝐺(𝑗) of morphological microstate (𝑗). Here, we calculate 𝐺(𝑗) using the free-energy 
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model of Vigliotti et al. [2], as modified in [1] and [3], that includes contributions from cell 

elasticity and the actin/myosin stress-fibre cytoskeleton, with the cell modelled as a two-

dimensional (2D) body in the 𝑥1 − 𝑥2 plane adhered to an elastic substrate (Fig. 1b of the main 

text) such that the out-of-plane Cauchy stress 𝛴33 = 0. The state of the system changes as the 

cell moves, spreads and changes shape on the elastic substrate. Here, we shall give a 

prescription to calculate the Gibbs free-energy of the system when the cell is in a specific 

morphological microstate (𝑗), where the connections of material points on the cell membrane 

to the surface of the substrate are specified. Calculating the Gibbs free-energy of the system 

when the material points on the cell membrane is connected to the surface of the adhesive 

island requires a small modification to the prescription outlined below. Readers are urged to 

refer to Supplementary S1.3 (and also Supplementary S2 of Buskermolen et al [3]) for further 

information. In the following, for the sake of notational brevity, we shall drop the superscript 

(𝑗) that denotes the morphological microstate, as the entire discussion refers to a single 

morphological microstate. 

 

The Vigliotti et al. [2] model assumes only two components within the cell: (i) a passive elastic 

contribution from subcellular structures such as the cell membrane, intermediate filaments and 

microtubules, and (ii) an active contribution from contractile acto-myosin stress-fibres that are 

modelled explicitly with the nucleus not explicitly modelled. This model was modified in [1] 

to incorporate a non-dilute concentration of stress-fibres, and further modified in [3] to include 

the nucleus in the analysis as a passive elastic body, in addition to the cytoplasm comprising 

the two above mentioned components. We shall first describe the modelling of the active acto-

myosin stress-fibres in the cytoplasm and then discuss the elastic model of both the nucleus 

and the cytoplasm. 

 

Consider a two-dimensional (2D) cell of thickness 𝑏0 and volume 𝑉0 in its elastic resting state 

comprising a nucleus of volume 𝑉N and cytoplasm of volume 𝑉C such that 𝑉0 = 𝑉N + 𝑉C 

(Fig. 1b of the main text). The representative volume element (RVE) of the stress-fibres within 

the cytoplasm in this resting configuration is assumed to be a cylinder of volume 𝑉R =

𝜋𝑏0 (
𝑛Rℓ0

2
)
2

, where ℓ0 is the length of a stress-fibre functional unit in its ground-state, and 𝑛R 

is the number of these ground-state functional units within this reference RVE. The total 

number of functional unit packets within the cell is 𝑁0
T, and we introduce 𝑁0 = 𝑁0

T𝑉R/𝑉C as 

the average number of functional unit packets available per RVE; 𝑁0 shall serve as a useful 

normalisation parameter. The state of stress-fibres at location 𝑥𝑖 within the cell is described by 

their angular concentration 𝜂(𝑥𝑖, 𝜑), and there are 𝑛(𝑥𝑖, 𝜑) functional units in series along the 

length of each stress-fibre in the RVE. Here, 𝜑 is the angle of the stress-fibre bundle in the 

undeformed configuration with respect to the 𝑥2 − direction of the elastic substrate (Fig. 1b of 

the main text). Vigliotti et al. [2] showed that, at steady-state, the number 𝑛ss of functional 

units within the stress-fibres is given by 

 𝑛̂ss ≡
𝑛ss

𝑛R
=

[1 + 𝜀nom(𝑥𝑖, 𝜑)]

1 + 𝜀ñom
ss  , (1.5) 
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where 𝜀ñom
ss  is the strain at steady-state within a functional unit of the stress-fibres, and 

𝜀nom(𝑥𝑖, 𝜑) is the nominal strain in direction 𝜑. The chemical potential of the functional units 

within the stress-fibres in terms of the Boltzmann constant 𝑘B is given by [1] 

 𝜒b =
𝜇b

𝑛R
+ 𝑘B𝑇 ln

[
 
 
 
 

(
𝜋 𝜂̂ 𝑛̂ss

𝑁̂u (1 −
𝜂̂

𝜂̂max
)
)

1
𝑛ss

(
𝑁̂u

𝜋𝑁̂L

)

]
 
 
 
 

 , (1.6) 

where the normalized concentration of the unbound stress-fibre proteins is 𝑁̂u ≡ 𝑁u/𝑁0 with 

𝜂̂ ≡ 𝜂𝑛R/𝑁0, while 𝜂̂max is the maximum normalised value of 𝜂̂ corresponding to full 

occupancy of all available sites for stress-fibres (in a specific direction) and 𝑁̂L is the number 

of lattice sites available to unbound proteins. The enthalpy 𝜇b of 𝑛R bound functional units at 

steady-state is given in terms of the isometric stress-fibre stress 𝜎max and the internal energy 

𝜇b0 as 

 𝜇b = 𝜇b0 − 𝜎maxΩ(1 + 𝜀ñom
ss ), (1.7) 

where Ω is the volume of 𝑛R functional units. By contrast, the chemical potential of the 

unbound proteins is independent of stress and given in terms of the internal energy 𝜇u as 

 

 𝜒u =
𝜇u

𝑛R
+ 𝑘B𝑇 ln (

𝑁̂u

𝜋 𝑁̂L

) . (1.8) 

For a fixed configuration of the 2D cell (i.e. a fixed strain distribution 𝜀nom(𝑥𝑖, 𝜑)), the 

contribution to the specific Helmholtz free-energy of the cell 𝑓 from the stress-fibre 

cytoskeleton follows as 

 𝑓cyto = 𝜌0 (𝑁̂u𝜒u + ∫ 𝜂̂ 𝑛̂ss𝜒b𝑑𝜑
𝜋/2

−𝜋/2

) , (1.9) 

where 𝜌0 ≡ 𝑁0/𝑉R is the number of protein packets per unit reference volume available to form 

functional units in the cell. However, we cannot yet evaluate 𝑓cyto as 𝑁̂u(𝑥𝑖) and 𝜂̂(𝑥𝑖, 𝜑) are 

unknown. These will follow from the chemical equilibrium of the cell as will be discussed in 

Section 1.2.1. 

 

The total stress 𝛴𝑖𝑗 within the cell includes contributions from the passive elasticity provided 

mainly by the intermediate filaments of the cytoskeleton attached to the nuclear and plasma 

membranes and the microtubules, as well as the active contractile stresses of the stress-fibres. 

The total Cauchy stress is written in an additive decomposition as 

 𝛴𝑖𝑗 = 𝜎𝑖𝑗 + 𝜎𝑖𝑗
p
 , (1.10) 

where 𝜎𝑖𝑗 and 𝜎𝑖𝑗
p

 are the active and passive Cauchy stresses, respectively. In the 2D setting 

with the cell lying in the 𝑥1 − 𝑥2 plane, the active stress is given in terms of the volume fraction 

ℋ0 of the stress-fibre proteins as 
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[
𝜎11 𝜎12

𝜎12 𝜎22
] =

ℋ0𝜎max

2
∫ 𝜂̂[1 + 𝜀nom(𝜑)] [

2sin2𝜑∗ −sin 2𝜑∗

−sin 2𝜑∗ 2cos2𝜑∗ ]

𝜋/2

−𝜋/2

𝑑𝜑,        

(1.11) 

where 𝜑∗ is the angle of the stress-fibre measured with respect to 𝑥2, and is related to its 

orientation 𝜑 in the undeformed configuration by the rotation with respect to the undeformed 

configuration. The passive elasticity in the 2D setting is given by a 2D specialization of the 

Ogden [4] hyperelastic model as derived in [1]. The strain energy density function of this 2D 

Ogden model is  

 ΦC ≡
2𝜇C

𝑚C
2 [(

𝜆I

𝜆II
)

𝑚C
2

+ (
𝜆II

𝜆I
)

𝑚C
2

− 2] +
𝜅C

2
(𝜆I𝜆II − 1)2, (1.12) 

for the cytoplasm and 

 ΦN ≡
2𝜇N

𝑚N
2 [(

𝜆I

𝜆II
)

𝑚N
2

+ (
𝜆II

𝜆I
)

𝑚N
2

− 2] +
𝜅N

2
(𝜆I𝜆II − 1)2, (1.13) 

for the nucleus where 𝜆I and 𝜆II are the principal stretches, 𝜇C (𝜇N) and 𝜅C (𝜅N) the shear 

modulus and in-plane bulk modulus of cytoplasm (nucleus), respectively, while 𝑚C (𝑚N) is a 

material constant governing the non-linearity of the deviatoric elastic response of cytoplasm 

(nucleus). The cell is assumed to be incompressible, and thus throughout the cell, we set the 

principal stretch in the 𝑥3 −direction 𝜆III = 1/(𝜆I𝜆II). The (passive) Cauchy stress then follows 

as 𝜎𝑖𝑗
p
𝑝𝑗

(𝑘)
= 𝜎𝑘

p
𝑝𝑖

(𝑘)
 in terms of the principal (passive) Cauchy stresses 𝜎𝑘

p
 (≡ 𝜆𝑘𝜕ΦC/𝜕𝜆𝑘 for 

the cytoplasm and ≡ 𝜆𝑘𝜕ΦN/𝜕𝜆𝑘 for the nucleus) and the unit vectors 𝑝𝑗
(𝑘)

 (𝑘 = I, II) denoting 

the principal directions. The total specific Helmholtz free-energy of the cell is then 𝑓 = 𝑓cyto +

ΦC in the cytoplasm and 𝑓 = ΦN in the nucleus. 

 

1.2.1     Equilibrium of the morphological microstate 

Shishvan et al. [1] have shown that equilibrium of a morphological microstate reduces to two 

conditions: (i) mechanical equilibrium with 𝛴𝑖𝑗,𝑗 = 0 throughout the system, and (ii) chemical 

equilibrium such that 𝜒u(𝑥𝑖) = 𝜒b(𝑥𝑖, 𝜑) = constant, i.e. the chemical potentials of bound 

and unbound stress-fibre proteins are equal throughout the cell.  

 

The condition 𝜒u = 𝜒b implies that 𝜂̂(𝑥𝑖, 𝜑) is given in terms of 𝑁̂u by 

 𝜂̂(𝑥𝑖, 𝜑) =
𝑁̂u 𝜂̂maxexp [

𝑛̂ss(𝜇u − 𝜇b)
𝑘B𝑇

]

𝜋𝑛̂ss𝜂̂max + 𝑁̂u exp [
𝑛̂ss(𝜇u − 𝜇b)

𝑘B𝑇
]
,  (1.14) 

and 𝑁̂u follows from the conservation of stress-fibre proteins throughout the cytoplasm, viz. 

 𝑁̂u +
1

𝑉C
∫ ∫ 𝜂̂ 𝑛̂ss𝑑𝜑

𝜋/2

−𝜋/2

 
𝑉C

𝑑𝑉 = 1, (1.15) 
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with the total concentration of bound stress-fibre proteins denoted as 𝑁̂b ≡ 1 − 𝑁̂u. Knowing 

𝑁̂u and 𝜂̂(𝑥𝑖, 𝜑), the stress 𝛴𝑖𝑗 can now be evaluated and these stresses within the system (i.e. 

cell and substrate) need to satisfy mechanical equilibrium, i.e. 𝛴𝑖𝑗,𝑗 = 0. In this case, the 

mechanical equilibrium condition is readily satisfied as the stress field 𝛴𝑖𝑗 within the cell is 

equilibrated by a traction field T𝑖 exerted by the substrate on the cell such that 𝑏𝛴𝑖𝑗,𝑗 = −T𝑖, 

where 𝑏(𝑥𝑖) is the thickness of the cell in the current configuration.   

 

The equilibrium value of the Gibbs free-energy is then given as 𝐺 = 𝐹cell + 𝐹sub where 

 𝐹cell ≡ 𝜌0𝑉C𝜒u + ∫  ΦC𝑉C
𝑑𝑉 + ∫  ΦN𝑉N

𝑑𝑉, (1.16) 

and 

 𝐹sub ≡ ∫  ψ
𝑉sub

𝑑𝑉, (1.17) 

where ψ is the strain-energy density of the substrate material, and 𝑉sub is the volume of the 

substrate. The substrate is modelled as a half-space made from a linear elastic material with 

Young’s modulus 𝐸sub and Poisson’s ratio 𝜈sub = 0.5. We assume that it is sufficient to model 

the deformation of the substrate using the small strain assumption (i.e. linear kinematics). The 

problem of calculating the equilibrium strain energy density ψ within the substrate then reduces 

to a linear elasticity problem that is readily solved using well-known Green’s functions via the 

boundary element method (BEM): the advantage of using BEM to solve the elastic half-space 

problem is that we only need to mesh the surface of the substrate, while a finite element (FE) 

calculation would require a 3D meshing of the half-space. However, while it is reasonable to 

assume small deformations within the substrate, the cell undergoes large deformation and full 

nonlinear kinematics along with the nonlinear constitutive model is employed to analyse the 

cell. We thus analyse the cell and the substrate separately and connect the two analyses by 

ensuring displacement and traction continuity along the portion of the substrate surface 

connected to the cell. 

 

We apply the traction distribution −T𝑖 on the surface of the substrate (with the remainder of 

the substrate surface being traction free) and calculate the equilibrium strain distribution within 

the substrate using BEM. This gives the substrate free-energy 𝐹sub. The BEM mesh for the 

substrate surface comprised ∼2600 elements. Mesh convergence studies revealed that 

increasing mesh density resulted in changes in the total free-energy of less than 3%, which 

translates to an error in the estimation of the probability of a morphological microstate of about 

1% for typical values of the homeostatic temperature 1/𝜁. 

 

Here, 𝜒u is given by Eq. (1.8) with the equilibrium value of 𝑁̂u obtained from Eq. (1.15). 

Details of numerical computation of 𝐹sub is provided in [1]. For the purposes of further 

discussion, we label the equilibrium value 𝐹cyto ≡ 𝜌0𝑉C𝜒u as the cytoskeletal free-energy of 
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the cell, 𝐹passive ≡ ∫  ΦC𝑉C
𝑑𝑉 + ∫  ΦN𝑉N

𝑑𝑉 as the passive elastic energy of the cell, and 𝐹sub 

as the substrate free-energy. 

 

It is essential to note that the morphological macrostate of the cell arises from a complex 

interplay between 𝐹cyto, 𝐹passive and 𝐹sub, such that the average free-energy is maintained at a 

constant value. In other words, the distribution of 𝐹cyto indirectly influences the distributions 

of 𝐹passive and 𝐹sub via the homeostatic constraint. For example, an elastic substrate of stiffness 

𝐸sub = 30 kPa can equilibrate a wide range of traction distributions applied by the cell, 

resulting in high 1/𝜁, which corresponds to large morphological fluctuations of the cell. This 

implies that the cell can sample both microstates with high levels of stress-fibre polymerisation 

(i.e. low 𝐹cyto), and microstates with large deformation (typically penalised by high 𝐹passive 

and/or 𝐹sub), such that the average free-energy of the ensemble of microstates is 𝐺S. However, 

in any specific microstate, the strain distribution in the cell determines 𝐹cyto, 𝐹passive and 𝐹sub, 

with no correlation between the three free-energy components. This non-local effect of 𝐹cyto 

on 𝐹passive and 𝐹sub is evidenced by the low correlation between measures of cellular 

deformation such as cell area, aspect ratio and average tractions (which correlate well with 

𝐹passive or 𝐹sub) and 𝐹cyto in Fig. 8 of the main text. 

 

1.3     Numerical methods 

We employ Markov Chain Monte Carlo (MCMC) to construct a Markov chain that is 

representative of the homeostatic ensemble. This involves three steps: (i) a discretization 

scheme to represent morphological microstate (𝑗), (ii) calculation of 𝐺(𝑗) for a given 

morphological microstate (𝑗), and (iii) construction of a Markov chain comprising these 

morphological microstates. Here, we briefly describe the procedure which was implemented in 

MATLAB. 

 

In the general setting of a three-dimensional (3D) cell, a morphological microstate is defined 

by the connection of material points on the cell membrane to the surface of the substrate. In the 

2D context of cells on micropatterned substrates, this reduces to specifying the connection of 

all material points of the cell to locations within the elastic substrate, i.e. a displacement field 

𝑢𝑖
(𝑗)

(𝑋𝑖) is imposed on the cell with 𝑋𝑖 denoting the location of material points on the cell in 

the undeformed configuration, and these are then displaced to 𝑥𝑖
(𝑗)

= 𝑋𝑖 + 𝑢𝑖
(𝑗)

 in 

morphological microstate (𝑗), such that all 𝑥𝑖
(𝑗)

 lie within the elastic substrate. These material 

points located at 𝑥𝑖
(𝑗)

 are then connected to material points on the substrate at the same location 

𝑥𝑖
(𝑗)

, completing the definition of the morphological microstate in the 2D setting.  

 

The cell is modelled as a continuum and thus 𝑢𝑖
(𝑗)

 is a continuous field. To calculate the density 

of the morphological microstates, we define 𝑢𝑖
(𝑗)

 via Non-Uniform Rational B-splines 
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(NURBS) such that the morphological microstate is now defined by 𝑀 pairs of weights 

[𝑈𝐿
(𝑗)

, 𝑉𝐿
(𝑗)

] (𝐿 = 1,… ,𝑀). In all the numerical results presented here, we employ 𝑀 = 16 with 

4 × 4 weights 𝑈𝐿
(𝑗)

 and 𝑉𝐿
(𝑗)

 governing the displacements in the 𝑥1 and 𝑥2 directions, 

respectively. The NURBS employ fourth order base functions for both the 𝑥1 and 𝑥2 directions, 

and the knots vector included two nodes each with multiplicity four, located at the extrema of 

the interval. We emphasise here that this choice of representing the morphological microstates 

imposes restrictions on the morphological microstates that will be considered. Therefore, the 

choice of the discretization used to represent 𝑢𝑖
(𝑗)

 needs to be chosen so as to be able to 

represent the microstates we wish to sample, e.g. the choice can be based on the minimum 

width of a filopodium one expects for the given cell type. Given 𝑢𝑖
(𝑗)

, we can calculate 𝐺(𝑗) 

using the model outlined in the main paper with the cell discretised using constant strain 

triangles of size 𝑒 ≈ 𝑅0/10, where 𝑅0 is the radius of the cell in its undeformed configuration. 

 

We construct, via MCMC, a Markov chain that serves as a sample of the homeostatic ensemble 

for cells on wide elastic substrates and cells confined to square adhesive islands of area 𝐴p. 

The algorithm closely follows the approach developed by Shishvan et al. [1]. However, here 

we additionally model cells constrained on adhesive islands with cell adhesion outside the 

islands prevented. Over the range of island sizes used in the experimental investigation, cells 

that were partially or entirely outside the islands were not observed. Thus, we construct a 

sample of the homeostatic ensemble comprising solely of morphological microstates that are 

fully within the adhesive islands. This is done using the Metropolis [5] algorithm in an iterative 

manner using the procedure explained in detail in [1] (see section 4.3 therein) but now with the 

following modification. In constructing the Markov chain, if any portion of the proposed new 

configuration of the cell lies outside the adhesive island, then the nodal boundary points outside 

the island were pushed back to the boundary of the island along a line joining their locations in 

the current proposed morphological microstate and their corresponding positions in previous 

accepted morphological microstate – this corrected morphological state was then used as the 

configuration on which to check the probability of acceptance. Typical Markov chains 

comprised in excess of ℒ = 2 × 106 samples. 

 

1.4     Material parameters for hMSCs 

All simulations are reported at a reference thermodynamic temperature 𝑇 = 𝑇0, where 𝑇0 =

310 K. Most of the parameters of the model are related to the properties of the proteins that 

constitute stress-fibres. These parameters are thus expected to be independent of cell type. 

Notable exceptions to this are: (i) the stress-fibre protein volume fraction ℋ0; and (ii) the 

passive elastic properties. Here, we use parameters calibrated for hMSCs that give good 

correspondence with the wide range of measurements reported in the study. The passive elastic 

parameters of the cytoplasm are taken to be 𝜇C = 0.3 kPa, 𝜅C = 50 kPa and 𝑚C = 6, while 

the corresponding values for the nucleus are 𝜇N = 1 kPa, 𝜅N = 50 kPa and 𝑚N = 10. The 

maximum contractile stress 𝜎max = 240 kPa is consistent with a wide range of measurements 

on muscle fibres [6], and the density of stress-fibre proteins was taken as 𝜌0 = 3 × 106 μm−3 

with the volume fraction of stress-fibre proteins ℋ0 = 0.032. Following Vigliotti et al. [2], we 
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assume that the steady-state functional unit strain 𝜀ñom
ss = 0.35 with 𝜇b0 − 𝜇u = 2.3 𝑘B𝑇0 and 

Ω = 10−7.1 μm3. The maximum angular concentration of stress-fibre proteins is set to 𝜂̂max =

0.8. The cell in its undeformed state is a circle of radius 𝑅0 and thickness 𝑏0, with a circular 

nucleus of radius 𝑅N whose centre coincides with that of the cell. The radius of the hMSCs in 

their undeformed state was taken to be 𝑅0 = 15 μm, while their thickness was set at 𝑏0/𝑅0 =

0.12. The radius of the nucleus of hMSCs in their undeformed state was taken to be 𝑅N =

6.75 μm, so that the nucleus occupies a volume fraction 𝑣̅N = 0.21 of the cell.  

 

1.5     Definitions of normalised quantities and observables 

Following [1], the free-energy 𝐺(𝑗) can be decomposed as 𝐺(𝑗) = Υ(𝑗)+Υ0, where Υ0 ≡

𝜌0𝑉0[𝜇u/𝑛
R − 𝑘B𝑇 ln(𝜋 𝑁̂L)] is independent of the morphological microstate. It is thus natural 

to subtract out Υ0 and define a normalised free-energy as  

𝐺̂(𝑗) ≡
Υ(𝑗)

|𝐺S − Υ0|
=

𝐺(𝑗) − Υ0

|𝐺S − Υ0|
  , (1.18) 

where 𝐺S is the equilibrium free-energy of a free-standing cell (i.e. a cell in suspension with 

traction-free surfaces). Then, the distribution given by Eq. (1.2) can be re-written as 

𝑃eq
(𝑗)

=
1

𝑍̂
exp[−𝜁𝐺̂(𝑗)], (1.19) 

with 𝑍̂ ≡ ∑ exp[−𝜁𝐺̂(𝑗)]𝑗  and 𝜁 ≡ 𝜁|𝐺𝑆 − Υ0|. It then immediately follows that the 

distributions of states are not influenced by the values of 𝑛R, 𝑁̂L and 𝑉0 and these parameters 

need not be specified so long as energies are quoted in terms of the normalised energies 𝐺̂(𝑗). 

We note in passing that we have normalised the Gibbs free-energy of each morphological 

microstate and the homeostatic temperature by the homeostatic value of the Gibbs free-energy 

that the cell attains over all the morphological microstates it samples. For the hMSC parameters 

listed in Supplementary S1.4, the cell in suspension has a radius of ≈ 15 μm with a Gibbs free-

energy 𝐺S − Υ0 ≈ −6.1 × 109𝑘B𝑇0 = −0.03 nJ (see Shishvan et al. [1] for details of the 

calculation of 𝐺S − Υ0). This implies that in units of Kelvin, a typical normalised temperature 

1/𝜁 = 0.2 of hMSCs corresponds to 1/𝜁 ≈ 1011 K. Of course, this high temperature stems 

from the homeostatic framework inherently recognising that the morphological fluctuations of 

cells, rather than having a thermal origin, are biochemical in nature and arise from the imprecise 

regulation of the exchange of nutrients with the nutrient bath.  

 

Analogously, we define the normalised passive and cytoskeletal free-energies of the cell as 

𝐹̂passive
(𝑗)

≡
𝐹passive

(𝑗)

|𝐺S − Υ0|
 , (1.20) 

and 

𝐹̂cyto
(𝑗)

≡  
𝐹cyto

(𝑗)
− Υ0

|𝐺S − Υ0|
 , (1.21) 

respectively. Similarly, we define the normalised substrate free-energy as 
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𝐹̂sub
(𝑗)

≡  
𝐹sub

(𝑗)

|𝐺S − Υ0|
 , (1.22) 

Probability density functions showing predictions of the distributions of  𝐹̂cyto for hMSCs on 

selected stiffness of elastic substrates and selected areas of adhesive islands are included in 

Figs. 6a and 6c (in the main text), respectively. These distributions are generated by plotting 

histograms from the sample list generated via the MCMC procedure and normalising the 

frequencies to give 𝑝(x) such that ∫ 𝑝(x)𝑑x
∞

−∞
= 1, where the dummy symbol x denotes either  

𝐹̂cyto or a morphometric variable (such as cell area, aspect ratio, and total tractions).  

 

1.5.1     Tractions exerted by cells on substrates 

An observable commonly reported in experiments, typically measured via traction-force 

microscopy, are spatial distributions of tractions exerted by cells on substrates and the 

associated so-called total traction force [7-9]. These measurements are nearly exclusively 

reported on relatively soft substrates where tractions exerted by the cell induce significant 

deformations. This makes measurements of surface displacements feasible and allows for a 

relatively low error estimate of the associated surface tractions [8, 9]. It is well-established that 

the response of cells is mechano-sensitive in the sense that the tractions they exert depend on 

the substrate stiffness, with the tractions increasing with increasing substrate stiffness [9, 10]. 

Mechanical equilibrium (Section 1.2.1) of a given morphological microstate (𝑗) specifies the 

traction distribution T(𝑗)(𝑥𝑖) between the cell and the substrate. We define a normalised 

resultant traction 

Τ̂(𝑗)(𝑥𝑖) ≡
𝑅0√Τ1

2 + Τ2
2

𝑏0𝜇C
, (1.23) 

where 𝑅0 and 𝑏0 are the radius and thickness of the cell in its undeformed state, respectively, 

𝜇C is the shear modulus of the cytoplasm and 𝑇𝑖 is the traction at location 𝑥𝑖 in morphological 

state (𝑗). These distributions for selected morphological microstates on elastic substrates of 

two stiffness (𝐸sub = 3 kPa and 30 kPa) are included in Fig. 3d (in the main text). In addition, 

we also define the normalised total traction as 

Τ̂T
(𝑗)

≡
1

𝐴(𝑗)
∫  Τ̂(𝑗)𝑑𝐴
𝐴(𝑗)

, (1.24) 

and the distributions of the normalised total traction are shown in Fig. 3c (in the main text) for 

cells on elastic substrates of three different stiffness, in Fig. 4b (in the main text) for cells on 

adhesive islands of three areas, and in Fig. 9c (in the main text) comparing cells untreated and 

treated with ROCK inhibitor.  

 

1.5.2     Construction of immunofluorescence-like images 

The predictions in Fig. 2a (in the main text) show immunofluorescence-like images comprising 

of three layers; the nucleus is coloured in purple and blue (in the top and bottom panels, 

respectively), while the focal adhesions and actin stress-fibres in shades of green and red, 

respectively. Focal adhesion distributions in the experiments by Engler et al [11] were observed 
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by staining for paxillin (Fig. 2b of the main text). In the current set of simulations, the focal 

adhesions were not explicitly modelled but rather the cell was assumed to perfectly adhere to 

the substrate without directly accounting for the distribution of adhesion proteins. This results 

in the simulations predicting traction distributions Τ𝑖(𝑥𝑖) as discussed above. However, it is 

well-known that traction magnitudes scale with concentration of adhesive proteins [12] and 

thus, here we use predictions of traction magnitudes as a surrogate to visualise the predictions 

of focal adhesion distributions. Specifically, we include in Fig. 2a (in the main text) 

distributions of Τ̂(𝑗) for selected morphological microstates (𝑗) with the darker shades of green 

representing higher values of Τ̂(𝑗) and thereby higher paxillin concentrations.   

 

The predictions of the actin stress-fibre structure within the cytoplasm are coloured in red. 

These images, are meant to give two key pieces of information: (i) the local orientation of the 

dominant stress-fibre bundle, and (ii) the concentration of the stress-fibre proteins. However, 

no discrete fibres are present in the model of the acto-myosin stress-fibres employed here with 

the fibres represented via continuum internal state variables. Here, we use this continuum 

information to generate a discrete depiction of the fibres using the following prescription. 

Recall that for the purposes of calculation of 𝐺(𝑗), the cell was discretized into 800 constant 

strain triangles of approximately equal size in the undeformed configuration. Within each 

element 𝑘, we defined an actin stress-fibre concentration in direction 𝜑∗ as 𝜗̂b
𝑘(𝜑∗) ≡

𝜂̂(𝜑∗)𝑛̂ss(𝜑∗), where 𝜑∗ is the angle of the stress-fibre measured with respect to 𝑥2 direction 

and is related to its angle 𝜑 in the undeformed configuration by the rotation of element 𝑘. Next, 

we construct a dummy mesh comprising approximately 200 triangular elements to discretize 

the deformed cell. Elements of the original computational mesh are assigned to the element of 

the dummy mesh in which their centroid lies. In this manner, approximately four elements of 

the original computational mesh are assigned to each element of the dummy mesh.  

 

 

We then define an average actin stress-fibre concentration for each element 𝑚 of the dummy 

mesh as 

〈𝜗̂b(𝜑
∗)〉𝑚 ≡

1

𝑉𝑚
∑ 𝜗̂b

𝑘(𝜑∗)𝑣𝑘

𝑘∈𝑚

 , (1.25) 

where 𝑣𝑘 is the volume of element 𝑘 of the computational mesh that is assigned to element 𝑚 

of the dummy mesh and 𝑉𝑚 = ∑ 𝑣𝑘𝑘∈𝑚 . The dominant stress-fibre direction 𝜑max
∗  in dummy 

element 𝑚 is defined as the value of 𝜑∗ corresponding to the maximum value of 〈𝜗̂b(𝜑
∗)〉𝑚. 

Each element of the dummy mesh is hatched with green lines in the direction 𝜑max
∗ . We set the 

spacing of the hatches to scale with the local density of bound stress-fibre proteins in order to 

replicate the higher intensity of the fluorescent phalloidin observed under light microscopy in 

locations with a higher concentration of stress-fibres. The total concentration of bound stress-

fibre proteins in element 𝑘 of the computational mesh is  
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 𝑁̂b
𝑘 = ∫ 𝜗̂b

𝑘(𝜑) 𝑑𝜑

𝜋/2

−𝜋/2

 , (1.26) 

with 𝑁̂b
T ≡ ∫ 𝑁̂b 𝑉C

𝑑𝑉 denoting the total concentration of bound stress-fibre proteins in the cell.  

 

The spacing 𝓈 of the green hatches in element 𝑚 of the dummy mesh is set to scale inversely 

with the concentration of bound stress-fibre proteins within that element, i.e. 𝓈 ≡ 𝑁̂b
𝑇/

∑ 𝑁̂b
𝑘

𝑘∈𝑚  . This process results in the predictions of the actin cytoskeletal structure shown in 

Fig. 2a (in the main text), and we include in the top panel of Fig. 10b (in the main text) only 

predictions of the actin cytoskeletal structure (i.e. without nucleus or focal adhesions) for cells 

on adhesive islands of area 𝐴p = 2725 𝜇𝑚2 to give more insight into the details of the 

predicted cytoskeletal structure at various locations within the cell. The predictions in Fig. 4a 

(in the main text) are generated by the same method, with the nucleus coloured in blue, while 

the focal adhesions (i.e. distributions of Τ̂(𝑗)) and actin stress-fibres are coloured in shades of 

pink and green, respectively. 
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