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1 Microscale Transport 

The mathematical representation of microscale drug transport across a cell membrane can be studied 

with a simple model that considers the processes governing drug concentration dynamics in two phases, 

inside and outside the cell, with a permeable barrier in-between. Assume diffusion occurs at different 

rates inside (𝐷") and outside (𝐷#) of a spherical cell of radius 𝑅 and that the drug is metabolised within 

the cell. The drug concentration (𝐶) dynamics inside the cell are given by the partial differential 

equation (PDE): 

𝜕𝐶
𝜕�̃�

= ∇+,𝐶 −
𝑉/012𝐶
𝐶 + 𝐾0

	, (S1) 

with scaling 

𝒙8 =
𝒙
𝑅
, �̃� =

𝐷"
𝑅,
𝑡, 𝑉/012 =

𝑅,

𝐷"
𝑉012	, (S2) 

where 𝑉012 is the maximum metabolism rate and 𝐾0 represents the drug concentration at which 

metabolism is half maximal. Note that the metabolism of the drug is assumed to occur with Michaelis-

Menten kinetics, which is relevant for enzyme-mediated biochemical reactions but here prohibits the 

derivation of an analytical solution at the steady state. Assume that outside the cell drug transport is 

governed by diffusion processes only: 

𝜕𝐶
𝜕�̃�

= 𝐷∇+,𝐶	, (S3) 

where 𝐷 = 𝐷#/𝐷". For simplicity, assume that the problem is radially symmetric, drop the tildes and 

convert to spherical coordinates for a 1D representative model with respect to the radius, 𝑟.  

 𝜕𝐶
𝜕𝑡

=
1
𝑟,

𝜕
𝜕𝑟 <

𝑟,
𝜕𝐶
𝜕𝑟=

−
𝑉012𝐶
𝐶 + 𝐾0

	,  𝑟 ≤ 1	, (S4) 

 𝜕𝐶
𝜕𝑡

=
𝐷
𝑟,

𝜕
𝜕𝑟 <

𝑟,
𝜕𝐶
𝜕𝑟=

	,  𝑟 > 1	. (S5) 

We impose the following boundary conditions for the cell centre (𝑟 = 0) and a distance away from the 

cell 𝑟 = 𝑟012: 

𝜕𝐶
𝜕𝑟

= 0	,  𝑟 = 0	, (S6) 

𝐶 = 𝐶BCDE	,  𝑟 = 𝑟012	, (S7) 

where 𝐶BCDE is a constant supply term to be prescribed. Assume that the flux at the sphere boundary is 

equal such that mass is conserved, i.e., 
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𝐷"
𝜕𝐶"
𝜕𝑟

= 𝐷#
𝜕𝐶#
𝜕𝑟

	,  𝑟 = 1	, (S8) 

where 𝐶" and 𝐶# are used to distinguish between interior and exterior drug concentrations at the cell 

membrane boundary. A further boundary condition must be specified at the cell membrane boundary 

in order to solve the coupled PDE system and investigate the effects of different means of drug transport. 

1.1 Passive diffusion 

To determine the boundary condition describing the flux of drug into the cell due to passive diffusion, 

consider an additional compartment, i.e., the cell membrane. It is assumed that within this compartment, 

drug transport is determined solely by aqueous diffusion. Since the thickness of the membrane (~5-10 

nm) is much smaller than the cell radius (~10-20 µm) and surrounding cell space, it is assumed that the 

drug diffuses across the space between the lipid barriers of the membrane relatively quickly compared 

to transport outside. Therefore, we assume that there is a valid quasi-steady state assumption to be made 

at either side of the membrane such that drug concentration can be assumed to be constant at the lipid 

barriers on this quick timescale. Mathematically, we can represent this as a thin membrane compartment 

of width 𝜖 in which the drug concentration (𝐶G) is transported across the space via diffusion (at a rate 

𝐷G) with Dirichlet boundary conditions: 

𝜕𝐶G
𝜕𝑡

=
𝐷G
𝑟,

𝜕
𝜕𝑟 <

𝑟,
𝜕𝐶G
𝜕𝑟 =

≈ 0	, (S9) 

𝐶G = 𝐶" = constant	,  𝑟 = 1	, (S10) 

𝐶G = 𝐶# = constant	,  𝑟 = 1 + 𝜖	. (S11) 

We can solve equation (S9) via integration to give 

𝐶G = −
𝐴
𝑟
+ 𝐵	, (S12) 

where 𝐴 and 𝐵 are constants that are determined using the boundary conditions (S10)-(S11) such that 

𝐴 = −
1 + 𝜖
𝜖

(𝐶# − 𝐶")	, 𝐵 = 𝐶" −
1 + 𝜖
𝜖

(𝐶# − 𝐶")	, (S13) 

Therefore, by substitution into (S12), we acquire the solution 

𝐶G = 𝐶" +
1 + 𝜖
𝜖 <

1
𝑟
− 1= (𝐶# − 𝐶")	 (S14) 

≈ 𝐶" +
1
𝜖 <
1 − 𝑟
𝑟

	= (𝐶# − 𝐶")	, (S15) 

for 𝜖 ≪ 1. The inward flux at the cell membrane can then be found by Fick’s law: 



5 

 

𝐽 = −𝐷G
𝜕𝐶G
𝜕𝑟

= −𝐷G
1
𝜖𝑟,

(𝐶# − 𝐶") =
𝐷G
𝜖
(𝐶" − 𝐶#)	. 

 
𝑟 = 1	. (S16) 

where 𝐷G/𝜖 = 𝑄 represents the permeability coefficient, proportional to the rate of intra-membrane 

aqueous diffusion and inversely proportional to the thickness of the membrane. Since 𝜖 ≪ 1 we can 

show that the outer membrane flux can also be derived such that 

𝐽 = −𝐷G
𝜕𝐶G
𝜕𝑟

= −𝐷G
1

𝜖 + 2𝜖, + 𝜖W
(𝐶# − 𝐶") ≈

𝐷G
𝜖
(𝐶" − 𝐶#)	. 𝑟 = 1 + 𝜖	, (S17) 

and the inner and outer fluxes are equal as 𝜖 → 0 and thus, 

𝐷"
𝜕𝐶"
𝜕𝑟

= 𝑄(𝐶# − 𝐶") = 𝐷#
𝜕𝐶#
𝜕𝑟

	, 
 𝑟 = 1	. (S18) 

1.1.1 Numerical solution 

We can solve the system numerically using the method of lines and gears whereby the following finite 

difference approximations in the spatial dimension reduce our PDE problem to an ODE problem. We 

apply central difference formulae for 1st and 2nd order spatial derivatives: 

 
		
𝜕𝐶(𝑟, 𝑡)
𝜕𝑟

=
𝐶(𝑟 + ∆𝑟, 𝑡) − 𝐶(𝑟 − ∆𝑟, 𝑡)

2∆𝑟
	, (S19) 

 𝜕,𝐶(𝑟, 𝑡)
𝜕𝑟,

=
𝐶(𝑟 + ∆𝑟, 𝑡) − 2𝐶(𝑟, 𝑡) + 𝐶(𝑟 − ∆𝑟, 𝑡)

(∆𝑟),
	. (S20) 

Therefore, we can re-write our PDE model for interior dynamics in equation (S4) as 

 
							

𝜕𝐶
𝜕𝑡

=
1
𝑟,

𝜕
𝜕𝑟 <

𝑟,
𝜕𝐶
𝜕𝑟=

−
𝑉012𝐶
𝐶 + 𝐾0

=
𝜕,𝐶
𝜕𝑟,

+
2
𝑟
𝜕𝐶
𝜕𝑟

−
𝑉012𝐶
𝐶 + 𝐾0

	, (S21) 

 
⇒
𝑑𝐶\
𝑑𝑡

=
1
∆𝑟 <

𝐶\]^ − 2𝐶\ + 𝐶\_^
∆𝑟

+
𝐶\]^ − 𝐶\_^

𝑟 = −
𝑉012𝐶\
𝐶\ + 𝐾0

	, (S22) 

for 𝑖 = 1. . 𝑅 (𝑟 = 0. .1) where we use notation 𝐶\]^ = 	𝐶(𝑟 + ∆𝑟, 𝑡) such that an increase by 1 in 

subscript 𝑖 corresponds to a radial increment in ∆𝑟 as defined by the discretisation of the mesh (spatial 

domain). Similarly our PDE model for exterior dynamics is reduced to 

𝑑𝐶\
𝑑𝑡

=
𝐷
∆𝑟 <

𝐶\]^ − 2𝐶 + 𝐶\_^
∆𝑟

+
𝐶\]^ − 𝐶\_^

𝑟 =	, (S23) 

for 𝑖 = 𝑅 + 1. . 𝑁 + 1 (𝑟 = 1 + ∆𝑟. . 𝑟012). We now inspect our boundary conditions in order to 

determine special case boundary values.  
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1.1.1.1 Sphere centre boundary 

In the case where 𝑖 = 1 we have 

𝑑𝐶^
𝑑𝑡

=
1
∆𝑟 <

𝐶, − 2𝐶^ + 𝐶b
∆𝑟

+
𝐶, − 𝐶b

𝑟 = −
𝑉012𝐶^
𝐶^ + 𝐾0

	, (S24) 

and therefore a singularity at 𝑟 = 0. In the limit,  

 
	
𝜕𝐶(0, 𝑡)
𝜕𝑡

= lim
B→b

f
𝜕,𝐶
𝜕𝑟,

+
2
𝑟
𝜕𝐶
𝜕𝑟

−
𝑉012𝐶
𝐶 + 𝐾0

g = 	3
𝜕,𝐶
𝜕𝑟,

−
𝑉012𝐶
𝐶 + 𝐾0

, (S25) 

by use of the Neumann boundary condition in equation (S6) and L’Hôpitals rule. Consequently, 

 𝑑𝐶^
𝑑𝑡

=
3
∆𝑟 <

𝐶, − 2𝐶^ + 𝐶b
∆𝑟 = −

𝑉012𝐶^
𝐶^ + 𝐾0

	. (S26) 

Thus we need to determine the value of the node 𝐶 at 𝑖 = 0, i.e. 𝑟 = 0 − ∆𝑟. In order to do this we 

apply the Neumann boundary condition in equation (S6). 

𝜕𝐶^
𝜕𝑟

=
𝐶, − 𝐶b
2∆𝑟

= 0	,  𝑟 = 0	, (S27) 

⇒ 𝐶b = 𝐶,	.   (S28) 

Therefore, 

𝑑𝐶^
𝑑𝑡

=
6

(∆𝑟),
(𝐶, − 𝐶^) −

𝑉012𝐶^
𝐶^ + 𝐾0

	, (S29) 

1.1.1.2 Phase interface boundary 

For the interface boundary of the sphere we have a discontinuity and the following equations for the 

concentrations either side of the boundary: 

 
			
𝑑𝐶j
𝑑𝑡

=
1
∆𝑟
f
𝐶kj]^ − 2𝐶j + 𝐶j_^

∆𝑟
+
𝐶kj]^ − 𝐶j_^

𝑟
g −

𝑉012𝐶j
𝐶j + 𝐾0

	, (S30) 

 𝑑𝐶j]^
𝑑𝑡

=
𝐷
∆𝑟
f
𝐶j], − 2𝐶j]^ + 𝐶kj

∆𝑟
+
𝐶j], − 𝐶kj

𝑟
g	, (S31) 

where special boundary values have been highlighted with accents for extra clarity (note in passive 

diffusion uninhibited by any membrane permeation, 𝐶kj]^ = 𝐶kj).  

When 𝑖 = 𝑅, we define 𝐶\]^ = 𝐶kj]^ using the equal flux boundary condition (see equation (S8)) and 

one-sided finite difference approximations and consequently we have 
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𝐷"
𝜕𝐶"
𝜕𝑟

= 𝐷#
𝜕𝐶#
𝜕𝑟

	,  𝑟 = 1	, (S32) 

⇒
𝐶kj]^ − 𝐶j

∆𝑟
= 𝐷

𝐶j]^ − 𝐶kj
∆𝑟

	,   (S33) 

⇒ 𝐶kj]^ = 𝐷l𝐶j]^ − 𝐶kjm + 𝐶j	.   (S34) 

To determine 𝐶kj we use the transport boundary condition in equation (S18): 

𝐷"
𝜕𝐶"
𝜕𝑟

= 𝑄(𝐶# − 𝐶")	,  𝑟 = 1	, (S35) 

⇒ 𝐷"
𝐶kj]^ − 𝐶j

∆𝑟
= 𝑄l𝐶kj − 𝐶jm	,   (S36) 

⇒ 𝐶kj =
𝐷"
𝑄
1
∆𝑟
l𝐶kj]^ − 𝐶jm + 𝐶j	.   (S37) 

 

Therefore, following substitution into equation (S34), 

𝐶kj]^ =
l𝐷 − 𝑄/∆𝑟𝐷 + 𝑄/∆𝑟m𝐶j + 𝑄/∆𝑟𝐷𝐶j]^

𝑄/∆𝑟 + 𝐷
	, (S38) 

where 𝑄/ = 𝑄/𝐷" and substituting equation (S38) into equation (S37), 

𝐶kj =
𝑄/∆𝑟𝐶j + 𝐷𝐶j]^

𝑄/∆𝑟 + 𝐷
	. (S39) 

1.1.1.3 External boundary 

When 𝑖 = 𝑁 we have 

𝑑𝐶n
𝑑𝑡

=
𝐷
∆𝑟 <

𝐶n]^ − 2𝐶n + 𝐶n_^
∆𝑟

+
𝐶n]^ − 𝐶n_^

𝑟 =	, (S40) 

and we determine the value of 𝐶 at 𝑖 = 𝑁 + 1, i.e. 𝑟 = 𝑟012. In order to do this, we apply the Dirichlet 

boundary condition in equation (S7): 

𝐶# = 𝐶BCDE = 𝐶n]^	,  𝑟 = 𝑟012	, (S41) 

Therefore, 

𝑑𝐶n
𝑑𝑡

=
𝐷
∆𝑟 <

𝐶BCDE − 2𝐶n + 𝐶n_^
∆𝑟

+
𝐶BCDE − 𝐶n_^

𝑟 =	. (S42) 
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1.1.2 Model simulations 

The systems of ODEs derived in section 1.1.1 were numerically integrated using MATLAB R2017b 

software to illustrate typical solutions (parameters provided in the legend for Figure 1) and a mesh of 

sufficient resolution to achieve steady state properties ( ^
Bopq

∑ |𝐶(𝑡tuv, 𝑟) − 𝐶(0.9𝑡tuv, 𝑟)|B <

1 × 10_z𝐶BCDE where 𝑟Bt{ is the number of spatial steps in the grid and 𝑡tuv is the final time-point 

value) and consistent internal accuracy (max } ^
Bopq

∑ |𝐶~Bt{(𝑡, 𝑟) − 𝐶�Bt{(𝑡, 𝑟)|B � < 1 × 10_z𝐶BCDE 

where 𝐶~Bt{(𝑡, 𝑟) is the model solution at the original/default resolution (1001x1001 mesh) and 

𝐶�Bt{(𝑡, 𝑟) is the model solution at an increased mesh resolution where the spatial discretisation is 

increased 10-fold).  

1.2 Carrier-mediated transport 

We here reiterate a brief derivation of the simple carrier model used to derive the membrane flux 

boundary condition for clarity. It is assumed that the drug substrate (external, 𝐶#, or internal, 𝐶") can 

reversibly bind to the transporter (facing the exterior, 𝑇, or interior, 𝑇′, of the cell), with first order, 

mass-action kinetics. The bound transporter complexes are given by the variables 𝐶𝑇 and 𝐶𝑇� for 

outward and inward facing transporters respectively. It is also assumed that the transporter (bound or 

unbound) undergoes a conformational change with first order kinetics to change position such that the 

binding site is facing either the exterior or interior of the cell (see schematic in Fig1A). The above 

processes are described in the system of ordinary differential equations below: 

 
		
𝑑[𝐶𝑇]
𝑑𝑡

= 𝑘�^]𝐶#[𝑇] − 𝑘�^_[𝐶𝑇] + 𝑘�^_[𝐶𝑇�] − 𝑘�^][𝐶𝑇]	, (S43) 

 𝑑[𝐶𝑇�]
𝑑𝑡

= 𝑘�,_𝐶"[𝑇′] − 𝑘�,][𝐶𝑇′] + 𝑘�^][𝐶𝑇] − 𝑘�^_[𝐶𝑇�]	, (S44) 

 
			
𝑑[𝑇�]
𝑑𝑡

= 𝑘�,][𝐶𝑇�] − 𝑘�,_𝐶"[𝑇�] + 𝑘�,_[𝑇] − 𝑘�,][𝑇�]	, (S45) 

 
				
𝑑[𝑇]
𝑑𝑡

= 𝑘�^_[𝐶𝑇] − 𝑘�^]𝐶#[𝑇] + 𝑘�,][𝑇�] − 𝑘�,_[𝑇]	, (S46) 

where 𝑘� terms represent conformational changes, 𝑘� terms represent binding/unbinding and the 

amount of receptor is conserved, i.e., 𝐶𝑇′ + 𝐶𝑇 + 𝑇′ + 𝑇 = 𝑇b (constant). The drug substrate flux is 

given by the difference between interior dissociation of bound substrate and the association of unbound 

substrate with inward facing receptors (and is equal to the difference between the association of 

unbound substrate to outward facing receptors and substrate dissociation at the cell exterior). Thus the 

flux is, 

𝐽 = 𝑘�,][𝐶𝑇�] − 𝑘�,_𝐶"[𝑇�] = 𝑘�^]𝐶#[𝑇] − 𝑘�^_[𝐶𝑇]	, (S47) 
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defined to be positive from outside to inside. It is assumed that the processes of binding and 

conformational changes are fast relative to the spatiotemporal drug concentration dynamics of the 

model at the cellular scale. Therefore we can find the steady state flux by setting the left-hand sides of 

equations (S43)-(S46) equal to 0 and solving to derive the 4 state variables in terms of 𝐶#, 𝐶" and the 

rate constants, subject to total receptor concentration, 𝑇b. By substitution into equation (S47) we acquire 

the steady state flux: 

𝐽 =
𝑇b(𝐶# 	− 𝛼^𝐶")

𝛼, + 𝛼W𝐶# + 𝛼z𝐶" + 𝛼�𝐶#𝐶"
	, (S48) 

where 

𝛼^ =
𝑘�^_𝑘�^_𝑘�,_𝑘�,_
𝑘�^]𝑘�^]𝑘�,]𝑘�,]

	,	 (S49) 

𝛼, =
(𝑘�,] + 𝑘�,_)(𝑘�^_𝑘�^_ + 𝑘�^_𝑘�,] + 𝑘�^]𝑘�,])

𝑘�^]𝑘�^]𝑘�,]𝑘�,]
	, (S50) 

𝛼W =
𝑘�^]l𝑘�,](𝑘�^] + 𝑘�,]) + 𝑘�,](𝑘�^] + 𝑘�^_)m

𝑘�^]𝑘�^]𝑘�,]𝑘�,]
	, (S51) 

𝛼z =
𝑘�,_l𝑘�^_(𝑘�^_ + 𝑘�,_) + 𝑘�,_(𝑘�^_ + 𝑘�^_)m

𝑘�^]𝑘�^]𝑘�,]𝑘�,]
	, (S52) 

𝛼� =
𝑘�^]𝑘�,_(𝑘�^] + 𝑘�^_)
𝑘�^]𝑘�^]𝑘�,]𝑘�,]

	. (S53) 

Therefore, we define the following flux boundary condition for the carrier-mediated transport model 

scenario: 

𝐷"
𝜕𝐶"
𝜕𝑟

=
𝑇b(𝐶# 	− 𝛼^𝐶")

𝛼, + 𝛼W𝐶# + 𝛼z𝐶" + 𝛼�𝐶#𝐶"
		, 

 
𝑟 = 1	. (S54) 

1.2.1 Numerical solution 

The carrier-mediated transport model was solved numerically using finite difference approximations as 

before. However, the new boundary condition in equation (S54) required the introduction of modified 

boundary values in the ODE approximations at the phase interface boundary,  

 
			
𝑑𝐶j
𝑑𝑡

=
1
∆𝑟
f
𝐶kj]^ − 2𝐶j + 𝐶j_^

∆𝑟
+
𝐶kj]^ − 𝐶j_^

𝑟
g −

𝑉012𝐶j
𝐶j + 𝐾0

	, (S55) 

 𝑑𝐶j]^
𝑑𝑡

=
𝐷
∆𝑟
f
𝐶j], − 2𝐶j]^ + 𝐶kj

∆𝑟
+
𝐶j], − 𝐶kj

𝑟
g	, (S56) 

With terminology analogous to the passive diffusion model, we use one-sided finite difference 

approximations and the carrier-mediated flux boundary condition in equation (S54) to determine 𝐶kj: 
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𝐷"
𝜕𝐶"
𝜕𝑟

=
𝑇b(𝐶# − 𝛼^𝐶")

𝛼, + 𝛼W𝐶# + 𝛼z𝐶" + 𝛼�𝐶#𝐶"
	,  𝑟 = 1	, (S57) 

⇒
𝐶kj]^ − 𝐶j

∆𝑟
=

𝑇/bl𝐶kj − 𝛼^𝐶jm
𝛼, + 𝛼W𝐶kj + 𝛼z𝐶j + 𝛼�𝐶kj𝐶j

	,   (S58) 

⇒ 𝐶kj =
l𝐶j − 𝐶kj]^m(𝛼, + 𝛼z𝐶j) − ∆𝑟𝑇/b𝛼^𝐶j
l𝐶kj]^ − 𝐶jm(𝛼W + 𝛼�𝐶j) − ∆𝑟𝑇/b

	,   (S59) 

where 𝑇/b = 𝑇b/𝐷". Therefore, following substitution into the equal flux equation (S34), we can derive 

a quadratic equation for 𝐶kj]^, 

𝐶kj]^, (𝛼W + 𝛼�𝐶j)	

−𝐶kj]^ }2𝐶j(𝛼W + 𝛼�𝐶j) + ∆𝑟𝑇/b + 𝐷𝐶j]^(𝛼W + 𝛼�𝐶j) + 𝐷(𝛼, + 𝛼z𝐶j)�	

+𝐶jl(𝐷𝐶j]^ + 𝐶j)(𝛼W + 𝛼�𝐶j) + 𝐷(𝛼, + 𝛼z𝐶j)m − ∆𝑟𝑇/b(𝐷𝛼^𝐶j − 𝐶j − 𝐷𝐶j]^)	

= 0	, 

(S60) 

and numerically integrate the full system of ODEs as described in section 0.  
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2 Parameterisation of passive diffusion 

2.1 Diffusion of small molecule drugs 

From a sample data base of 321 drugs, we identified several important physicochemical properties 

including molecular weight and density (Kyffin, 2018). These values allowed us to formulate an 

estimated range of likely diffusion coefficients for a wide range of drugs with a physically accurate 

range of weights and densities by employing the Stokes-Einstein equation describing the diffusion of 

spherical particles through a liquid with low Reynolds number, 

𝐷 =
𝑘�𝑇
6𝜋𝜇𝑟

	, (S61) 

where 𝑘� is Boltzmann’s constant, 𝑇 represents temperature (assumed to be the physiological value, 

310.15 K), 𝜇 is viscosity (assigned as 6.913×10-4 kg m-1 s-1, the dynamic viscosity of water at 310.15 

K) and 𝑟 is the particle radius (m). To calculate the radius, we assume drugs can be represented 

spherically and use MW and density (𝜌) data: 

𝑟 = �
3
4𝜋

MW
𝜌 

1
6.02 × 10,W

�
	m	. (S62) 

By implementing the formulae in (S61) and (S62) for the drug data base (MW ~100-1,200; density 

~0.6-2.6 g/m3), we were able to identify a feasible diffusion coefficient range of approximately 5×10-10 

to 1×10-9 m2/s. 

2.2 Permeability as a function of lipophilicity 

Menochet et al. (2012a, 2012b) discovered a log-linear relationship between lipophilicity (LogD7.4) and 

“passive diffusion clearance” (𝑃v\��) for xenobiotic uptake in human and rat hepatocytes. LogD7.4 can 

be defined as a partition coefficient measure of lipophilicity at a physiologically relevant pH (pH = 7.4). 

For example, Menochet et al. derived the following relationship for human hepatocytes: 

log 𝑃v\�� = 0.6316 × LogD7.4 − 0.3143	. (S63) 

In the study, the uptake rate is defined as the slope of the linear regression of the intracellular 

concentration-versus-time plot after 2 minutes at 4 °C (dimensions: [A]/106 cells×1/[T], [A] = amount 

units, [T] = time units). At early times, we assume that passive diffusion can be represented by the 

following system where the rate constant 𝑘\u represents the transport of drug into the cell: 

𝑑𝐴�t��
𝑑𝑡

= 𝑘\u𝑉0tv𝐶b (S64) 

where 𝐴�t�� is the amount of drug (units of moles) in the cellular compartment (expressed per 106 cells) 

and 𝐶b is the substrate or media concentration (moles dissolved in 𝑉0tv = 400 µL of media in the 
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Menochet et al. study), which we assume to be an approximate constant external supply at early times, 

i.e., equivalent to dose concentration. The passive diffusion clearance, 𝑃v\��, is defined as the slope of 

the uptake rate against concentration, 

Uptake	rate = 𝑃v\��𝐶 ¡¢	, (S65) 

for media substrate 𝐶 ¡¢ and dimensions, 

[A]
10¤	cells ∙ [T]

=
[V]

10¤	cells ∙ [T]
∙
[A]
[V]
	, (S66) 

where [V] = volume units. By comparison with equation (S64), at early times, we have 

Uptake	rate = 𝑃v\��𝐶b =
𝑑𝐴�t��
𝑑𝑡

= 𝑘\u𝑉0tv𝐶b	, (S67) 

⇒ 𝑃v\�� = 𝑘\u𝑉0tv	, (S68) 

 where 𝑃v\�� has units of µL/min/106 cells in the Menochet et al. study.  

In order to translate this uptake-related parameter into our spatial model we must derive the total 

intracellular-amount dynamics by integrating over the cell volume. At early times in low temperatures 

(no metabolism) we have the following system for drug concentration and transport into a single cell: 

𝜕𝐶
𝜕𝑡

=

⎩
⎪
⎨

⎪
⎧
𝜕𝐶�t��
𝜕𝑡

= ∇ ⋅ (𝐷�t��∇𝐶�t��)

𝜕𝐶 ¡¢
𝜕𝑡

= ∇ ⋅ (𝐷 ¡¢∇𝐶 ¡¢)

 

 
𝑟 ≤ 𝑅 

(S69) 

𝑟 > 𝑅 

We can define the amount of intracellular drug in the cell as follows: 

𝐴�t�� =  𝐶�t��
®¯p°°

𝑑𝑉 = 4𝜋 𝐶�t��
j

b
𝑟,𝑑𝑟	. (S70) 

To define the total uptake rate for the entire cell we integrate the intracellular concentration dynamics 

with respect to the volume of the cell, 

𝑑𝐴�t��
𝑑𝑡

= 
𝜕𝐶�t��
𝜕𝑡®¯p°°

𝑑𝑉 =  ∇ ⋅ (𝐷�t��∇𝐶�t��)
®¯p°°

𝑑𝑉 = 𝐷�t��∇𝐶�t�� ⋅ 𝐧
²

𝑑𝑆	, (S71) 

by the divergence theorem for surface, 𝑆, i.e. the surface area of the cell of radius 𝑅. It follows that 

𝐷�t��∇𝐶�t�� ⋅ 𝐧
²

𝑑𝑆 = 4𝜋𝑅,𝐷�t��
𝜕𝐶�t��
𝜕𝑟

´
Bµj

. (S72) 

We have the following boundary condition (see equation (S18)) at 𝑟 = 𝑅, 
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𝐷�t��
𝜕𝐶�t��
𝜕𝑟

= 𝑄(𝐶 ¡¢ − 𝐶�t��) ≈ 𝑄𝐶b, (S73) 

at early times (𝐶 ¡¢ ≈ 𝐶b and 𝐶�t�� ≈ 0) where 𝑄 represents the permeability coefficient in units of 

[L]/[T] where [L] = length units. Substituting this result back into equation (S72), for a single cell, we 

obtain,  

𝑑𝐴�t��
𝑑𝑡

= 4𝜋𝑅,𝑄𝐶b =
𝑃v\��𝐶b
10¤

	. (S74) 

Therefore, 

𝑃v\��𝐶b
10¤

= 4𝜋𝑅,𝑄𝐶b	, (S75) 

and we can derive the permeability coefficient for our model, 𝑄, as a function of 𝑃v\��, itself a function 

of the physicochemical property LogD7.4, and the radius of the cell, 𝑅: 

𝑄 =
𝑃v\��
4𝜋𝑅,

=
1
10¤

10(b.¤W^¤×LogD7.4_b.W^zW)

4𝜋𝑅,
. (S76) 

 

3 Translating the multiscale model to a simple continuum model 

3.1 Optimisation of effective parameters for the simple continuum model 

The average steady state profiles for the full, multiscale models were acquired by extracting 8 1D radial 

profiles from cross-sections through the centre of the spheroid slice corresponding to the lines 𝑦 = 0, 

𝑥 = 0, 𝑦 = 𝑥 and 𝑦 = −𝑥 and calculating the mean. This method was initially validated by comparing 

the simple continuum model with the average radial profile of the full model with no intercellular 

space/zero porosity (i.e., the model used in Figure 4A), both using the default parameter set, i.e., 𝐷"
#�� =

𝐷" and 𝑄#�� = 𝑄 (see Figure S2A). In order to optimise the effective parameter values required to fit 

the simple continuum model to the cell-based models with inclusion of intercellular space, 𝐷"
#�� and 

𝑄#�� were varied by up to three orders of magnitude either side of the default dimensional value (e.g., 

𝐷"
#�� = [1×10-3, 1×103]×𝐷" discretised over a log-scale for 51 points distributed within the interval) 

and the minimum residual error at steady state between the continuum and cell-based models was 

identified according to the following formula: 

𝐸𝑟𝑟𝑜𝑟 =º»
𝐶� u¢(𝑟\, 𝑡∗) − 𝐶�̅t��{(𝑟\, 𝑡∗)

𝐶�̅t��{(𝑟\, 𝑡∗)
»

\

	, (S77) 

where 𝐶� u¢ represents the continuum model output, 𝐶�̅t��{ represents the average cell-based model 

output, 𝑟 is radial distance (discretised at every µm from 0 to 750 µm, 𝑖	 = 	1: 751) and 𝑡∗ indicates the 
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steady state. This process was repeated for both intercellular space geometries (wide and narrow) and a 

range of feasible permeability coefficients (corresponding to LogD7.4  = 1, 2, 3, 4, 5).  

 

 
Figure S1: Spatial distribution of drug concentration pre-optimisation. The 2D spatial distribution of drug 
concentration at steady state for a range of permeabilities and intercellular space values are plotted. Permeability 
increases from left to right (LogD7.4  = 1, 2, 3, 4, 5). (Top row): Spatial plots for the wide intercellular space 
geometry. (Middle row): Spatial plots for zero intercellular space, analogous to the simple continuum model pre-
optimisation. (Bottom row): Spatial plots for the narrow intercellular space geometry. All models solutions are 
generated using the default parameter set.    

 

 

 

PERMEABILITY 

PERMEABILITY 
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A B 

 
 

C D 

  
Figure S2: Parameter optimisation for continuum model. (A): Comparison of the “continuum model” output 
(green-dashed line, from equations 16-19 in the main manuscript) with the average radial profile for the “cell-
based model” (black-solid line with grey standard deviation) with zero intercellular space (e.g., Figure 4A) at 
steady state using the same parameters (i.e., 𝐷"

#�� = 𝐷" and 𝑄#�� = 𝑄) The vertical red-dashed line indicates the 
spheroid boundary in the continuum model. (B): Example of 8 radial profiles used to calculate average behaviour 
of the cell-based model (default parameters at LogD7.4 = 3 steady state). The 2D spatial distribution is also 
indicated (inset). (C): Example parameter sweep output representing error outputs (equation (S77)) for wide 
intercellular space, LogD7.4 = 3. The original default parameters from the dimensional cell based model are 
indicated by the grey star. The minimum error representing optimal effective parameters is indicated by the blue 
star. (D): The continuum model steady state output (blue line) produced using the optimal effective parameters 
(i.e., blue star, (C)) is plotted against the average radial output of the cell-based model (black-solid line with grey 
standard deviation). 
 

For plotting purposes in Figure 5F, cell-based models were compared with the continuum model by 

making use of the standard R2 error metric: 

𝑅, = 1 −
∑ ´�̅��t��{(𝑟\, 𝑡

∗) − 𝐶� u¢(𝑟\, 𝑡∗)
𝐶� u¢(𝑟\, 𝑡∗)

´\

∑ »
meanl𝐶� u¢(𝑟\, 𝑡∗)m − 𝐶� u¢(𝑟\, 𝑡∗)

𝐶� u¢(𝑟\, 𝑡∗)
»\ 	
	. (S78) 
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