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Appendix A: Importance sampling 
Importance sampling (IS) is a general technique for estimating properties of a given distribution (which 

can’t directly be sampled from) using samples generated from a different (more accessible) 

distribution [1, 2]. We emphasise that PBPs are not a type of IS, but do make use of importance 

distributions (IDs). Therefore a brief description is now given. The posterior in Eq.(1.1) can be 

expressed as 

      , | | , | ,y y y          (A1) 

which, using Eq.(2.1), may be written 
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This implies that, in principle at least, posterior samples can be generated by first sampling θ from 

π(θ|y), then ξ1 from π(ξ1|θ,y), then ξ2 from π(ξ2|ξ1,θ,y), and so on and so forth until a complete set 

of latent variables ξ is created. Unfortunately, however, these distributions are typically intractable, 

so cannot be directly sampled. To overcome this difficultly importance distributions (IDs) fID(θ|y) 

(which, for example, could be chosen to be multivariate normal) and fID(ξe|ξe’<e,θ,y) (a set of univariate 

distributions, such as normal or Poisson, for each variable e) are defined which can be sampled from. 

IDs are chosen to resemble the true distributions as closely as possible.  

IS consists of first sampling θ from fID(θ|y) and then successively drawing ξe from fID(ξe|ξe’<e,θ,y) for 

e=1 to E. The resulting sample θ, ξ has an associated “weight” 
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which accounts for the fact that it isn’t a true posterior sample [1]. Repeating IS a sufficient number 

of times gives unbiased estimates for posterior quantities of interest. For example, if i indexes sample 

number then 
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gives an estimate for parameter posterior means1. Unfortunately IS becomes highly inefficient for 
complex models because the vast majority of samples have negligible weight (leading to poor 
statistical estimates for quantities such as those in Eq.(A4)). This necessitates the use of MCMC 
approaches in the first place.  

In summary, this appendix has identified importance distributions fID(ξe|ξe’<e,θ,y) (which take standard 

functional forms such as normal, Poisson, etc.) that aim to account for both the model and 

observations by approximating π(ξe|ξe’<e,θ,y). For example supposing that π(ξe|ξe’<e,θ,y) has a normal-

like distribution, the importance distribution would be chosen to be normal2, i.e. fID(ξe|ξe’<e,θ,y)= 

fnorm(ξe|μ(ξe’<e,θ,y),σ(ξe’<e,θ,y)) with mean μ and standard deviation σ functionally depend on ξe’<e, θ 

and y. Details on these functional dependencies are given in §4.  

Appendix B: Derivation of PBPs for Poisson or normal IDs 
Here we explicitly demonstrate the validity of the two conditions in Eq.(3.4) when using the sampling 

procedures outlined in Table 1 for the Poisson and normal IDs. 

Poisson ID 

For a model which utilises a Poisson ID for latent variable e , the following probability mass 

functions are defined: 

 

'

'

( | , , ) ,
!

( | , , ) ,
!

i
e i

p
pe

i i i i
ID e e e i

e

pp p p

ID e e e p

e

e
f y

e
f y

 




  




  















  (B1) 

where λi is some known function of '( , , )i i

e e y  and λp is some known function of '( , , )p p

e e y  .  

Suppose, arbitrarily, that the expected number of occurrences in the proposed state λp is greater 

than the expected number in the initial state λi. Table 1 shows that the number generated in the 

proposed state p

e is calculated using 

 ,p i

e e X     (B2) 

where i

e is the number in the initial state and X is sampled from a Poisson distribution with average 

number given by the difference between λp and λi:  

   ~ Pois .p iX     (B3) 

The probability of this proposal is given by 

                                                           
1 The average of the weights themselves Σiwi/N gives an unbiased estimate of the model evidence π(y). 

2 See appendix G for a definition of this distribution. 
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Interchanging i and p in Table 1 shows that the reverse transition is taken from a binomial 

probability distribution 
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 with proposal probability 
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Combining the results from Eqs.(B4) and (B6) gives 
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Using this, along with Eq.(B1), finally gives 
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which shows that condition 1 in Eq.(3.4) is, indeed, satisfied.  

Condition 2 is satisfied because X=0 when λp=λi in Eq.(B3), and so by definition ξp=ξi in Eq.(B2) 

(similarly ξi=ξp in Eq.(B5)). 

Normal ID 

Here we consider the case of a normal ID for latent variable
e : 
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Suppose, arbitrarily, that the standard deviation in the proposed state p is smaller than in the initial 

state
i . Table 1 shows that the proposal for

p

e is given by 
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where 
2
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     and   is a tuneable constant. The probability density function for 

generating this final state is given by  
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We now consider the reverse transition. Since p and i are now switched in Table 1, the 

corresponding proposal probability density function is given by 
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The ratio between Eqs.(B12) and (B11) is given by 
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The definition
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This, together with the expressions in Eq.(B9), shows that condition 1 in Eq.(3.4) is, indeed, satisfied. 

Furthermore, condition 2 is satisfied by noting that the variance in the proposal in Eq.(B10) goes to 

zero when
2 2

p i  . 

The validity of all the sampling procedures in Table 1 can be verified by following essentially the 

same procedure as above to show that the two conditions in Eq.(3.4) are satisfied. 

Appendix C: Adaptation period 
Posterior-based proposals contain two quantities in Eq.(3.6) that need to be established: a numerical 

approximation to the covariance matrix of the posterior Σθ, and a jumping size j. Motivated by 

adaptive MCMC [3, 4], these are calculated during an “adaptation” period, which also acts as the 

required burn-in phase (i.e. this ensures that the first sample drawn after the adaptation period is 

representative of a random draw from the posterior). In this study Iad=104 iterations are used for 

adaptation, and subsequently Σθ and j are fixed3. 

Covariance matrix Σθ: During the adaptation period the number of MCMC iterations i changes from 

1 to Iad. An approximation to the posterior covariance matrix Σθ is calculated every 100 iterations 

based on samples from i/2 to i: 
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This is effectively equivalent to using a dynamically changing burn-in period set at half the current 

iteration number. As the adaptation period progresses the estimated covariance matrix Σθ becomes 

a better and better approximation, which helps to improve the efficiency of the algorithm. For the 

first 100 samples Σθ is set to a diagonal matrix with elements chosen to be sufficiently small to 

ensure a good initial acceptance rate.  

Jumping size j: This determines the acceptance rate for PBPs in Eq.(3.7). If j is too large very few 

proposals are accepted, and if too small mixing is slow. A robust heuristic method for optimising j is 

as follows. Initially j is set to a small quantity. Each time a PBP is accepted, j is updated according to 

 1.02,newj j    (C2) 

and when rejected  

 0.99.newj j    (C3) 

These numerical factors are chosen for two reasons: Firstly, the two updates in Eqs.(C2) and (C3) 

balance each other out when acceptance occurs around 33% of the time (which from appendix H 

was found to be approximately optimal), leading to a steady state solution for j. Secondly, they are 

sufficiently close to 1 to prevent large fluctuations in j, but sufficiently far to allow for the steady 

state solution to be found during the adaptation period. 

                                                           
3 This ensures that detailed balance is strictly enforced when MCMC samples are taken. 
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Appendix D: Derivation of acceptance probability 
We derive the expression in Eq.(3.7). Based on Eq.(1.1), the MH acceptance probability is given by 
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where gi→p represents the proposal probability density for generating θp and ξp given the current 

state θi and ξi, and gp→i represents the corresponding quantity in the opposite direction4. Following 

steps 1 and 2 in the PBP algorithm from §3.4, the overall proposal probability can be expressed as 
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Substituting this, along with the reverse transition, into Eq.(D1) (and noting that the MVN 

distributions are symmetric5), gives 
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Substituting condition 1 from Eq.(3.4) into this expression leads to the final result in Eq.(3.7). 

Appendix E: Further insights into PBPs  
Here we provide some additional notes on the PBP algorithm in §3.4: 

Step 1: Strong posterior correlations can exist not only between model parameters and latent 

variables (as demonstrated in Fig. 1(a)), but also between different model parameters themselves (i.e. 

after marginalisation over latent variables). Equation (3.6) helps to mitigate against these, helping to 

further facilitating mixing. Other possibilities for proposals in parameter space are discussed in 

appendix F (along with complications such as what to do when parameters are discrete rather than 

continuous), and sampling from MVNs using Cholesky decomposition [5] is described in appendix G. 

Step 2: This step makes use of IDs fID(ξe|ξe’<e,θ,y), which approximate the univariate distributions 

π(ξe|ξe’<e,θ,y) for e=1,…,E (with functional form chosen to provide good approximation to the model 

under study). Each functional form for the IDs is associated with a different (posterior based) proposal 

distributions 𝑔(𝜉𝑒
𝑝

) satisfying Eq.(3.4) (see Table 1). IDs are characterised by one or two parameters 

(e.g. an expected event number in the Poisson case and a mean and variance in the normal case) and 

for e>1 these functionally depend on latent variables with lower index (as determined by the DAG 

structure of the underlying the model) and the model parameters and data.  

Step 3: Two limiting cases in Eq.(3.7) are of particular importance. Firstly, as fID(ξe|ξe’<e,θ,y) becomes 

more and more representative of π(ξe|ξe’<e,θ,y), so the MH probability reduces to 

  ( | )

( | )
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4 In other words, starting at θp and ξp and proposing the state θi and ξi. 
5 The probability of jumping from θi to θp is the same as from θp to θi. 
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The originally high dimensional problem (containing latent variables ξ and parameters θ) is reduced 

to a much lower dimensional problem (containing just parameters θ), helping explain why mixing is 

potentially so much faster.  

Secondly, as the jumping size in parameter space gets smaller (as determined by j in Eq.(3.6)) so 

PMH→1. This is of particular importance because it means that even if the IDs provide a relatively 

poor approximation to π(ξe|ξe’<e,θ,y), provided j is made sufficiently small a substantial fraction of 

proposals will always be accepted. In practice the jumping size j is optimally tuned to ensure 

acceptance around 33% of the time (see appendix C for details). 

Appendix F: Other possibilities for proposals in parameter space 
Three issues are discussed in relation to proposals in parameter space: 

1) Optimisation  

The proposal distribution in parameter space introduced in Eq.(3.6) has the advantage of being 

simple and robust against highly correlated model parameters. Generally speaking, however, it may 

not represent the optimum choice. For example, if two variables A and B are largely uncorrelated in 

the posterior it may actually be computationally faster to consider proposals to A and B separately. 

This is especially true in cases when proposing changes to A is much faster (e.g. fixed effects in 

mixed models) than B (e.g. random effects). 

In the most general case, a combination of the following two types of proposal can be used in 

Eq.(3.6): 

Single parameters changes – A single parameter k is selected from θ. 
p

k is then sampled from a 

simple normal distribution centred at
i

k : 

 
2~ ( , ),    .p i p i

k k k l k lN        (F1) 

Multiple parameter changes – χ represent a subset of the parameters in θ, and 
p

 is sampled from 

a multivariate normal distribution centred at
i

 : 

 
2~ ( , ),    .p i p i

l lN j 

          (F2) 

Providing an automated way to determine the optimum choice for proposals in parameter space for 

a given model will be the subject of future research. 

2) Parameters not continuous 

In some cases model parameters are discrete, e.g. for an epidemiological model the initial 

population numbers in various compartments might be included in θ. If these discrete variables are 

approximately normally distributed (as they would be if the population sizes are reasonably large), 

then we could again draw a vector v from a MVN distribution as before  

 2~ ( , ),iv N j     (F3)  

but this time round those discrete model variables to the nearest integer  



8 
 

 
round( ), if  discrete

.
,      if  continuous

j jp

k

j j

v

v







 


  (F4) 

In cases in which model parameters are not expected to be approximately normally distributed they 

can simply be updated individually.  

3) Restrictions  

For some of the functional forms in Table 1, only one of the characteristic parameters can be 

updated at a time. For example, for the beta distribution only α can be changed whilst fixing β, or 

vice versa. Consequently, proposals to both α and β cannot be performed simultaneously. 

Appendix G: Normal distributions 
The probability density function for drawing a value x from a normal distribution with mean μ and 

variance σ 2 is given by 
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The equivalent multivariate normal distribution is  
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x μ,Σ   (G2) 

where d is the number of dimensions and Σ is the covariance matrix that captures the variance of 

individual elements (e.g. parameters) as well as covariance between them. Cholesky decomposition 

provides a standard way to draw samples from a multivariate normal distribution [5]. Provided Σ is 

positive-definite it can be written as Σ=BBT, where B is a lower triangular matrix. Samples from the 

multivariate normal are then generated using 

 , x μ Bz   (G3) 

where z is a vector of normally distributed independent samples with mean zero and unit variance.  

 
Figure H: Optimisation of key parameters. 
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Appendix H: Optimisation of the PBP MCMC algorithm 
Figure H illustrates how the PBP algorithm is typically optimised. These results are based on the 

mixed model applied to quantitative genetics introduced in §5.3, but the general findings are found 

to be largely independent of model type. Optimisation can be considered from three points of view: 

Firstly, Fig. H(a) shows the CPU time to generate 100 effective samples of r2 from the posterior as a 

function of the number of PBPs between each Gibbs update of the latent variables. We find that this 

particular curve has a minimum at U=4 updates, although computation speed is found to not be 

particularly sensitive to its exact value. 

Secondly, Fig. H(b) shows variation in CPU time as a function of the tuneable constant κ (this is used 

in Table 1 in cases in which the ID is normally distributed). Again, performance is largely the same 

provided κ is smaller than around 0.1. For this study κ=0.03 was selected. 

Finally, Fig. H(c) shows that the algorithm is optimised when the MH acceptance probability is 

around 33%. This is implemented using the methods outlined in appendix C. 

Appendix I: Non-centred parameterisations 
It has long been recognized that the parametrization of hierarchical models can be crucial for MCMC 

performance [6]. A so-called “centred” parameterisation (CP) is the default option given by the 

specification of the model in terms of parameters θ which determine the distribution of latent 

variables ξ. On the other hand a “non-centred” parameterisation (NCP) refers to the case in which a 

new set of latent variables ξ’ are defined so as to be distributed conditionally independently of θ, 

and the original latent variables are functionally dependant on these, i.e. ξ=h(ξ’,θ,y).  

To give a simple example, suppose each latent variable is distributed normally ξ𝑒~𝑁(𝜇, 𝜎2) with 

mean μ and variance σ2 being model parameters θ. This can be reparametrized by 

setting ξ𝑒
′ ~𝑁(0,1), with the functional dependency h being given by ξ𝑒 = 𝜇 + σξ𝑒

′ . 

Appendix J: Hamiltonian MCMC 
The reason standard approaches (involving small local changes) are slow is because they behave 

diffusively. One proposal might move a parameter in one direction, but the next might move it back 

again to near where it started. Such random walk behaviour often leads to slow progress from one 

side of the posterior to the other, which is especially true for high dimensional problems. The idea 

behind HMCMC is to make large jumps in parameter space to overcome this diffusive behaviour.  

HMCMC [7, 8] makes no distinction between model parameters and latent variables, and so 

subsequently we refer to the combination x=(θ,ξ) to represent a vector giving the overall 

parameters in the model. The intuition behind HMCMC comes from physics. We first define U(x)=-

log(π(y|x)π(x)) as the negative log of the posterior probability, where U(x) maps out a potential 

energy landscape, and consider a particle moving in this space. The particle has both a position 

vector x and a momentum vector p. Just as a ball on a hill runs down and accelerates, so a particle 

with high potential U gets pushed towards lower U, at the same time increasing its kinetic energy. 

An important principle in physics is the conservation of energy. Here we defined the total energy of 

the system by the Hamiltonian 
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where the first term represents the kinetic energy (M is the mass matrix, as identified below) and 

the second term represents the potential energy. 

The following algorithm outlines the procedure for a single HMCMC update. 

HMCMC algorithm 

Step 1: Sample momentum – The initial momentum vector at time t=0 is sampled according to  

 (0) ~ (0, ),Np M   (J2) 

and x(0) is set to the current parameter set x i on the MCMC chain. 

Step 2: Integration of trajectory – The following leapfrog algorithm is iterated L times:  
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  (J3) 

where ε is the integration step size and ∇xU|t is the gradient in the potential energy evaluated at 

time t (note, this vector points uphill in the potential energy landscape). This procedure represents a 

numerical approximation to Hamilton’s equations. 

Step 3: Accept or reject – The final proposed state x p=x(Lε) is accepted or rejected with MH 

probability functionally dependent on the difference in the Hamiltonian between the initial and final 

states:  

  ( (0), (0)) ( ( ), ( ))min 1, .H H L L

MHP e   x p x p
  (J4) 

Note because the Hamiltonian is conserved, Eq.(J4) is expected to be near to one. The reason it isn’t 

exactly one is because the continuous integral is numerically approximated by the discrete leapfrog 

method (consequently PMH→1 as ε→0, but if ε is large PMH can become very small if a long trajectory 

is integrated over).  

Optimisation 
HMCMC is most efficient when the inverse of the mass matrix M-1 is given by a numerical 

approximation to the covariance matrix for the posterior distribution π(x|y). However in high 

dimensional situations this is usually too computationally demanding to calculate (e.g. matrix 

inversion takes of order D3 operations, where D is the number of dimensions). Instead two 

possibilities are commonly implemented: either set M to the identity matrix or set it to be diagonal 

with elements given by the inverse of the posterior parameter variances. Here we chose the latter 

option, as this was found to improve mixing times compared to the former. 
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The algorithm above contains two 

tuneable parameters: step size ε and 

number of steps L. Optimising the step 

size ε is relatively easy, as it can be 

selected to achieve a certain average 

acceptance rate. If ε is very small then 

the acceptance probability will be 

almost one but computation will be 

slowed down because more and more 

intermediary steps will be needed for a 

certain integration length Lε. On the 

other hand if ε is too large, most 

proposals get rejected. The optimal 

acceptance rate (under some strong 

assumptions) has been shown to be 

approximately 0.65 [9], which is used 

here (although efficiency was not found 

to be very sensitive to this precise 

value). 

Optimising the number of steps for each 

update L, however, is difficult and efficiency is found to critically depend on this value. Automated 

methods such as the No U-Turn Sampler (NUTS) [9] have been developed, but these are challenging 

to implement. This paper takes a brute force approach to find the optimal HCMC implementation. 

For each set of simulated data, inference is carried out using a large number of different values of 

integral length Lε. The most efficient of these is used to construct the HMCMC curves in Figs. 6(d) 

and 7(b). An example of this process is shown in Fig. J, which demonstrates how the NCP HMCMC 

results in Fig. 7(b) were generated. Note, under realistic models the optimal results from NUTS were 

found to have a very similar computational efficiency to HMCMC tuned in this fashion [9]. 

Appendix K: Particle MCMC 
The idea behind PMCMC is that random walk MCMC can be run on the basis of an unbiased 

approximation to 𝜋(𝑦|𝜃). Because the dimensionality of θ is typically much less than ξ, this 

algorithm is expected to mix at a much faster rate than standard MCMC. The drawback of this 

approach, however, is that obtaining a sufficiently accurate estimate �̂�(𝑦|𝜃) for 𝜋(𝑦|𝜃) can be 

computationally demanding.  

The algorithm below describes the implementation used in this paper [10]6 : 

 

  

                                                           
6 Note, this method is known as the “particle marginal Metropolis–Hastings” (PMMH) sampler in this 
reference. The proposals in parameter space in Eq.(K1) are chosen to be consistent with Eq.(3.6) to allow for 
fair comparison between methods. 

 

Figure J: Optimisation of HMCMC. These results are 

applicable to the mixed model in §5.3 and shows how the CPU 

time needed to generate 100 effective samples of r2 (which 
characterises the genetic heritability) varies as the r2 used 

to simulate the data changes. Each of the curves corresponds 

to running NCP HMCMC using different fixed integration 

lengths Lε (ε is adaptively tuned to give an acceptance 

probability of 0.65). The curve defined by the lowest points in 

this diagram represents the optimised NCP HMCMC results, 

as shown by the green dashed line in Fig.7(b).  
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PMCMC algorithm 

Step 1: Generate θp – This is the same as for PBPs. A proposed set of parameter values is drawn 

from a multivariate normal (MVN) distribution centred on the current set of parameters in the chain 

θi  

 
2~ ( , ),p iN j      (K1) 

where Σθ is a numerical approximation to the covariance matrix for π(θ|y) and j is a tuneable 

jumping parameter (estimation of Σθ and optimisation of j are achieved during an initial “adaptation” 

period, as explained in appendix C).  

Step 2: Generate unbiased estimate �̂�(𝒚|𝜽𝒑) – We take each latent variable ξe in turn (starting from 

e=1 up to e=E) and consider Z particles. The weights for these particles are initially set to wz=1. For 

each particle z we sample from an importance distribution 

 '~ ( | , , ).z z z p

e ID e e ef y      (K2) 

In the simplest case this will be ID0, which is equivalent to simulating from the model, but as with 

PBPs, greater efficiency can be achieved by using higher order importance distributions. Here we 

imagine the case in which an observation ye is made on each latent variable with observation 

probability π(ye|ξe,θ). The weight for each particle wz is then multiplied by  

 '

'

( | , )
( | , ) .

( | , , )

z z p
z p e e e

e e z z p

ID e e e

y
f y

   
  

  




  (K3) 

After scanning through all latent variables, an unbiased estimator can be generated by  

 1

1
( | ) ,

Zp

zZ z
y w 


    (K4) 

which is essentially a standard implementation of importance sampling (see appendix A). This 

estimator, however, turns out to usually be very computationally wasteful because most of the 

particles have almost zero weight and contribute very little to the sum. A key innovation in PMCMC 

is the introduction of “bootstrap” steps. At various points when scanning from e=1 to E, a new set of 

particles is sampled from the existing set with probability proportional to the particle weights. This 

new set then has its weights returned back to wz=1 and the process is continued. Now 

  1

1
( | )

Zp b

zZ zb
y w 


    (K5) 

is an unbiased estimator, where the product goes over bootstrap steps and 𝑤𝑧
𝑏 are the weights of 

particles immediately prior to the bootstrap being performed. 

Step 3: Accept or reject – The final proposed state θp is accepted or rejected with MH probability 

 
( | ) ( )

min 1, .
( | ) ( )

p p

MH i i

y
P

y

   

   

  
  

  
  (K6) 
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Figure K: Optimisation of the PMCMC algorithm. Results are shown for the logistic population model in §5.4 

(CPU time when 3 population measurements are made). Shows how CPU time for 100 effective samples of rb 

varies as a function of (a) the average acceptance rate α (fixing j=0.6) and (b) the parameter jumping size j (fixing 

α=0.25). 

 

Optimisation 

The PMCMC algorithm above has two free parameters which need to be optimised: the jumping size 

j used in Eq.(K1) and the number of particles Z. The former can be fixed to an optimised value and 

the latter can be tuned to give a certain specified acceptance rate α. This is achieved in the algorithm 

by introducing a floating point version of the particle number Zf (such that Z is the integer rounded 

value of Zf) which is updated in the following manner: 

 
1

1.02           if PMCMC proposal accepted,

1.02      if PMCMC proposal rejected.

new

f f

new

f f

Z Z

Z Z






 

 

  (K7) 

(note, this is analogous to the approach used in Eqs.(C2) and (C3)). 

Figure K shows the algorithm can be optimised by scanning j and α. In this particular example CPU is 

minimised when α≈0.25 and j≈0.6, with performance not very sensitive to these precise values. 

Appendix L: Effective sample number 
Given X correlated MCMC samples of some quantity xi, the autocorrelation function can be 

approximated by 

   
2

1

1
,

( )

X
i i

ix

F x x x x
X





 






  


   (L1) 

where estimates for the average and variance of x are given by 

  
2

21

1 1

1
,    .

1

X Xi i

xX i i
x x x x

X


 
  


    (L2) 

The effective sample size is given by the actual sample number X, correcting for correlations 

between successive samples: 
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  (L3) 

When actually calculating Xeff, clearly the sum in Eq.(L3) cannot go to infinity. In fact, Fτ often exhibits 

considerable fluctuations for large τ, and these can generate unwanted bias. The simplest way to 

deal with these is to truncate the sum in Eq.(L3) up to a maximum size τmax, which is defined to be 

the largest value of τ for which the following condition holds true (see [11]): 

 0.05.F    (L4) 

Appendix M: Details for disease prevalence model 
In this appendix we provide additional details relevant to the disease prevalence and diagnostic test 

model in §5.1. 

Simulation and prior details 

Simulated data was created using Se1=Se2=0.6 and Sp1=Sp2=0.9 for P=1000 individuals. Different 

values of individual number P were used to generate Fig. 5(d). The prior distributions for parameters 

Se1, Se2 and pD were assumed to be uniform between 0 and 1, and for Sp1 and Sp2 to be uniform 

between 0.5 and 1 (the reason this isn’t from 0 is because otherwise the posterior becomes 

bimodal). 

Observation model and latent process likelihood 

The model is illustrated in Fig. 5(a). The true disease status of individuals is represented by Bernoulli 

variables De, where De=1 (or 0) denotes that individual e is infected (or uninfected) with probability 

pD (or 1-pD). The test data 
t

ey for test type t are 1 (or 0), indicating a positive (or negative) result. 

We identify the following model parameters θ={pD,Se1,Sp1,Se2,Sp2} and latent variables ξ={D}. The 

observation model and latent process likelihood are given by 

 
   

 

0|1 1|01|1 0|0

01

1,2
( | , ) 1 1 ,

( | ) 1 ,

t tt t
N NN N

t t t tt

NN

D D

y Se Se Sp Sp

p p

  

  


  

 


  (M1) 

where dN is the number of individuals with disease status d and
|r d

tN is the number of cases in which 

test t gives result r for individuals with disease status d. 

Importance distributions 

Step 2 of the PBP algorithm (introduced in §3.4) makes use of IDs. Successive approximations for 

these IDs are discussed in §4. Here we explicitly present expressions for this particular model. 

ID0 is given by the model itself 

 
0 '( | , ) ( | ),ID e e Bern De ef D D f D p    (M2) 

where fBern is the Bernoulli probability distribution. 
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ID1 takes into account both the model and the observations. From Eq.(4.7) this is given by 

 
1 ' 1,2
( | , , ) ( | ) ( | ),t

ID e e Bern D ete e ef D D y cf D p y D  
    (M3) 

where c is a normalisation constant. Explicitly incorporating the observation model from Eq.(M1), 

this becomes 

 1

1 1 0'( | , , ) ( | ),
p

ID e e Be ern p pef D D y f D 
   (M4) 

where 
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  (M5) 

In this particular example ID1 (unusually) represents the exact importance distribution (i.e. it directly 

samples from the posterior), so no higher order terms need to be considered.  

Proposals 

As an illustration of how PBPs are implemented in practice, we explicitly go through step 2 of the 

PBP algorithm from §3.4 (which stochastically modifies
i

eD to generate
p

eD ).  

The ID is given by a Bernoulli distribution with disease probability z: 

  '( | , , ) | .eID Berne e ef D D y f D z    (M6) 

For ID0, z is equal to pD and for ID1, z=p1/(p1+p0), where the definitions for p0 and p1 are given in 

Eq.(M5).  

Sequentially going through each individual e, the values for the initial
i

ez  and proposed
p

ez states are 

calculated. Table 1 shows that for the Bernoulli distribution: 

1) For
p i

e ez z : if 1i

eD  we simply set 1p

eD  , otherwise we draw a random number from 0 to 1 and 

if it is less than
1

p i
e e

i
e

z z

z




we set 1p

eD  else 0p

eD  . 

2) For
p i

e ez z : if 0i

eD  we simply set 0p

eD  , otherwise we draw a random number from 0 to 1 

and if it is less than1
p
e

i
e

z

z
 we set 0p

eD  else 1p

eD  . 

Gibbs samplers 

For the disease diagnostic test model it is possible to explicitly sample directly from the posterior 

when model parameters and latent variables are each considered separately. 

Model parameters: The following samples are sequentially drawn from beta distributions 
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  (M7) 

In the case of Sp1 and Sp2 samples are rejected if less than 0.5 (to respect the prior), but this occurs 

very infrequently. 

Latent variables: Each individual e is considered in turn and, using the definitions in Eq.(M5), we set 

De=1 with probability p1/(p1+p0) else De=0. 

Appendix N: Details of the stochastic volatility model  
In this appendix we provide additional details relevant to stochastic volatility model in §5.2. 

Simulation and prior details 

Simulated data was created using μ=-10, ϕ=0.99, ν=12, σ2=0.0121, and for simplicity the initial 

condition was set to h1=μ. Different value of correlation parameter ϕ were used to generate Fig. 

6(d). The prior distributions for all variables were taken to be flat and in the ranges -∞–∞ for μ and 

h1, 0.0001–0.9999 for ϕ, 2–50 for ν and 0–∞ for σ2. 

Observation model and latent process likelihood 

We identify the following model parameters θ={μ,ϕ,ν,σ2,h1} and latent variables ξ={he>1}. The DAG 

structure is illustrated in Fig. 6(a). The observation model and latent process likelihood are given by 
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  (N1) 

where Г is the gamma function and E the observation period. 

Importance distributions 

ID0 is given by the model 

  
0

mod 2

nor' m( | , ) | , ,eID e ee ef h h f h      (N2) 

where  mod

1e eh      .  

Equation (4.7) shows the expression for ID1. The first thing to note is that the product of the model 

π(ξe|ξe’<e,θ) and observation probability π(ye|ξe,θ) distributions from Eq.(N1) is not a standard 

distribution with which PBPs can be used (i.e. it is not listed in Table 1). One way around this 

problem is to first approximate the observation model as a normal distribution. This is achieved by 

Taylor series expanding log(π(ye|ξe,θ)) about
mod

e up to second order, leading to 
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  obs obs2

norm( | ) | , ,,e e e eey f h       (N3) 

where 
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1 ( 1)
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  (N4) 

The product of the two normal distributions in Eqs.(N2) and (N3) give 

 
obs 2 mod obs2 obs2 2
e

obs2 2 obs2 2
1 norm'( | , , ) ( | , ).e e e
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ID ee e ef h h y f h

     

   




 
   (N5) 

The definition of ID2 from Eq.(4.8) is given by 

 
2 ' 1 1 1 1 1( | , , ) ( | , ) ( | ) ( | , ) ( | , )d, .e e e e e eID e e e e eef h h y h h y h h h y h h                (N6) 

In other words, the posterior distribution for he at time e depends not only on the value of he-1 (i.e. 

the previous time point), but also on the observations at times e and e+1. In the general case this 

integral is intractable, but again following the Taylor series expansion approximation to the 

observation likelihood around  mod

1e eh        , the following set of approximations can 

be made: 
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where  
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obs obs2 obs21
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  (N8) 

Substituting the results from Eq.(N7) into (N6) gives 

 
   

    
2

2 obs obs2

norm norm

2 obs obs2

norm 1 norm 1 1 1
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Integrating over two normally distributed quantities is Gaussian distributed with respect to the 

difference in means with variance given by the sum of the variances of the two original distributions. 

Consequently, Eq.(N9) becomes 
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When written in terms of he the last term becomes another normal distribution 

      
2

2 obs obs2 2

norm' norm norm( | , , ) | , | , | , ,next next

ID e e e e e e ee e ef h h y f h f h f h          (N11) 

with mean and variance that capture information from the next observation (i.e. at time e+1)  
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     (N12) 

The product of the three normal distributions in Eq.(N11) gives the final result 
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The standard approach 

By multiplying the two expressions in Eq.(N1), the posterior distribution is given by 
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Rearranging this gives 
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which takes the form of a standard normal distribution 
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Consequently, μ is sampled in the following way: 
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Similarly, the correlation parameter ϕ is also sampled from a normal distribution 
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The expression in Eq.(N15) can be rearranged to give 
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h   (N20) 

which is an inverted chi-squared distribution with respect to σ2. All samples generated that have 

zero prior probability are rejected. 

We adopt a simple random walk Metropolis-Hastings scheme (i.e. propose a new parameter / 

variable by adding a normally distributed contribution to its existing value and accepting or rejecting 

that change) for ν and he. In the case of he care is taken to only calculate those parts of the latent 

process likelihood and observation probability that actually change (to optimise the code as far as 

possible). The jumping sizes of the separate proposals are individually tuned to give acceptance 

approximately 33% of the time (using the same procedure as for j in appendix C). 

Appendix O: Details for mixed models 
In this appendix we provide additional details relevant 

to the mixed model in §5.3. 

Simulation and prior details 

In all cases flat uninformative priors were assumed for 

parameters. 

Here we take y to represent measurements of heights 

within a population. Two fixed effects are assumed: β1 

represents the average height of females and β2 gives 

the average height difference between males and 

females. As illustrated in Fig. O1, the model assumes a 

population of size P randomly mated over four 

generations (which leads to a sparse inverse matrix A-1 

7). Here individuals in the 1st generation are assumed to 

be unrelated (i.e. conditionally independent) and those 

in the 2nd, 3rd and 4th generations are conditionally 

dependent on exactly two individuals in the previous 

generation (i.e. their parents). Simulated data was 

generated using a population size of P=1000, two fixed 

effects β={1,0.1}, randomly allocated gender (i.e. Xi2=0 

or 1 with equal probability along with Xi1=1) and one 

additive genetic effect per individual (i.e. Z=I). 

 

                                                           
7 Individuals are related to themselves through Ann=1 (assuming they are not inbred). If individual n is the 
parent of p then Anp=½, for siblings sharing the same parents Anp=½, for half-sibs Anp=¼ and for a 
grandparent/grandchild relationship Anp=¼ etc… Whilst A itself is not sparse, its inverse A-1 is (only diagonal 
and parent-sibling elements are non-zero). 

 

Figure O1: A specific quantitative 

genetics example in which a represent 

additive genetic effects for a population of 

P individuals randomly mated over four 

generations (note, for clarity fixed effects 

β and observations y have been omitted 

from this diagram). For the non-founding 

population the random effect for each 

individual has contributions from its two 

parents in the previous generation.  
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Observation model and latent process likelihood 

We identify model parameters  2 2, ,a    β and latent variables    a , with residuals ε 

incorporated into the observation model.  

At first glance it might appear that PBPs are not applicable to this particular model because the 

latent variables are MVN distributed (i.e. a distribution not contained within Table 1). This, however, 

turns out not to be the case, because of the following transformation.  

The latent process likelihood is given by 
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Separating out those terms which depend on aE in the sum (and remembering that A is symmetric 

and fixed), leads to the product of a normal distribution for aE (given ae’<E) multiplied by a new MVN 

distribution over the remaining E-1 latent variables 
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  a   (O2) 

where the p.d.f. for the univariate normal distribution is given by 
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   (O3) 

The scheme above can be iterated until the original MVN distribution is converted into a product of 

normal distributions for each of the random effects 

 2 mod mod 2

norm1
( | ) ( | , ),

E

a e e ee
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a   (O4) 

where 

 mod mod2 2

' ''
,     ,e ee e e e ae e

M a s  


    (O5) 

and matrix M and vector s are fixed and calculated from A by recursively applying Eq.(O2). Note, 

Equation (O4) follows the same structure as Eq.(2.1), showing that it represents a DAG (specifically, 

the one illustrated in Fig. 7(a)).  

Under the above transformation, the observation model and latent process likelihood are given by 
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a A   (O6) 

where i goes over the observations, f goes over the fixed effects and e goes over the random effects. 
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Importance distributions 

Different levels of ID approximation are illustrated 

in Fig. O2. 

ID0 is given by the model 

  
0

mod mod 2

norm'( | , ) | , .e e eID e e ef a a f a      

From Eq.(4.7), we see that ID1 is generated by 

taking the product of the model and the 

observation probability distributions. For simplicity 

we assume that each observation contains a single 

random effect, but that each random effect may 

have many observations made on it (PBPs can also 

be applied in the more general case, but 

estimation of the IDs becomes somewhat more 

complicated).  

A rearrangement of the observation model in 

Eq.(O4) leads to an effective observation 

probability for each individual random effect of 
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where ye combines all observations yi that include random effect ae, and  
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Taking the product of the two normal distributions in Eqs.(O4) and (O7) leads to the final result 
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The distribution for ID2 takes into account those random effects which depend on ae. As stated in 

Eq.(4.8) and illustrated in Fig. O2(c), derivation of ID2 involves integrating over those random effects 

ad which depend on ae. Explicitly writing down the expression for fID2(ξe|ξe’<e,θ,y) is somewhat 

verbose. Instead, here we build up the final result by considering different contributions in turn.  

To start with we consider a particular random effect ad (which depends on ae), and find out how it 

affects fID2 when it is integrated out. The contribution to the model part of the full posterior from ad 

is given by 

 mod2

' ''
( | , ),norm d de e de

f a M a    (O10) 

where e’ sums over all those random effects on which ad depends. Three possibility exist for e’: 1) e’ 

< e, in which case ae’ is known (as represented by the shaded circles in Fig. O2), 2) e’=e and 3) e’ > e, 

 

Figure O2: Various levels of approximation used 

for estimating fID(ae|ae’<e,θ,y) for the quantitative 

genetics model. The shaded circles represent 

known additive genetic effect ae’<e and the bold, 

green circles indicate the actual trait 

measurements used. 
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in which case the additional latent variable e’ has to first be integrated out. In the case of the third 

option, Eq.(O10) is first recast in terms of the specific variable e’=r that needs to be integrated out: 
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Now we remember that the posterior also has a contribution for ar coming from its measurement 

and those random effects upon which it depends. These are captured by ID1 from Eq.(O9), which is 

given by 
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Multiplying Eqs.(O11) and (O12) integrating over ar leads to the posterior probability being 

proportional to  
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This can again be re-cast in terms of ad: 
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Compared to the original expression in Eq.(O10), we see that the effect of integrating out ar is to 

replace ar with the posterior estimate 
post

r in the mean and to add an additional contribution to the 

variance. The procedure above can be repeated for all e’>e, leading to  

 post mod2 2 post2

norm ' ' ' ' ' '' ' '
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       (O16) 

We now introduce the contribution which comes from the observation on ad itself: 
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norm( | , ).d d df a     (O17) 

Multiplying Eqs.(O16) and (O17), and integrating over ad implies that the posterior is proportional to 
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This can be recast in terms of ae: 

 
2( | , ),norm e d e d ef a      (O19) 

where 
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Equation (O19) represents the overall contribution to fID2 from latent variable d. To find fID2, 

therefore, this distribution must be multiplied over all random effects d which depend on ae, and 

also the observation and model contributions from ae itself must be included: 

 post post2 2

norm ( | , ) ( | , ).e e e norm e d e d ed
f a f a       (O21) 

Multiplication of these normal distributions yield the final result 
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Gibbs samplers 

Mixed models represent a case for which it is possible to explicitly sample directly from the posterior 

when model parameters and latent variables are each considered separately [12]. Assuming a simple 

uniform prior8, multiplying the two expressions in Eq.(O6) leads to the posterior probability 

distribution 
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The following Gibbs proposals can be identified, which are sequentially applied to constitute a single 

“update”:  

Model parameters: Rearranging (O24) gives 

 
1
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T -1a A a

y β a   (O25) 

That is, with all other quantities fixed the posterior has an inverted chi-squared distribution with 

respect to
2

a . Similarly, we find that 

                                                           
8 Non-uniform priors can be easily be implemented provided they also take an inverted chi-squared 

distribution. 
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and so
2

 also has an inverted chi-squared distribution. See below for how to draw samples from 

the inverted chi-squared distributions in Eqs.(O25) and (O26). 

Taking each fixed effect f in turn, the posterior can be written as 
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Thus, its value can be sampled from the following normal distribution 
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Latent variables: Gibbs sampling for random effect ae is achieved through 

  gibbs gibbs2~ , ,e e ea N     (O29) 

where 
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Sampling from the inverse chi-squared distribution 

We assume an inverse chi-squared distribution of the form  

 22( | , ) .
SM
xf x N S x e


   (O31) 

A simple method to calculate samples from this distribution is through 
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where um are uniform randomly generated numbers between 0 and 1. 

Appendix P: Details for the logistic population model 
In this appendix we provide additional details relevant to the logistic population model in §5.4. 

Simulation and prior details 

Simulated data was generated using the following parameters: birth rate rb=0.6, mortality rate 

μ=0.3, carrying capacity K=100, and capture probability p=0.5. The following priors were used: A 

gamma distributed prior on μ with mean 0.3 and variance 0.0144, a beta distributed prior on p with 
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mean 0.5 and variance 0.0025, a uniform prior on K between 0 and 200, and a uniform prior on rb 

between 0 and 2. 

Observation model and latent process likelihood 

We identify model parameters  , , ,br K p  and latent variables  ,t tb d  , which give the 

number of births and deaths during each time interval t.  

The observation model and latent process likelihood are given by 
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  (P1) 

where m goes over all the measurements, ym are the number of animals observed at time mt, Pt is 

the population size, and (1 )t b t tr P P K    and 
t tP   are, respectively, the expected number 

of births and deaths during time interval t.  

The standard approach  

Random walk MH updates are used for the parameters rb, μ, K, and p (i.e. this consists of proposing 

a new parameter by adding a normally distributed contribution to its existing value and accepting or 

rejecting that change). The jumping sizes of these separate proposals are individually tuned to give 

acceptance approximately 33% of the time (using the same procedure as for j in appendix C). 

Regarding the latent variables, four types of proposal are used: 1) incrementing or decrementing a 

birth number bt with randomly selected time t, 2) doing the same for a randomly selected death 

number dt, 3) scanning from t=1 to t=T and locally incrementing or decrementing both birth number 

bt and death number dt (leaving population sizes unchanged), and 4) scanning from t=2 to t=T and 

locally incrementing or decrementing the population size Pt (with corresponding adjustments to bt,dt 

and bt-1,dt-1). Note these last two options are scanned across all times because here individual 

proposals are fast (these local changes do not require the entire likelihood and observation model to 

be calculated). 
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