Reverse Engineering Gene Networks using
Global-local Shrinkage Rules
Supplementary Material

Viral Panchal and Daniel F. Linder

Medical College of Georgia, Augusta University

1 Proof of posterior propriety

In this section, we give conditions for posterior propriety of (/3, %) under the full hierarchical

model as shown below.
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where S represents the space of d x d positive definite matrices. To preserve notational
simplicity, we use 7(-) to denote prior densities, although it should be understood that each
density corresponds to the appropriate term in the hierarchy (1). For posterior propriety,
it is necessary that ¢(y) < oo. When ¢(y) is finite, the posterior density of (8, X) is written

as
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Our proof of posterior propriety is based on adaptations to the one given in [1] to account
for the global-local scale mixture of normal priors on regression coefficients instead of the
flat prior given there. We emphasize that the fully noninformative prior considered in [1]
is not suitable in a high dimensional setting since it leads to improper posteriors when

n < d + p, which is exactly the high-dimensional case under consideration, i.e. p > n.
Proposition 1. Denote u® as Lebesque measure on R¥™. Ifn > d, then c(y) < oo a.e.(u"),

where a.e. 1s almost everywhere.

Proof. Consider the missing data model consisting of regression data y, and the missing
observations from the mixing density h. Given (5,%), let {y;,¢;},7 = 1,...,n be the inde-
pendent and identically distributed pairs such that

yz"% B,X ~ Nd(ﬂTﬂ% Z/Qi)
q; ~ h.

(4)
The joint density of {y, ¢} can be expressed as

n
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and the marginal density of y can be written as
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To obtain ¢(y), we integrate out (3,3, ¢, 7, and A using the specified distributions in the
hierarchy (1). From equation (2) and applying Fubini’s theorem, we can express ¢(y) as

=[] ], s S @ ()
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First, we simplify two of the seven integrals on the right-hand side of equation (7) as
follows:
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where 3 is the p x d coefficient matrix whose £ row is BJ-T, @ represents the n x n diagonal

matrix whose i diagonal entry is ¢; !, and T' denotes the p x p diagonal matrix whose k"
diagonal element is (A\?77). Now considering -2x the exponent term of equation (8) gives
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where Q = (XTQ'X + T ) and p=(XTQ X +TH1XTQY. So,
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From the density of the matrix normal distribution,
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Thus, after marginalizing over 5, Equation (8) becomes
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That the matrix YTQ™'Y — Q1 is positive definite a.e.(u™) follows from expressing
YTQY — pn"Q ty as

YTQ—IY . MTQ_IM
— YT Qs [1 CQEX(XTQIX + T*l)*leQ*%] Q%Y. (13)

It was shown in [1] that [I—Q_%X(XTQ”X)AXTQ_%} is idempotent and hence positive

semi-definite. Since T'is a p x p diagonal matrix whose j™ diagonal element is (A\*77)~!,
T =0, and hence (XTQ'X)™ ! = (XTQ'X +T7')~! [2, 3], which implies that
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for any z, showing positive semi-definiteness. To prove positive definiteness, we show that

its determinant is non-zero. Let n = d, denote A as the (d+ p) x (d+ p) augmented matrix
which is written as

ATA< (Y@ 0770y QX
XTQ 2 Tz 0 T 2
B YTQfly YTQle
- XTQ—ly XTQ—1X+T—1 .
Note that
Al =1Q2Y||T"2 — 0|

I (15)
=@ (Y [[T™2],

where |72 | and |Q~2| are non-zero. The set of ys that lead to linear dependencies among
the columns of Y has p%" measure zero, implying that |Y| is non-zero a.e.(u). |ATA| =
|AT||A| # 0 then gives
0AATA = XTQ'X+THY' Q'Y - Y Q' X(XTQ'X + T H ' XTQ Y|
CIXTQUX T YTQY — Ty
= QYTQTY — p' Q7 yl, (16)
which implies that [Y Q™'Y — " Q 1yl # 0., and along with positive semi-definiteness,

we have [YTQ7Y — " Q7 'yl >0 a.e.(u®). From equation (12) and the inverse Wishart
normalizing constant

| [ 108 2)m(31. 7 0x(2) d5as
s [H?:1 h(%‘)] [szl T((n+1-k)

d(2n—d+1)

T TQIEITIEYTQY — T s

4



So that
/ / fy, g8, )7 (BIS, 7, N7 (2) 7w (T)m (M) (v) dB " dEdgdrdAdv
Ri+p+2 S Rdp

m(T)r(AN)7w(v)dgdrdAdv.  (17)

/ ik [Hf;l h(Qi)} [Hizlr(é(wr 1— k:))]
rrrt r SR QIE TR Y TQTY — Tl

Recalling that the current case is n = d and using (15) and (16), we can rewrite (17) as
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The expression (18) is proportional to [H?:l h(qz)] as a function of ¢ and finite almost

surely x4, implying that
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Thus, when n = d, the posterior is proper a.e.(u"). This also guarantees that the posterior
is proper for larger sample sizes; i.e., the posterior is proper for n > d., due to a theorem
in [4], which shows when a posterior is proper for a sample size n, it is also proper for all
sample sizes larger than n. Since the posterior is proper for n = d, it also proper when
n>d [4].

O

2 Derivation of Metropolis-Hastings-within-Gibbs sam-
pler

The original horseshoe prior representation does not yield efficient sampling from the the
posterior distribution of the regression coefficients due to non-closed form posterior distri-
butions for the hyper-parameters (72, . .. ,7'5) and \2. Here we use an alternative sampling
scheme [5] based on latent variables that leads to conjugate full conditionals for all param-
eters and the model becomes easier to solve.

We implement the following scale mixture representation of the half-cauchy distribution.

Let s and ¢ be random variables such that

st ~ IG(1/2,1/t),
t~TIG(1/2,1/u?),

then s ~ C*(0,u) [6], where ZG denotes the inverse-gamma distribution, whose pdf is

(19)
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Our revised hierarchical model using the representation (19) is given by
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2.1 Full conditional for
The full conditional distribution for S can be obtained as follows
m(B]-) o< f(ylg, B, 2)m(BIZ, 7, X%)
From (10), as a function of 3,
1
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Using the results from (11) regarding the matrix normal density, the full conditional for
regression coefficients is given by B|- ~ Matrix Normal(u", Y, Q), where p = (X TQ71X +
T 'XTQ Y and Q = (XTQ'X +T-1).

2.2 Full conditional for X
The full conditional distribution for ¥ can be derived as follows

m(2]) < flylg, B, Z)m(BIE, 7, A*)m ().

From (12), as a function of 3,
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One may apply the results concerning the inverse Wishart density. So, the full condi-

tional for the covariance matrix is distributed according to the inverse Wishart distribution
and given by |- ~ IW(n,®!), where ® = (YTQ7'Y — " Q 1p).

2.3 Full conditional for ¢

To derive the full conditional for ¢ we use the following representation

m(qil-) o< fyilai, B, X)h(q:)

Thus, as a function of ¢;,
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From the density of Gamma distribution, the full conditional for the latent variable (g;)
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2.6 Full conditional for w; and ¥

From [5], the full conditionals for w; and 1 are given by

1
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3 Analysis of T-cell activation data
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Table 1: List of Genes for T-cell activation data

Gene number

Gene name

Gene number

Gene name

RB1
CCNG1
TRAF5
CLU
MAPKY9
SIVA
CD69
ZNFN1A1
IL4R
MAP2K4
JUND
LCK
SCYA2
RPS6KA1
ITGAM
CTNNB1
SMN1
CASPS8
E2F4
PCNA
CCNC
PDE4B
IL16
APC

1D3

SLA
CDK4
EGR1
TCF12
MCL1

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
58

CDC2
SOD1
CCNA2
PIG3
IRAK1
SKIIP
MYDS8S
CASP4
TCEF8
API2
GATA3
RBL2
C3X1
IFNAR1
FYB
IL2RG
CSF2RA
MPO
API1
CYP19
CIR
CASP7
MAP3KS
JUNB
IL3RA
NFKBIA
LAT
AKT1




Table 2: Significant connections among genes for T-cell activation data.

effects are shown in blue and down-regulatory effects in red.

Gene

Outgoing Connections

Incoming Connections

1

7

8

11
15
16
17
18
21
22
23
25
26
27
28
29
30
32
33
34
38
40
41
42
43
44
45
46
48
90
52
93
54
95
56
o8

30

28

18 ,28 -38 44 50 ,-58
8

27

45

-04
25

52

15 43 45

7 11 23 ,-30 ,-40 ,-54
28

7 .23 28 33 42

55

29 40 41
25,29 45 54
26 ,30

22 -34 53 56

28 -30
11
28
27

-8

-55

-28 -30

21 46

48

15

78,29 -30
45 46
1,-28 48

-30
55

-8

28 45
45

-30

27

8

16 -27 46

-8
23
55
17 28 46
32
55
-8

Up-regulatory
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