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Electronic supplementary material S1. Study area 
 
 

 
 

Figure S1-1. Our study area, southeast Queensland, contains approximately 2.1 million ha of 
woody vegetation and is situated on the east coast of Australia. Size distribution data were 
collected from 30 sites across the region, covering the three main vegetation types: heath 
shrublands (red, five sites), subtropical rainforest (green, five sites), and Eucalyptus spp. 
dominated sclerophyll forest (yellow, 20 sites; some points overlap in the figure).  
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Electronic supplementary material S2. Functional trait data sources 
 
 
Table S2-1. Functional trait data for the species that were not measured directly by the 
authors were obtained from a range of sources. Values indicate the number of unique species 
each source contributed to the overall data set for three traits: maximum height (Height), 
specific leaf area (SLA), and wood density (WD). 
 
Reference Height SLA WD 
Boland, et al. [1] 4 0 2 
Cause, et al. [2] 0 0 7 
Chaturvedi and Raghubanshi [3] 0 0 1 
Chave, et al. [4]* 0 0 2 
Choat, et al. [5]* 0 0 1 
Clarke, et al. [6] 0 0 0 
Cunningham, et al. [7] 0 1 0 
Curran, et al. [8] 0 1 0 
Dwyer and Mason [9] 0 1 0 
Falster and Westoby [10] 0 1 0 
Falster and Westoby [11] 0 1 0 
Falster and Westoby [12] 0 2 0 
Floyd [13] 7 0 0 
Fonseca, et al. [14]* 0 17 0 
Gallagher, et al. [15] 0 1 0 
Gallagher and Leishman [16] 0 13 0 
Green and Juniper [17] 0 0 0 
Grubb and Metcalfe [18] 0 0 0 
Grubb, et al. [19] 0 0 0 
Hamilton, et al. [20] 0 2 0 
Harden, et al. [21] 8 0 0 
Hunt, et al. [22] 0 1 0 
Knox and Clarke [23] 0 3 2 
Kooyman and Westoby [24] 0 0 11 
Lake [25] 0 0 1 
Lal, et al. [26] 0 1 0 
Leiper, et al. [27] 18 0 0 
Lindsay and French [28] 0 1 0 
Mokany, et al. [29] 119 0 0 
Moles and Westoby [30] 0 1 0 
Ordonez, et al. [31] 0 15 0 
Osunkoya, et al. [32] 0 1 0 
Peñuelas, et al. [33]* 0 2 0 
Poorter, et al. [34]* 0 7 0 
Poropat [35] 0 0 1 
Poropat [36] 0 0 9 
Read and Sanson [37] 0 1 0 
Reich, et al. [38]* 0 0 1 
Royal Botanic Gardens Kew [39] 0 0 0 
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Reference Height SLA WD 
Sams, et al. [40] 0 3 0 
Shiels and Drake [41] 0 0 0 
Shipley [42]* 0 4 0 
Stanley and Ross [43] 78 0 0 
Tng, et al. [44] 0 10 2 
Westoby, et al. [45] 0 0 0 
Wright and Westoby [46] 0 3 0 
Wright, et al. [47] 0 1 0 
Zanne, et al. [48] 0 0 117 
Zheng and Shangguan [49] 0 1 0 

* Accessed through the TRY functional trait database [50].  
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Figure S3-1. Continuous size distributions for all our 30 sites measured across three broad vegetation types in southeast Queensland: sclerophyll 
(yellow text), heath (red text) and rainforest (green text). Solid lines show the actual exponent of each site determined using maximum likelihood 
(see Methods in main text) and dotted lines show the –2 exponent assumed by MST to be universal. Values of actual exponent and goodness of 
fit to a power law (GOF; another MST assumption) are shown for each site.
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Table S3-1. Results from analyses of continuous size distributions from all our 30 sites 
measured across three broad vegetation types in southeast Queensland. Values of the actual 
exponent and goodness of fit to power law (GOF) are as presented in figure S3-1. Test 
statistics and P values are from comparisons between two models; one where we estimated 
the scaling exponent from the data, and a simpler model with the exponent fixed at –2; using 
one-sided Vuong’s likelihood ratio tests (see Methods in main text). DAIC values between 
the two models are also provided. Only 6/30 sites had estimated exponents that were 
statistically equivalent to the –2 MST prediction (P > 0.05), but DAIC values indicated that 
four of these sites had better fits when the exponent was estimated (DAIC > 2), despite the 
added complexity of estimating this parameter. Thus, the –2 MST prediction received strong 
statistical support from just two sites (18 and 22; bold text). 
 
Site Vegetation type Exponent GOF Test statistic P DAIC 
1 Sclerophyll –1.52 0.61 3.776 < 0.001 54.112 
2 Heath –1.91 0.81 3.246 0.001 18.014 
3 Heath –2.83 0.34 49.544 < 0.001 1942.839 
4 Heath –2.12 0.86 5.051 < 0.001 44.139 
5 Sclerophyll –2.99 0.76 4.153 < 0.001 164.116 
6 Rainforest –2.28 0.42 4.232 < 0.001 65.922 
7 Sclerophyll –1.90 0.51 0.978 0.164 2.610 
8 Sclerophyll –1.70 0.49 1.555 0.060 12.353 
9 Rainforest –1.83 0.81 4.209 < 0.001 40.376 
10 Sclerophyll –1.47 0.72 2.865 0.002 27.664 
11 Heath –2.34 0.86 17.096 < 0.001 468.751 
12 Sclerophyll –1.79 0.75 3.197 0.001 24.310 
13 Sclerophyll –2.33 0.31 3.599 < 0.001 52.587 
14 Sclerophyll –1.68 0.64 2.535 0.006 24.559 
15 Sclerophyll –2.52 0.87 5.279 < 0.001 163.270 
16 Sclerophyll –1.58 0.68 1.831 0.034 14.614 
17 Sclerophyll –1.81 0.90 2.243 0.012 16.175 
18 Sclerophyll –1.90 0.67 0.847 0.199 1.078 
19 Sclerophyll –1.86 0.70 1.314 0.094 4.688 
20 Rainforest –1.86 0.93 2.792 0.003 23.050 
21 Sclerophyll –1.67 0.46 2.286 0.011 25.064 
22 Rainforest –1.96 0.95 0.770 0.221 0.423 
23 Sclerophyll –1.55 0.59 2.914 0.002 39.635 
24 Heath –5.25 0.02 28.491 < 0.001 3876.580 
25 Sclerophyll –1.80 0.70 4.159 < 0.001 28.470 
26 Sclerophyll –1.90 0.90 1.513 0.065 5.815 
27 Sclerophyll –1.67 0.71 5.404 < 0.001 85.162 
28 Rainforest –2.06 0.84 2.042 0.021 7.381 
29 Sclerophyll –1.64 0.68 2.396 0.008 25.789 
30 Sclerophyll –1.43 0.65 4.870 < 0.001 69.595 
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Electronic supplementary material S4. Analyses repeated including removed outlier plot. 
 
 
To avoid violating model assumptions, we removed one outlier heath site in the analyses 
presented in figures 2-4 in the main text, and tables S5-1 & S5-2. Here, we present a repeat of 
the analyses included in the main text exploring relationships between MST assumptions 
(scaling exponents [–2] and power law goodness of fit values), environmental and 
community-weighted mean (CWM) functional trait variables, and our three estimates of 
MST-calculated relative productivity (Btot) and remote-sensed gross primary productivity 
(GPP) with the outlier heath site included. In all cases, slope directions are consistent with 
and without the outlier heath site (figures S4-1 – S4-3, tables S4-1 & S4-2; also see figures 2-
4 in the main text, and tables S5-1 & S5-2). When including the outlier, however, there is no 
support for a statistically significant relationship between scaling exponent and soil sand 
content (P = 0.010 vs P = 0.202; tables S4-1a & S5-1a) but support remains for the aridity 
index, fire frequency, and their interaction. Also, support for a statistically significant 
relationship between goodness of fit to power law and CWM specific leaf area is reduced (P 
= 0.003 to P = 0.055; tables S5-1d & S4-1d), and there is no longer marginal significance for 
the relationship with wood density. Given we were limited to a relatively small number of 
sites in this study (30), and that many of our covariates are marginally significant, it is highly 
likely that collection of additional data would yield more significant results. There are no 
major differences between the analyses of Btot and GPP when the outlier site is removed.  
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Figure S4-1. Relationships between size distribution exponents and site-level variables for 
models, including (a) soil sand content, and an interaction between fire frequency and aridity; 
and (b) community-weighted means for three functional traits: maximum height, specific leaf 
area (SLA), and wood density. This analysis is a repeat of figure 2 in the main text but 
includes the removed outlier heath site (identified with a grey circle). The lines are fitted 
relationships, and grey shading indicates 95% confidence intervals. The shaded lines indicate 
significance at P < 0.05. When each bivariate relationship (and the interaction) was fitted, all 
other covariates were held at their mean values.  
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Figure S4-2. Relationships between the degree to which the size distribution of a site follows 
a power law (goodness of fit), one of the main assumptions of metabolic scaling theory, and 
three community-level functional traits: maximum height, specific leaf area (SLA), and wood 
density. This analysis is a repeat of figure 3 in the main text but includes the removed outlier 
heath site (identified with a grey circle). A model with environmental predictor variables was 
also fitted for goodness of fit, like figure S4-1a, but these relationships were all non-
significant. The lines are fitted relationships, and grey shading indicates 95% confidence 
intervals. The shaded line indicates significance at P < 0.05. Panels without lines have non-
significant relationships. When each bivariate relationship was fitted, all other covariates 
were held at their mean values.   
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Figure S4-3. Relationship between metabolic scaling theory (MST)-calculated relative 
productivity (Btot) and remote-sensed gross primary productivity (GPP). Here, we show Btot 
calculated three different ways: using the MST-assumed power law and –2 size distribution 
exponent (–2 exponent estimate); using the power law and the actual exponent (actual 
exponent estimate); and using neither the power law nor an exponent (actual size distribution 
estimate). This analysis is a repeat of figure 4 in the main text but includes the removed 
outlier heath site (identified with a grey circle). There was a significant relationship between 
Btot and GPP in (c), when MST assumptions were relaxed and Btot was calculated using actual 
stand properties. The lines show fitted relationships, with grey shading indicating 95% 
confidence intervals. Panels without lines have non-significant relationships.  
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Table S4-1. Model coefficients from the four linear models used to explain the deviation of 
size distributions from two central metabolic scaling theory (MST) assumptions: the –2 
exponent and the power law. This analysis is a repeat of table S5-1 but including the removed 
outlier heath site. For each assumption, we fit a model with environmental predictors and a 
model with community-weighted mean functional trait predictors—both explaining factors 
ignored by the theory. Adherence to the power law is measured as a goodness of fit (GoF) 
with a value of 1 indicating a perfect fit (i.e., a straight line when plotted on a log-log axis). 
Bold P values denote statistically significant slopes (a = 0.05).  
 
Coefficient Estimate Standard error t-value P 
(a) Exponent model – environmental predictors (R2 = 0.43, P < 0.001) 

Intercept 0.051 0.608 0.084 0.934 
Aridity index –1.772 0.449 –3.946 < 0.001 
Fire frequency (binary) 1.500 0.541 2.771 0.010 
Soil sand content (%) –0.012 0.009 –1.309 0.202 
Aridity index × fire frequency –2.109 0.654 –3.222 0.004 

(b) Exponent model – functional trait predictors (R2 = 0.22, P = 0.023) 
Intercept –3.365 2.169 –1.552 0.133 
Maximum height (square root) 0.276 0.091 3.055 0.005 
Specific leaf area (log10) –0.056 0.709 –0.079 0.938 
Wood density (square root) 0.016 2.341 0.007 0.994 

(c) Power law model – environmental predictors (R2 = 0.09, P = 0.174) 
Intercept 3.436 1.409 2.439 0.022 
Aridity index < 0.001 < 0.001 –1.693 0.103 
Fire frequency (binary) 1.376 1.254 1.097 0.283 
Soil sand content (%) –0.022 0.021 –1.047 0.305 
Aridity index × fire frequency < 0.001 < 0.001 –1.371 0.183 

(d) Power law model – functional trait predictors (R2 = 0.05, P = 0.223) 
Intercept –4.782 4.374 –1.093 0.284 
Maximum height (square root) 0.102 0.183 0.559 0.581 
Specific leaf area (log10) 2.879 1.430 2.014 0.055 
Wood density (square root) 3.204 4.722 0.678 0.504 
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Table S4-2. Model coefficients from linear models testing for relationships between 
metabolic scaling theory (MST)-predicted relative productivity (Btot) and a remote-sensed 
measure of gross primary productivity. This analysis is a repeat of table S5-2 but including 
the removed outlier heath site. Btot was calculated three different ways: (a) using the MST-
assumed power law and –2 size distribution exponent (–2 exponent estimate), (b) using the 
power law and the actual exponent (actual exponent estimate), and (c) using neither the 
power law nor an exponent (actual size distribution estimate). Bold P values denote 
statistically significant slopes (a = 0.05). 
 
Coefficient Estimate Standard error t-value P 
(a) –2 exponent estimate (R2 = 0.03, P = 0.192) 

Intercept 4.512 1.317 3.426 0.002 
Btot (log10) 0.533 0.398 1.338 0.192 

(b) Actual exponent estimate (R2 = 0.03, P = 0.166) 
Intercept 4.371 1.337 3.268 0.003 
Btot (log10) 0.558 0.392 1.424 0.166 

(c) Actual size distribution estimate (R2 = 0.25, P = 0.003) 
Intercept –3.976 3.152 –1.262 0.218 
Btot (log10) 2.634 0.810 3.250 0.003 

  



Supporting Information to the paper: 
McCarthy JK, Dwyer JM, Mokany K. A regional-scale assessment of using metabolic scaling 
theory to predict ecosystem properties. Proceedings of the Royal Society B: Biological 
Sciences. (doi: 10.1098/rspb.2019-2221) 
 

16 
 

Appendix S5. Model summaries. 
 
 
Table S5-1. Model coefficients from the four linear models used to explain the deviation of 
size distributions from two central metabolic scaling theory assumptions: the –2 exponent 
and the power law. For each assumption, we fitted a model with environmental predictors 
and a model with community-weighted mean functional trait predictors – both explaining 
factors ignored by the theory. Adherence to the power law is measured as a goodness of fit, 
with a value of 1 indicating a perfect fit (i.e., a straight line when plotted on a log-log axis). 
Bold P values denote statistically significant slopes (a = 0.05).  
 
Coefficient Estimate Standard error t-value P 
(a) Exponent model – environmental predictors (R2 = 0.49, P < 0.001) 

Intercept –0.405 0.313 –1.297 0.207 
Aridity index –1.007 0.244 –4.120 <0.001 
Fire frequency (binary) 0.769 0.287 2.678 0.013 
Soil sand content (%) –0.013 0.005 –2.801 0.010 
Aridity index × fire frequency –1.016 0.355 –2.859 0.009 

(b) Exponent model – functional trait predictors (R2 = 0.25, P = 0.016) 
Intercept –3.748 1.139 –3.289 0.003 
Maximum height (square root) 0.125 0.051 2.456 0.021 
Specific leaf area (log10) –0.013 0.372 –0.034 0.973 
Wood density (square root) 1.413 1.241 1.139 0.266 

(c) Power law model – environmental predictors (R2 = –0.040, P = 0.582) 
Intercept 2.620 1.083 2.420 0.024 
Aridity index <0.001 <0.001 –0.465 0.646 
Fire frequency (binary) 0.069 0.995 0.069 0.946 
Soil sand content (%) –0.023 0.016 –1.494 0.148 
Aridity index × fire frequency <0.001 <0.001 –0.101 0.921 

(d) Power law model – functional trait predictors (R2 = 0.24, P = 0.019) 
Intercept –5.487 2.774 –1.978 0.059 
Maximum height (square root) –0.178 0.124 –1.431 0.165 
Specific leaf area (log10) 2.959 0.906 3.266 0.003 
Wood density (square root) 5.779 3.021 1.913 0.067 
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Table S5-2. Model coefficients from linear models testing for relationships between 
metabolic scaling theory (MST)-predicted relative productivity (Btot) and a remote-sensed 
measure of gross primary productivity. Btot was calculated three different ways: (a) using the 
MST-assumed power law and –2 size distribution exponent (–2 exponent estimate), (b) using 
the power law and the actual exponent (actual exponent estimate), and (c) using neither the 
power law nor an exponent (actual size distribution estimate). Bold P values denote 
statistically significant slopes (a = 0.05). 
 
Coefficient Estimate Standard error t-value P 
(a) –2 exponent estimate (R2 = 0.03, P = 0.177) 

Intercept 4.352 1.384 3.144 0.004 
Btot (log10) 0.576 0.415 1.386 0.177 

(b) Actual exponent estimate (R2 = 0.04, P = 0.153) 
Intercept 4.205 1.404 2.995 0.006 
Btot (log10) 0.602 0.409 1.471 0.153 

(c) Actual size distribution estimate (R2 = 0.26, P = 0.003) 
Intercept –4.363 3.233 –1.350 0.188 
Btot (log10) 2.727 0.830 3.287 0.003 

 


