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This Supplementary Information contains the following: 

1- Supplementary Note 1: calculation in the small-curvature approximation of the sperm 

rotation velocity. 

2- Supplementary Note 2: demonstration that the sum of a sinusoidal travelling wave 

and its second harmonic can be written as a sinusoidal travelling wave with a time-

dependent amplitude and phase. 

3- Supplementary Note 3: comparison of different means found in the literature of 

quantifying flagellar bending waves. 

 

Supplementary Note 1 

In the following, we describe a calculation of the rotation velocity in the small-curvature 

approximation regime for tethered and freely swimming sperm. The sperm models are 

assumed head-less for simplicity, and thus, any drag and torque on the head are neglected. 

Flagellar beats are assumed planar. In the limit of small Reynolds numbers, the freely 

swimming cell is free from external forces and torques, while the tethered cell, being still free 

to rotate around its head is assumed to be free from external torques.  

We consider a beat waveform characterised by a flagellar curvature C(s,t) 
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Here, C1 and Cn are the first and the n-th harmonic curvature amplitude, respectively,  is the 

phase difference between first and the n-th harmonic, and C0 is the average curvature. To 

implement the small-curvature approximation, we introduce an arbitrary variable  << 1 and 

variables i*C  (with i = 0, 1, 2, …, n) such that 
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By substituting equations (S1.2) into equations. (S1.1) we find 
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In the material frame of the cell (see Supplementary Note 3) with base vectors e1(t) and e2(t), 

the angle (s,t) between the flagellar tangent and the long axis of the sperm head (e1) is [1]  
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Thus, at time t, the flagellar centerline coordinates r(s,t) in the material frame of the cell reads 
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The tangent vector    s,   ,s t s tt r = e1cos (s,t) + e2sin (s,t) is normalized by virtue of 

equation (S1.4). We also introduce the local normal vector n(s,t) = -e1sin (s,t) + e2cos (s,t), 

which is always perpendicular to t(s,t). 

We consider the hypothetical case of a sperm cell whose head is infinitesimally small and is 

constrained from both translating and rotating. Specifically, r(0,t) = (0,0) and the material 

frame vectors e1, e2 will be assumed constant. The velocity for each small segment along the 

flagellum depends only on active beating and is given by 

   t,   ,s t s tv r .       (S1.5) 

The drag force density opposing to the active flagellar beat reads 



     |a |,s t      f v t t v n n .   (S1.6) 

Thus, the active force and torque generated by the whole flagellum can be calculated as 

follows: 
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where L is the flagellar length. In fact, -Fa and -Ta are the constraining force and torque 

required to restrain the sperm head from moving, while the sperm flagellum is beating. As 

discussed in the main text, for a freely swimming cell, the active force Fa and torque Ta that 

result from beating will be instantaneously balanced by the drag force Fr and torque Tr that 

result from the global translation and rotation, i.e., from the rigid body motion. Let us denote 

the instantaneous translational and rotational velocities of the material frame of the head of 

a freely swimming sperm cell as vH and H, respectively. Similar to equation (S1.6), we 

compute the drag force density resulting from the rigid body motion as 

     r H H H|| H, ( ) ( )s t          f v Ω r t t v Ω r n n ,      (S1.8) 

where H H . Ω 1 2e e The net drag force and torque are thus 
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The instantaneous translational (vH) and rotational (H) velocities of the material frame (seen 

from the lab frame) can be calculated from the equation set resulting from the torque-free 

and force-free conditions: 
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Finally, the mean rotational velocity can be derived from the as-calculated instantaneous 

variables: 
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Here, 2/0 indicates the beat period. For a tethered sperm cell that is free to rotate around 

the position of its head, the net torque vanishes, while net active force is equal in magnitude 

and opposite to the constraining force applied at the tethering point. Thus, only the torque 

balance has to be considered. By construction, vH = (0, 0).   

We used the symbolic toolbox of MATLAB to obtain analytical solutions of equation (S1.10) 

for different harmonic contributions, retaining only the leading terms in an expansion in a 

small-curvature approximation parameter (see equation S1.3). The results for freely 

swimming and tethered sperm are summarised in Supplementary Tables 1 and 2, respectively, 

for the special case k = 2/L. For n = 4, only the approximate expression for  is provided. The 

complete solution for this or other harmonics can be calculated using the corresponding 

MATLAB code online: https://doi.org/10.5281/zenodo.3383174. 
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Supplementary Table 1. Calculated rotation velocity for the small-curvature approximation for freely 

swimming sperm with different harmonic contributions. *Only the leading term in  is used and the 

drag coefficient ratio is assumed to be R = 1.81. To obtain the final expression, equations (S1.2) have 

been used. 
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Supplementary Table 2. Calculated rotation velocity for the small-curvature approximation for 

tethered sperm with different harmonic contributions. *Only the leading term in  is used and the drag 

coefficient ratio is assumed to be R = 1.81. To obtain the final expression, equations (S1.2) have been 

used. 

 

Supplementary Note 2 

In the following, we demonstrate that the sum of a symmetric sinusoidal travelling wave and 

its second harmonic can be written as a sinusoidal symmetric travelling wave with a time-

dependent amplitude and phase. Departing from equation (3.4c) of the main text 

1 0 2 0( , ) sin( ) sin( 2 )C s t C ks t C ks t      .  (S2.1) 

Equation (S2.1) can be rewritten using Euler’s formula as 

   0 0 0i(ks t ) i(ks 2 t ) i(ks t) i

1 2 1 2( , ) Im Im ( )C s t C e C e e C C e
         ,  (S2.2) 

where Im is the imaginary part operator and  = -0t +  can be seen as a time-dependent 

phase between the first and second harmonic components. This phase can be generalised for 

any sum of harmonics, but for the sake of simplicity, we will adhere to the second harmonic 

case.  

Using Euler’s formula and the polar representation of a complex number, we find 
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Substituting equation (S2.3) into equation (S2.2), it is readily found 
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Using Euler’s formula again and applying the imaginary part operator, the anticipated 

expression can be found 

 0( , ) sin  + C s t C ks t   ,    (S2.5) 

where ( )t  and ( )C t denote time-dependent phase and amplitude given by: 
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    (S2.6). 

In summary, the superposition of a sinusoidal travelling wave and its second harmonic 

(equation S2.1) can be written as a single sinusoidal travelling wave (equation S2.5). This 

function is symmetric in space at any point in time, and its time average is zero. Yet, it features 

a time-dependent amplitude and phase that results in an asymmetric beat envelope. 

Supplementary Note 3 

This note compares different means found in the literature of characterising in quantitative 

terms the flagellar bending waves. We restrict ourselves to planar beat patterns. 

In this study, we quantify the flagellar beat in terms of the curvature C(s,t) of the flagellar 

centerline as a function of arc length s and time t. We employ a signed version of curvature, 

where positive (C(s,t)>0) and negative (C(s,t)<0) values indicate a bend in a counter-clockwise 

and clockwise direction, respectively (when moving along the flagellar centerline from its 

proximal towards its distal end). Geometrically, the inverse of the curvature defines the local 

radius of curvature, r = 1/|C(s,t)|(Supplementary Fig. 1). The characterisation in terms of 

curvature C(s,t) is independent of the choice of the coordinate system and allows to uniquely 

reconstruct the flagellar shape at any time t (up to any translation or rotation in the plane). 



In the last half a century, alternative quantifications have been used to characterise flagellar 

bending waves: tangent angle [1-3], the shear angle [4-6], and the bend angles [7, 8]. We 

review these below and discuss their equivalence to the representation in terms of curvature.  

 

Supplementary Figure 1. Definition of the flagellar curvature. (a) sketch of a sperm cell. (b) Magnified 

flagellar segment corresponding to that segment boxed in (a). The radius of curvature equals the radius 

of the local coalescence circle that snugly fits the flagellar centerline at arc length position s. The 

flagellar curvature is defined as the inverse of this radius. 

 

Tangent angle  representation 

For the tangent angle representation, a material frame with base vectors e1 and e2 is 

introduced (Supplementary Fig. 2). A common choice defines the base vectors in terms of the 

long and the short axis of an approximately spheroidal sperm head. The tangent angle (s,t) 

is then defined as the angle between the tangent to the flagellar centerline and the e1-

direction. It is straightforward to convert this tangent angle representation to the curvature 

representation using the geometrical definition of signed curvature as the derivative of the 

tangent angle with respect to arc length s 

s( , ) ( , )C s t s t   .      (S3.1) 

For the sake of explicitness, we consider an idealised beat pattern with tangent angle 

0 1 0( , ) cos( ω )s t A s A ks t    ,     (S3.2), 

where k is the wavenumber (i.e., spatial frequency) and 0 denotes the angular beat 

frequency. We readily find: 

0 1 0( , ) sin( ω )C s t A Ak ks t   .     (S3.3) 



By comparing equation (S3.3) with equation (3.4b) in the main text, we see that C0 = A0 and C1 

= -A1k. 

A practical advantage of the tangent angle is that its estimation is less sensitive to 

measurement noise as compared to the curvature C(s,t). Flagellar curvature C(s,t) is sensitive 

to measurements errors because uncertainties of flagellar tracking become amplified by 

taking the spatial derivative (see equation S3.1). 

 

 

Supplementary Figure 2. Definition of tangent angle. The material frame of the cell is defined by the 

two orthonormal vectors e1(t) and e2(t), parallel and perpendicular to the long axis of the sperm head, 

respectively. Dashed black line represents the flagellar centerline. The tangent angle (s,t) is the angle 

between the tangent to the flagellum at arc length position s and time t and the direction of material 

frame vector e1(t). 

 

Shear angle shear representation 

The shear angle is also extensively used for describing the flagellar bending [4-6]. It is defined 

as the tangent angle at an arc length point s minus the tangent angle at the flagellar base 

(Supplementary Fig. 3): 

shear ( , ) ( , ) (0, )s t s t t    .      (S3.4) 

For the special case (0,t) = 0, i.e., where the proximal end of the flagellum is parallel to the 

vector e1 of the material frame, shear angle and tangent angle are identical. The shear angle 

representation (Supplementary Fig. 3a-b) was exploited by C.J. Brokaw to explain flagellar 

bend propagation based on a model of sliding microtubules [6]. This parameter was generally 

used as a proxy for the shear displacement between axonemal tubules [9, 10] based on the 

assumption that at the basal end of the axoneme, microtubules have no relative displacement 

(Supplementary Fig. 3c-d). Note, however, that previous studies [11-13] have challenged this 

assumption.  



 

Supplementary Figure 3. Shear displacement description. (a) Sperm cell with its corresponding 

reference frame (red arrows) and the flagellar centerline (black dashed line). (b) Magnified flagellar 

portion with cross-section diameter d corresponding to the boxed segment shown in (a). The small 

shear angle Δshear represents the angle subtended by the arc between arc length coordinates s and s 

+ s. (c-d) Sketch of two microtubule doublets clamped at the base before (c) and after (d) bending. 

Internal flagellar forces result in bending and bending results into a sliding shear displacement D 

between microtubules. 

The shear angle is closely related to the local shear displacement between opposing 

microtubules. From Supplementary Fig. 3 we can appreciate that Δshear = (s+Δs,t) - (s,t). 

For Δs→0, we have: 

shear sd ( , )d ( , )ds t s C s t s     .     (S3.5) 

The shear displacement between opposing doublets within this infinitesimal region is:  

 shear shear shear sheard / 2 ( /d 2)d dD r d r d d         .  (S3.6), 

where d is the axonemal diameter and r is the radius of curvature at position s. Thus, the total 

shear displacement at position s is given by: 
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The tangent angle and the shear angle representations only differ by a (possibly time-

dependent) constant. Analogous to equation (S3.1), the derivative of the shear angle with 

respect to arc length s yields again the curvature.  

 

Bend angles θP and θR representation 

Previous authors used yet a fourth quantification of flagellar bending waves in terms of bend 

angles (θP and θR)[7, 8]. For this representation, the flagellar shape is approximated as a 

sequence of alternating bends forming circular arcs connected by straight segments [8, 14]. 

Bends are termed principal (reverse) bends when their convex side faces outwards (inwards) 

from the swimming path (Supplementary Fig. 4). 

For a flagellar shape that is approximately sinusoidal, the arc of a reverse bend meets the arc 

of a principal bend at a so-called inflexion point. The angles between the tangent directions 

of two such inflexion points define the bend angles, θP and θR, respectively (Supplementary 

Fig. 4). Bend angles θP and θR have opposite signs, and the absolute value of θP is larger (or at 

least equal) to that of θR, |θP| ≥ |θR|. Note that previous studies used the symbols θP and θR 

for the respective absolute values. For clarity, we will explicitly express the absolute value 

using the modulus |θP| and |θR|. The difference between the absolute values, Δθ =|θP|-|θR| 

provides a measure for the asymmetry of the flagellar beat.  

 

 

Supplementary Figure 4. Definition of bend angles θP and θR. The flagellar waveform is characterised 

by bending arcs in opposite directions interspaced by straight regions. The principal (reverse) bends 

have their convex side faces outwards (inwards) from the swimming path (green arrow). The 

corresponding principal and reverse bend angles are referred to as θP (red) and θR (blue).  



Unlike for the tangent (s,t) or the shear angle shear(s,t) representations, the flagellar 

waveform cannot be fully reconstructed from the two values of the bend angles θP and θR. 

However, we can derive a conversion between both the bend angle representation and the 

curvature representation for an idealised flagellar beat pattern, such as the one given by 

equation (S3.3). The “connection points” between the principal and the reverse arcs are 

characterised by zero curvature 

s( , ) ( , ) 0C s t s t    . 

For the idealised flagellar beat pattern from equation (S3.3), these inflexion points are located 

at arc length positions for integer n 
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Substituting equation (S3.8) into equation (S3.2), we obtain the corresponding value of the 

tangent angle . The resulting signed bend angles correspond to the case for |P| > |R|. Thus 
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Using the identity 20 0
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  , equation (S3.9) can be simplified to: 
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As previously shown, C0 = A0 and C1 = -A1k. Equations. (S3.10-11) can be used to compute the 

asymmetry score Δθ. For regular flagellar shapes (R<0): 

0
P R

2 C

k


      . 

This result shows that for simple flagellar beat patterns, the asymmetry score is proportional 

to the mean curvature C0. Note that in the above derivation, we assumed C0>0. For C0<0, the 

expressions for P and R are swapped.  
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