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1 Supporting information for §2

1.1 Master model

Consider the flow of a two dimensional ice sheet as governed by the Stokes equations

∂τij
∂xj
− ∂p

∂xi
+ ρgi = 0, (1a)

where τij is the deviatoric part of the stress tensor σij = τij − pδij, p is pressure, ρ is the density
of the ice, and gi is the component of gravity in the i direction. We assume a Cartesian coordinate
system (x1, x2) = (x, z) such that the z−axis is vertical and oriented upward, with z = 0 at sea
level, as well as the summation convention. Deviatoric stresses are related to the strain rate tensor
Dij through

τij = 2ηDij, with Dij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (1b)

with the velocity field u = (u1, u2) = (u,w) satisfying incompressibility

∇ · u = 0, (1c)

and ∇ = (∂/∂x, ∂/∂z). In eq. (1b) η is the viscosity, which we regard as constant. Disre-
garding the dependence of viscosity on temperature and strain rate implies that we rule out any
thermo-mechanical feedback, consistently with our objective to investigate the role of basal thermal
transitions with respect to fast flow initiation in isolation.

Let us assume that the upper surface of the ice in contact with the atmosphere is z = s(x, t), and
the lower surface in contact with the bed is z = b(x), so that the ice has thickness h(x, t) = s− b,
and let ni, n̂i be upward-pointing vectors normal to the surface and to the bed, respectively. The
surface is stress-free and also a free boundary, that is

σijnj = 0, and
∂s

∂t
+ u

∂s

∂x
− w = ḃ on z = s, (1d)

with

n =

(
−∂s
∂x
, 1

)/√
1 +

(
∂s

∂x

)2

, (1e)

where ḃ is the rate of snow accumulation per unit area if ḃ > 0, or mass loss through sublimation
or melting if ḃ < 0. The bed is a material surface where there may or may not be slip: here we are
concerned with the case of thermally controlled sliding, so we associate a frozen bed with no slip
and a thawed bed with basal sliding. In the former case we have

u = 0 on z = b if T < Tm, (1f)

where T (x, z, t) is temperature and Tm is the melting point temperature, which we consider inde-
pendent of pressure. If slip occurs, we assume that there is an applied shear stress τb at the base of
the ice sheet that is a function of the basal velocity ub through a linear slip law [1, 2]

τb = Cub, u · n̂ = 0 on z = b if T = Tm, (1g)

where C > 0 denotes the friction coefficient. Defining the normal vector to the bed as

n̂ =

(
− ∂b
∂x
, 1

)/√
1 +

(
∂b

∂x

)2

(1h)
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sliding velocity and basal shear stress are

ub = u

[
1 +

(
∂b

∂x

)2
]1/2

, τb =

[
1−

(
∂b
∂x

)2
]
τxz − 2 ∂b

∂x
τxx

1 +
(
∂b
∂x

)2 .. (1i)

Even with a viscosity independent of temperature, we require a thermal model to know whether
the bed is frozen or thawed. Energy conservation for the ice and the bed reads

ρc

(
∂T

∂t
+ u · ∇T

)
−∇ · (κ∇T ) = τijDij for b < z < s, (2a)

ρbedcbed
∂T

∂t
−∇ · (κbed∇T ) = 0 for z < b, (2b)

where c is heat capacity, κ is the thermal conductivity, and the subscript bed denotes the physical
properties of the bed. We prescribe a temperature Tsurf at the surface, and a geothermal heat flux
qgeo at large distance below the ice-bed contact,

T = TS on z = s, (2c)

− κbed
∂T

∂z
→ qgeo as z → −∞, (2d)

while at the bed z = b we require

κ
∂T

∂z

∣∣∣∣
z→b+

− κbed
∂T

∂z

∣∣∣∣
z→b−

= [T ]+− = 0 if T < Tm, (2e)

or
T = Tm if ub > 0, (2f)

where [f(z)]+− = f(z → z+
0 ) − f(z → z−0 ) denotes the difference between positive and negative

limiting values of f across a prescribed surface z = z0.

1.2 Non-dimensionalization

We consider scales for the ice sheet length [x] = L, surface accumulation [ḃ], temperature [T ] =
[Ts]− Tm as known quantities, and introduce the usual, shallow ice scale relationships [e.g., 3]

[w] = [ḃ], [u] =
[w][x]

[z]
, [t] =

[x]

[u]
, [p] = ρg[z], [τ ] =

ρg[z]2

[x]
, [z] =

(
η[ḃ][x]2

ρg

)1/4

, (3a)

in addition to the non-dimensional parameters

Pe =
[z]2

λ[t]
, α =

[τ ][u]

κ[T ]/[z]
, γ = C

[u]

[τ ]
, ν =

qgeo[z]

κ[T ]
, ε =

[z]

[x]
, (3b)

where Pe is the Péclet number, α is the strength of strain heating compared to the background
conductive heat flux, γ is a non-dimensional friction coefficient, ν is a non-dimensional geothermal
heat flux, ε is the aspect ratio of the ice sheet, and λ = κ(ρc)−1 is the thermal diffusivity of the ice.
From this point onward we assume that ice and bed have the same physical properties, so we drop
the subscript bed.
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Equipped with these scales, we rescale model variables as

x = [x]x∗, z = [z]z∗, t = [t]t∗, s(x, t) = [z]s∗(x∗, t∗), b(x) = [z]b∗(x∗), (3c)

u = [u]u∗, w = [w]v∗, ḃ = [ḃ]ḃ∗, p = ρg[z](s∗ − z∗) + ε[τ ]p∗, (3d)

τxz = [τ ]τ ∗xz, τxx = −τzz = ε[τ ]τ ∗xx = −ε[τ ]τ ∗zz, T = [T ]T ∗ + Tm, (3e)

Dropping stars for simplicity the full, non-dimensional mass and momentum conservation read

∂u

∂x
+
∂w

∂z
= 0, (4a)

ε2∂τxx
∂x

+
∂τxz
∂z
− εpx −

∂s

∂x
=0, (4b)

ε2

(
∂τzx
∂x

+
∂τzz
∂z

)
− ε∂p

∂z
=0, (4c)

with the constitutive relationships given by

τxx = 2
∂u

∂x
, τzz = 2

∂w

∂z
, τxz = τzx =

∂u

∂z
+ ε2∂w

∂x
. (4d)

The boundary conditions at the ice surface, z = s, are

−(ε2τxx − εp)sx + τxz = 0, (4e)

ε2 (−τxzhx + τzz)− εp = 0, (4f)

∂s

∂t
+ u

∂s

∂x
− w = ḃ, (4g)

while at the bottom of the ice, z = b, we have

either u = w = 0, if T < 0, (4h)

or ub = γ−1τb and w = u
∂b

∂x
, if T = 0, (4i)

with

ub = u

(
1 + ε2

(
∂b

∂x

)2
)1/2

, τb =

[
1− ε2

(
∂b
∂x

)2
]
τxz − 2ε2 ∂b

∂x
τxx

1 + ε2
(
∂b
∂x

)2 . (4j)

Energy conservation in the ice and in the bed reads, respectively

Pe

(
∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z

)
−
(
ε2∂

2T

∂x2
+
∂2T

∂z2

)
= αa b < z < s, (5a)

Pe
∂T

∂t
−
(
ε2∂

2T

∂x2
+
∂2T

∂z2

)
= 0 z < b, (5b)

where the strain heating term a is defined as

a = 4ε2

(
∂u

∂x

)2

+ 4ε2

(
∂w

∂z

)2

+

(
∂u

∂z

)2

+ 2ε2∂u

∂z
wx + ε4

(
∂w

∂x

)2

. (5c)
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Boundary conditions for the energy balance are

T = TS on z = s, (5d)

− ∂T

∂z
→ ν as z → −∞, (5e)

and

either [T ] =

[
∂T

∂z

]+

−
= 0 on z = b, if T < 0, (5f)

or T = 0 on z = b, if ub > 0. (5g)

In addition, we impose a reduced version of the enthalpy equation on the temperate side, which
demands

m > 0 if T = 0, on z = b (6a)

with basal melt rate

m =

[
∂T

∂z

]+

−
+ ατbub. (6b)

2 Supporting information for §3

2.1 Outer problem

A leading order approximation of the master model derived in §1.2 valid away from the transition
point x = xonset can be obtained omitting terms of order O(ε) and higher. This leads to the standard
shallow ice approximation [3, 4]

u =
1

2

[
h2 − (s− z)2] ∣∣∣∣∂s∂x

∣∣∣∣+ ub, τb = h

∣∣∣∣∂s∂x
∣∣∣∣ , (7a)

whereby we compute the mass flux as

q =

∫ s

b

u dz. (7b)

The ice surface then evolves according to the diffusion equation

∂s

∂t
+
∂q

∂x
= ḃ, (7c)

while for the sliding velocity we have

either u = 0, if T < 0, (7d)

or ub =
1

γ
τb, if T = 0. (7e)

The vertical velocity is the solution to

∂u

∂x
+
∂w

∂z
= 0 on b < z < s, (8a)
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with boundary conditions at the bed, z = b,

either w = 0, if T < 0, (8b)

or ub
∂b

∂x
− w = 0, if T = 0. (8c)

Lastly, omitting terms of order O(ε2), the leading order heat transport problem reads

Pe

(
∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z

)
− ∂2T

∂z2
= αa(x, z, t) for b < z < s, (9a)

Pe
∂T

∂t
− ∂2T

∂z2
= 0 for z < b, (9b)

with strain heating a = (∂u/∂z)2, and boundary conditions

T = TS on z = s, (9c)

− ∂T

∂z
→ ν as z → −∞, (9d)

and

either [T ]+− =

[
∂T

∂z

]+

−
= 0 on z = b if T < 0, (9e)

or T = 0 on z = b if m > 0, (9f)

where the basal melt rate reads

m =

[
∂T

∂z

]+

−
+ ατbub. (9g)

2.2 Boundary layer model

Consider the master model derived in §(1.2) and rescale dependent variables as

X = ε−1(x− xonset), Z = z − b(xonset), (U,W ) = (u, εw), H = h, P = p, Θ = T. (10)

We also assume that bed topography has structure only at the ice sheet scale, so in the boundary
layer b = b(xonset) +O(ε). In addition we expand as

(U,W ) = (U (0),W (0)) +O(ε), P = P (0) +O(ε), H = H(0) +O(ε), Θ = Θ(0) +O(ε) (11)

where surface elevation H(0) must be independent of X to leading order in order to conserve the
mass flux across the boundary layer. This is analogous to the ice stream shear margin boundary
layer in Haseloff et al. [5, 6], and simplifies the domain for the leading order problem to the strip
−∞ < X < ∞, −∞ < Z < H(0), while structure in surface elevation at the ice thickness scale
appears only at O(ε).

Substituting the rescalings and expansions above into the non-dimensional version of the master
model described in §(1.2), and omitting terms of O(ε) and higher, we find the Stokes problem

∂U (0)

∂X
+
∂W (0)

∂Z
= 0, (12a)

∂2U (0)

∂X2
+
∂2U (0)

∂Z2
− ∂P (0)

∂X
= 0, (12b)

∂2W (0)

∂X2
+
∂2W (0)

∂Z2
− ∂P (0)

∂Z
= 0, (12c)
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with boundary conditions

∂U (0)

∂Z
+
∂W (0)

∂X
= W (0) = 0 on Z = H(0), (12d)

W (0) = 0 on Z = 0, (12e)

Ub
(0) = 0 on Z = 0, if Θ(0) < 0, (12f)

Ub
(0) = γ−1Tb

(0) on Z = 0, if Θ(0) = 0, (12g)

where Ub
(0) = U (0)|Z=0, and Tb

(0) = ∂U (0)/∂Z
∣∣
Z=0

. Matching conditions between the inner problem
above and the shallow outer problem are

H(0) = h(xonset, t),
(
U (0),W (0)

)
→ (u(xonset, z, t), 0) as X → ±∞, (12h)

where u and h are the solution to the shallow ice model of §2.1.
Energy conservation up to an error of O(ε) is

PeBL

(
U (0)∂Θ(0)

∂X
+W (0)∂Θ(0)

∂Z

)
−
(
∂2Θ(0)

∂X2
+
∂2Θ(0)

∂Z2

)
= αa for 0 < Z < H(0) (13a)

∂2Θ(0)

∂X2
+
∂2Θ(0)

∂Z2
= 0 for −∞ < Z < 0, (13b)

where the local Péclet number is Pe BL = ε−1Pe � 1, and strain heating reads

a = 2

(
∂U (0)

∂X

)2

+ 2

(
∂W (0)

∂Z

)2

+

(
∂U (0)

∂Z
+
∂W (0)

∂X

)2

. (13c)

Boundary conditions are

Θ(0) = −1 on Z = H(0), (13d)[
Θ(0)

]+
− =

[
∂Θ(0)

∂Z

]+

−
= 0 on Z = 0, if Θ(0) < 0, (13e)

Θ(0) = 0 on Z = 0, if m(0) > 0, (13f)

− ∂Θ(0)

∂Z
= ν as Z → −∞, (13g)

where the basal melt rate is

m(0) =

[
∂Θ(0)

∂Z

]+

−
+ αTb

(0)Ub
(0) on Z = 0. (13h)

In addition, the shallow ice outer thermal problem prescribes the temperature profile at the inflow
boundary,

lim
X→−∞

Θ(0) = T (xonset, z, t). (13i)
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2.3 The velocity field near the onset

We consider the mechanical problem given by eqs. (12a-12g) with the aim to derive an approxi-
mation for the velocity field valid at small distances from the frozen-molten transition located at
X = 0. Introducing a stream function ψ such that

U (0) =
∂ψ

∂Z
, W (0) = − ∂ψ

∂X
, (14a)

it’s straightforward to demonstrate that ψ satisfies the biharmonic equation,

∇4ψ = 0 on 0 < Z < 1, −∞ < X < +∞. (14b)

As we are concerned with the behaviour of the velocity field near the bed and at small distances
from the origin, we introduce a polar coordinate system (R, θ), where R = (X2 + Z2)1/2 is the
distance from the origin, and θ ∈ [0, π] is the angle (taken positive anti-clockwise), with θ = 0
denoting the bed on the temperate side of the transition, and seek to derive an expression for ψ
when R→ 0 [see also 7, 8]. To this aim, we assume the separable ansatz

ψ = Rβ+2Ψ(θ), (15a)

with β to be determined as part of the solution. Substituting into the biharmonic problem written
in polar coordinates, and denoting with ’ differentiation with respect to θ, the biharmonic equation
reads

Ψ′′′′ − [β2 + (β + 2)2]Ψ′′ + β2(β + 2)2Ψ = 0 on 0 < θ < π, (15b)

with boundary conditions along the bed

Ψ = 0 on θ = 0, π, (15c)

Ψ′ = 0 on θ = π, (15d)

Rβ [(β + 2)Ψ + Ψ′′] = γRβ+1Ψ′ on θ = 0, (15e)

and general solution of the form

Ψ = A1 sin [(β + 2) (π − θ)] +A2 cos [(β + 2) (π − θ)] +B1 sin [β (π − θ)] +B2 cos [β (π − θ)] , (15f)

with A1, A2, B1, B2 integration constants.
We now seek to determine the constants using the boundary conditions (15c-15e). We start by

noting that, in the limit of R → 0, and with an error of O(R), the sliding law eq. (15e) simplifies
to free slip

Ψ′′ = 0 on θ = 0, (15g)

meaning that the specific form of the sliding law is irrelevant to the leading order behaviour of
the velocity field for R → 0. Our problem is therefore equivalent to the leading order problem in
Barcilon and MacAyeal [7] who analyze a no slip-free slip transition; following their solution, we
set β = −1/2 and obtain a stream function of the form

Ψ ∼ cR3/2

[
sin

(
3θ

2

)
+ sin

(
θ

2

)]
for R→ 0, (15h)

with the constant c to be determined from matching with the far field, R ∼ O(1). In terms of
velocity (see definition 15h) the solution is

U (0) ∼ − c
2
R1/2

[
−5 cos

(
θ

2

)
+ cos

(
3θ

2

)]
, W (0) ∼ − c

2
R1/2 csc

(
θ

2

)
sin2(θ) for R→ 0. (15i)
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A first observation regarding the velocity field (15i) is that the sliding velocity is continuous
at the origin, U (0) → 0 as R → 0, while the basal shear stress, Tb

(0) = ∂U (0)/∂Z|Z=0 ∼ R−1/2,
is singular for R → 0. We note however that the singularity is integrable, thus the local heat
production remains bounded, as also noted by Barcilon and MacAyeal [7]. We therefore conclude
that, from a mechanical perspective, a transition from frozen to molten bed is a viable boundary
condition for the Stokes problem.

Note that Fowler [9] considered the same problem of flow near a transition from no slip to slip.
He concluded that there should be a non-integrable singularity in strain heating, meaning such an
abrupt transition would be physically impossible (see his eq. 41). Note however that the sliding
law on θ = 0 is replaced by a constant sliding velocity (his eq. 373) in his model. Unfortunately,
a constant sliding velocity is inconsistent with the asymptotically reduced form of the sliding law,
which we demonstrated collapses onto a free slip condition (so zero vertical shear stress) for small
distances from the origin. Hence the velocity discontinuity and resulting point force claimed by
Fowler [9] are spurious, and we conclude that the local flow problem is well-behaved.

2.4 The strong advection limit, PeBL � 1

2.4.1 Outer thermal problem

Let us consider the thermal problem at the ice thickness scale (13), and recall that the boundary
layer Péclet number is large. Then, at large enough distance above the bed that the sliding velocity
is ∼ O(1), a leading order approximation valid in both the cold- and temperate-based parts of the
domain is

U
∂Θ(0)

∂X
+W

∂Θ(0)

∂Z
= O(Pe −1

BL) for 0 < Z < H(0), (16a)

Θ(0) = 0 on Z = 0, (16b)

along with the matching condition (13i) at the inflow boundary, whereas in the bed we have

Θ(0) = −νZ for Z < 0. (16c)

The leading order dominant balance identified above holds so long as (U (0),W (0)) ∼ O(1), which
is clearly not the case in proximity of the bed, Z → 0. This region must be dealt with by means
of an advection-diffusion boundary layer nested within the ice thickness scale boundary layer; we
will see that this new boundary layer stretches across the transition, all the way to the temperate
region.

A diagram with the asymptotic structure of the thermal problem near the bed is provided in
figure 1. In the following we derive leading order approximations for the near-bed boundary layers
proceeding in the direction of the flow.

2.5 The advection-diffusion boundary layer on the cold side

We start our analysis considering the heat transport problem near the bed upstream of the transi-
tion, X < 0, in the region bounded from above by the yellow line in figure 1. We refer to this region
as ‘cold advective-diffusive boundary layer’, and denote relevant variables in this region with ·́.
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Figure 1: Illustration of the thermal boundary layers near the bed across a cold-temperate transition.
Colored lines mark the advection-diffusion boundary layers, while the black curve represents an
isotherm of the strongly advective outer problem (16).

2.5.1 Rescalings

We start by seeking scales for the velocity field in the boundary layer. Taylor-expanding the two
components of velocity near the bed, along with basal no slip (12f), bed impermeability (12e), and
mass conservation, eq. (12a), suggests to leading order

U (0) ∼ Tb
(0)Z, W (0) ∼ −1

2

∂Tb
(0)

∂X
Z2, with Tb

(0) ∼ 2c|X|−1/2, for Z → 0, X < 0, (17a)

while a vertical length scale is then obtained enforcing a balance between vertical diffusion and
horizontal advection near the bed. Hence we put

X = rX́, Z = Pe
−1/3
BL r1/2Ź, U (0) = Pe

−1/3
BL Ú , W (0) = Pe

−2/3
BL r−1/2Ẃ , (17b)

where r ≤ O(1) marks distance from the origin.
In order to derive a temperature scale for the boundary layer, we require that the inner heat flux

matches the heat flux imposed by the strongly advective outer temperature field in the matching
region, that is Ź → ∞ and Z → 0. With the near-bed approximation of the velocity field (17a),
isotherms of the outer problem (16) are the curves

Z ∼ Z0|X|1/4 for Z > 0, X < 0. (17c)

With O(1) outer temperature, the outer heat flux behaves as

∂Θ(0)

∂Z
∼ |X|−1/4 as Z → 0, (17d)

where we have assumed Z0 ∼ O(1) to accommodate an O(1) basal heat flux for the outer problem
at O(1) distances upstream of the origin, as required by eqs. (16). Then, matching inner and outer
heat fluxes leads to the following rescaling for the boundary layer temperature

Θ(0) = Pe
−1/3
BL r1/4Θ́ for Z > 0, (17e)
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while temperature remains unscaled in the bed,

Θ(0) = Θ́ for Z < 0, (17f)

which, substituted into continuity of temperature at the bed, eq.(13e1), imply that basal temper-
ature is at the melting point to leading order, while deviations from the melting point are small,
and precisely O(Pe

−1/3
BL ).

2.5.2 Leading order model

Informed by these rescalings, we expand dependent variables as

Θ́(X́, Ź) = Θ́(0) + o(1) for Ź > 0,

Θ(X,Z) = Θ(0) +O
(
Pe
−1/3
BL

)
for Z < 0,

(Ú , Ẃ ) = (Ú (0), Ẃ (0)) +
(
O
(
Pe
−2/3
BL

)
, O
(
Pe−1

BL

))
.

(18)

With leading order bed temperature at the melting point, the leading order problem in the bed
decouples from the heat equation in the ice and can be solved analytically. The solution reads

Θ(0) = −νZ for Z < 0, (19)

which substituted into flux continuity at the bed (13e) yields a Neumann boundary condition for
the leading order problem in the ice, i.e. ∂Θ́(0)/∂Ź = −ν on Ź = 0.

The leading order problem in the ice up to an error of O(Pe
−2/3
BL ) then reads

Ú (0)∂Θ́(0)

∂X́
+ Ẃ (0)∂Θ́(0)

∂Ź
− ∂2Θ́(0)

∂Ź2
= 0 for 0 < Ź < +∞, X́ < 0 (20a)

with boundary and matching conditions

∂Θ́(0)

∂Ź
→ ∂Θ(0)

∂Z

∣∣∣∣
Z→0+

as Ź → +∞, (20b)

−∂Θ́(0)

∂Ź
= ν on Ź = 0, (20c)

−∂Θ́(0)

∂Ź
→ ν as X́ → −∞. (20d)

2.5.3 The temperature field remains bounded

The singularity of the basal shear stress for |X́| → 0, and the consequent steepening of the outer
heat flux (∼ |X|−1/4 approaching the origin, |X́| → 0), raise the issue as to whether the leading
order model (20) admits a bounded solution, such that the far field temperature profile (20d) can
be matched. The following analysis illustrates that this is actually the case.

Let us consider local forms of the velocity field, basal shear stress, and outer flux near the bed

Ú (0) = T́
(0)
b Ź, Ẃ (0) = −∂T́

(0)
b

∂X́

Ź2

2
, T́

(0)
b = 2c|X́|−1/2,

∂Θ(0)

∂Z
= −ν|X|−1/4, on Ź, Z = 0

(21a)
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and introduce the coordinate transformation to the characteristic coordinates (σ, η)

η =
(
T́

(0)
b

)1/2

Ź =
Ź

|X́|1/4
, σ = −1

2

∫ X́

0

T́
(0)
b (X́ ′)1/4 dX́ ′ =

2

3
|X́|3/4, (21b)

where σ and η span the negative and positive half space, respectively. We further define a reduced
temperature Θ∗ = Θ́(0)(σ, η) + νη, and substitute into eqs. (20). This yields

η
∂Θ∗

∂σ
− ∂2Θ∗

∂η2
= 0 for η > 0, σ < 0, (22a)

with boundary and matching conditions

∂Θ∗

∂η
= F (σ) on η = 0, (22b)

∂Θ∗

∂η
→ 0 as η → +∞, (22c)

∂Θ∗

∂η
= 0 as σ → −∞, (22d)

where F (σ) = ν

[
1−

(
T́

(0)
b

)−1/2
]
.

It is now apparent that the solution to the problem (22) is well-behaved provided the function F
also is. Recognizing that F ∼ O(1) as σ → 0, and F → 0 as σ → −∞, we conclude that the basal
heat flux remains bounded throughout the domain, thus the far field temperature profile prescribed
by (22d) can be matched. Therefore we expect that the solution exists and has no singularities.

In practice, the problem (22) can be solved in terms of Fourier transforms, provided the function
F is extended to σ > 0. As σ is time-like, the form of F for σ > 0 is irrelevant to the solution in
the negative half-space. It should be noted however that a closed form solution for Θ∗ is likely not
available due to spatially-varying basal boundary condition, eq. (22b).

2.6 The advection-diffusion boundary layer near the origin, |X| ≤ Pe
−2/3
BL

The leading order model introduced in the previous section breaks down at distances from the
origin |X| ∼ Pe

−2/3
BL , where the assumption of shallowness of the boundary layer fails. This has to

be dealt with via a a rescaling of the horizontal coordinate, and effectively indicates the need for
a distinct, non-shallow boundary layer. We anticipate that the dominant balance within the ice
remains unchanged; the key difference with respect to the cold side lies instead in the fact that the
non-shallow advection-diffusion boundary layer needs to be coupled to a diffusive boundary layer
within the bed. This corresponds to the region bounded by the orange thick line in figure 1.

2.6.1 Rescalings

For the subsequent analysis we switch to a polar coordinate system centered on the origin, with
radius R = (X2 + Z2)1/2 and angle θ ∈ [0, 2π]. In this region (R → 0) the velocity is given by eq.
(15i), so we put

(UR
(0), Uθ

(0)) = r1/2(ÛR, Ûθ), (23a)
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where r � 1 is a typical non-dimensional distance, (UR
(0), Uθ

(0)) are the radial and tangential
components of the velocity field, and ·̂ denotes boundary layer variables. Seeking a balance between
advection and diffusion then yields the scale for the radius of the boundary layer,

r = Pe
−2/3
BL , (23b)

while matching the heat flux with the shallow advection-diffusion layer on the cold side yields a
scale for temperature, which we rescale as

Θ(0) = Pe
−1/2
BL Θ̂. (23c)

We conclude by noting that the heat flux is asymptotically large, and scales as ∼ Pe
1/6
BL in this

non-shallow boundary layer.

2.6.2 Leading order model

Informed by these scales, we expand dependent variables as

Θ̂ = Θ̂(0) +O
(
Pe
−1/2
BL

)
,

(ÛR, Ûθ) = (Û
(0)
R , Û

(0)
θ ) +O

(
Pe
−1/3
BL

)
,

(24a)

which yields the following leading order model, correct up to O(Pe
−1/6
BL ):(

Û
(0)
R , Û

(0)
θ

)
·

(
∂Θ̂(0)

∂R̂
,

1

R̂

∂Θ̂(0)

∂θ

)
−

(
1

R̂

∂Θ̂(0)

∂R̂
+
∂2Θ̂(0)

∂R̂2
+

1

R̂2

∂2Θ̂(0)

∂θ2

)
= 0 for 0 < θ < π,

(24b)

1

R̂

∂Θ̂(0)

∂R̂
+
∂2Θ̂(0)

∂R̂2
+

1

R̂2

∂2Θ̂(0)

∂θ2
= 0 for π < θ < 2π,

(24c)

with boundary conditions at the bed[
Θ̂(0)

]+

−
=

[
∂Θ̂(0)

∂θ

]+

−

= 0, on θ = π, (24d)

Θ̂(0) = 0 on θ = 0, (24e)

and matching conditions

− 1

R̂

∂Θ̂(0)

∂θ
→ ν as R̂→∞, for θ = π, (24f)

1

R̂

∂Θ̂(0)

∂R̂
→ ∂Θ(0)

∂Z

∣∣∣∣
Z→0

as R̂→∞, for θ ≈ π/2, (24g)

− 1

R̂

∂Θ̂(0)

∂θ
→ ν as R̂→∞, for π < θ < 2π. (24h)

Lastly, the inequality constraints reduce to

1

R̂

[
∂Θ̂(0)

∂θ

]+

−

≥ 0 on θ = 0, (24i)

Θ̂(0) < 0 on θ = π. (24j)
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2.6.3 The inequality constraints can be satisfied locally

In order to show that the inequality constraints (24i-24j) can indeed be satisfied, we focus on deriving
an asymptotic solution for temperature for R̂ → 0. Since the leading order problem (24) becomes
diffusion-dominated as we approach the origin, we follow the derivation by Schoof [8], which leads
to a solution of the form

Θ̂(0) =
∞∑
m=0

amR̂
m+1/2 sin ((m+ 1/2)θ) + bmR̂

m+1 sin ((m+ 1)θ) for R̂→ 0, (25a)

where the coefficients am and bm can be determined from asymptotic matching with the advection-
diffusion problem (24).

We now seek to determine the coefficients am, bm. In order to avoid singular freezing at the
origin, and hence for the inequality constraints (24i-24j) to be satisfied locally, we demand a0 = 0,
a1 > 0. This yields a leading order approximation

Θ̂(0) ∼ b0R̂ sin (θ) + a1R̂
3/2 sin (3θ/2) +O(R̂2). (25b)

We are now going to demonstrate that the latter approximation satisfies the inequality con-
straints provided a1 > 0. In fact, temperature along the bed on the cold side is

Θ̂(0)(θ = π) ∼ −a1R̂
3/2 on θ = π, (25c)

which is negative for a1 > 0, thus satisfying the cold side inequality, eq. (24j). The net heat flux
into the bed on the temperate side instead reads

∂Θ̂/∂θ|θ=0 − ∂Θ̂/∂θ|θ=2π

R̂
∼ 3a1R̂

1/2, (25d)

which is positive if a1 > 0, thus satisfying the temperate side inequality eq. (24i). We thus conclude
that it is possible to satisfy the inequality constraints (24i-24j) simultaneously in a region of radius

R < Pe
−2/3
BL near the origin at the cost of suppressing the leading order term in the expansion (25a).

Due to the time-like nature of the horizontal coordinate in the shallow advection-diffusion bound-
ary layer that feeds the near-origin region (eqs. 20), the requirement that singular terms are sup-
pressed in the solution for this region can be met only by tuning the inflow temperature profile
(where the degree of freedom is really the deviation of basal temperature from the melting point)
for X́ → −∞. This leads to the complication that the local analysis above does not guarantee that
the inequality constraints can be satisfied globally, on either sides of the transition. We will show
later on (sec. 2.8) by means of numerical solution that this is actually the case, as in, the inequality
constraints can be satisfied locally but are violated globally.

2.7 The advection-diffusion boundary layer on the temperate side

On the downstream side of the transition, X > 0, and at distances from the origin X > Pe
−2/3
BL , the

circular advection-diffusion boundary layer described in §(2.6) is connected to a shallow advection-
diffusion boundary layer that extends along the bed down to the downstream far field, X → +∞.
This is the region bounded by red curves in figure 1, and we denote relevant variables in this region
with ·̀.

15



2.7.1 Rescalings

We start by seeking scales for the velocity field. Taylor-expanding the two components of the
velocity near the bed, and using the solution for the sliding velocity obtained from (15i) evaluated
on θ = 0 along with bed impermeability and mass conservation, eqs. (12e, 12a), suggests to leading
order

U (0) ∼ Ub
(0) ∼ 2X1/2 W ∼ −∂Ub

(0)

∂X
Z ∼ −X−1/2Z, for Z → 0, X > 0, (26a)

while a vertical length scale is obtained balancing horizontal advection and vertical diffusion in the
boundary layer. Hence we put

X = rX̀, Z = Pe
−1/2
BL r1/4Z̀, U (0) = r1/2Ù , W (0) = Pe

−1/2
BL r−1/4Ẁ , (26b)

where r ≤ O(1) denotes distance from the origin.
Next, we derive a scale for temperature in the boundary layer by demanding that the heat flux

in the boundary layer matches the heat flux in the near field of the advection-only outer problem.
Recalling that on the temperate side the outer problem satisfies the Q− equation

Q(0)∂Ub
(0)

∂X
− Ub(0)∂Q

(0)

∂X
= 0, Q = − ∂Θ(0)

∂Z

∣∣∣∣
Z=0

, (26c)

and therefore the outer heat flux behaves as

∂Θ(0)

∂Z
∼ Pe

1/2
BLX

1/2 as Z → 0 (26d)

(where the constant Pe
1/2
BL is chosen in such a way to allow matching between the non-shallow

advection diffusion layer around the origin and the advection only far field for X > 0), matching
inner and outer fluxes yields

Θ(0) = r3/4Θ̀. (26e)

We note that the rescalings derived above imply that the heat flux in the boundary layer is large
at O(1) distances from the origin, and precisely of order O(Pe

1/2
BL).

2.7.2 Leading order model

Informed by these scales, we expand dependent variables as

Θ̀(X̀, Z̀) = Θ̀(0) + o(1),(
Ù , Ẁ

)
=
(
Ù (0), Ẁ (0)

)
+O(Pe

−1/2
BL ),

(27)

which, substituted into the master model of §(1.2), yield the following leading order model correct
up to order O(Pe−1

BL)

Ù (0)∂Θ̀(0)

∂X̀
+ Ẁ (0)∂Θ̀(0)

∂Z̀
− ∂2Θ̀(0)

∂Z̀2
= 0 for 0 < Z̀ < +∞, (28a)

with boundary and matching conditions

Θ̀(0) = 0 on Z̀ = 0, (28b)

∂Θ̀(0)

∂Z̀
→ ∂Θ̂(0)

∂Ẑ
as X̀ → 0, X̂ → +∞, (28c)

∂Θ̀(0)

∂Z̀
→ ∂Θ(0)

∂Z

∣∣∣∣
Z→0

as Z̀ →∞, (28d)
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while the leading order heat transport problem in the bed admits solution

Θ̀(0) = −νZ for Z < 0. (28e)

Finally, the leading order basal energy budget, correct up to order O(Pe
−1/2
BL ), requires

∂Θ̀(0)

∂Z̀

∣∣∣∣∣
Z̀=0

≥ 0, (28f)

which cannot possibly be satisfied for the heat flux is certainly into the ice. We therefore expect
freezing to occur at O(1) distances from the origin as a result of the steepening of the basal heat
flux, consistently with the prediction from the much simpler analysis based on the Q−equation that
we presented in the main text, §3b.

2.8 Numerical solution of the ice thickness scale problem

In this section we illustrate the behaviour of the leading order model derived in sections 2.5-2.7 by
means of a numerical solution. Instead of considering the different leading order boundary layer
models separately, we solve numerically the underlying ice thickness scale problem (12-13) with
PeBL � 1 and α, γ, ν ∼ O(1). The numerical scheme presented below has been verified both
against analytical solutions derived above and against numerical results produced with Elmer/Ice
at comparable grid resolution.

2.8.1 Model reformulation

To facilitate the solution of the mechanical model, we reformulate the Stokes problem (12) in terms
of a streamfunction ψ defined as

U (0) =
∂ψ

∂Z
, W (0) = − ∂ψ

∂X
, (29a)

and vorticity

ω =
∂2ψ

∂X2
+
∂2ψ

∂Z2
(29b)

In addition, and with the objective to reduce the number of parameters, we introduce the rescalings

(Z∗, X∗, H(0)∗) = (Z,X,H(0))/H(0), ψ∗ = ψ/q(0), ω∗ = ω(H(0))2/q(0), (29c)

(U∗(0),W ∗(0)) = (U (0),W (0))H(0)/q(0), Θ∗(0) = Θ(0), (29d)

(ν∗, γ∗) = (ν, γ)H(0), α∗ = α(q(0)/H(0))2, (29e)

where H(0) and q(0) are the leading order ice thickness and mass flux, which we recall to be constant
in the boundary layer.

Then, with the rescalings above and following Batchelor [10], and also dropping asterisks for
simplicity, the Stokes problem can be rewritten in terms of vorticity and streamfunction as

∇2ψ = ω, (30a)

∇2ω = 0, (30b)
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on 0 < Z < 1,−∞ < X <∞, with boundary conditions at the surface and at the base

ψ = 1 on Z = 1, (30c)

ω = 0 on Z = 1, (30d)

ψ = 0 on Z = 0, (30e)

∂ψ

∂Z
= 0 on Z = 0 if Θ(0) < 0, (30f)

ω = γ
∂ψ

∂Z
on Z = 0 if Θ(0) = 0, (30g)

while matching with the shallow ice far field is ensured by demanding

∂ψ

∂X
=
∂ω

∂X
= 0 as X → ±∞. (30h)

As for the thermal problem (13), the rescaled problem is

PeBL

(
U (0)∂Θ(0)

∂X
+W (0)∂Θ(0)

∂Z

)
−
(
∂2Θ(0)

∂X2
+
∂2Θ(0)

∂Z2

)
= αa for 0 < Z < 1 (31a)

∂2Θ(0)

∂X2
+
∂2Θ(0)

∂Z2
= 0 for −∞ < Z < 0, (31b)

where strain heating is the sum of an extensional contribution (aE) and a shearing contribution
(aS)

a = aE + aS, aE = 4

(
∂2ψ

∂Z∂X

)2

, aS =

(
∂2ψ

∂Z2
− ∂2ψ

∂X2

)2

. (31c)

Boundary conditions are

Θ(0) = Ts on Z = 1, (31d)[
Θ(0)

]+
− =

[
∂Θ(0)

∂Z

]+

−
= 0 on Z = 0, if Θ(0) < 0, (31e)

Θ(0) = 0 on Z = 0, if m(0) > 0, (31f)

− ∂Θ(0)

∂Z
= ν as Z → −∞, (31g)

where the basal melt rate is

m(0) =

[
∂Θ(0)

∂Z

]+

−
+ αTb

(0)Ub
(0) on Z = 0, (31h)

with

Tb
(0) = ω(Z = 0), Ub

(0) =
∂ψ

∂Z

∣∣∣∣
Z=0

. (31i)

In addition, at the inflow boundary the temperature profile is prescribed by the advection-diffusion
problem at the outer scale

lim
X→−∞

Θ(0) = Tinflow. (31j)
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In the absence of a closed form solution for the outer temperature field in the ice, and consistently
with the asymptotic analysis of the inner thermal problem that suggests that small (O(Pe

−1/3
BL ))

deviations of bed temperature from the melting point are the only important aspect of the far field
temperature profile, we put

Tinflow =

{
Tb,∞ − νZ, for Z < 0,

(Tb,∞ − νZ)(1− θ) + θTs, for Z > 0,
(31k)

where Tb,∞ is an adjustable parameter and θ(Z) is a smooth, monotonic function defined in [0, 1]
such that θ(0) = 0 and θ(1) = 1; in our computations we take

θ = exp (2εT ) exp

[
2εT

(−2 + Z)Z

]
, εT > 0. (31l)

Lastly, and we have assumed without loss of generality that the transition is from frozen to
molten bed, so

Ub
(0) = 0 on X < 0, Θ(0) = 0 on X > 0, Z = 0. (31m)

2.8.2 Discretization

We discretize our model using finite volumes; for the mechanical problem the computational domain
is the strip −Lmh < X < Lmh , and 0 < Z < 1 (with Lh > 1), where we define a regular, two-
dimensional, rectilinear grid locally refined near the ice-bed interface (in the vertical direction) and
near the origin (in the horizontal direction). The grid has 2Nh grid points in the horizontal and
N i
v grid points in the vertical, with ψ and ω defined at cell centres. The ice-bed contact, Z = 0,

and the ice surface Z = 1 are cell boundaries, and so are inflow and outflow boundaries, located at
X = ±Lh, as well as the transition itself, X = 0.

We label ψ−grid points by indices α = 1, 2, . . . , 2Nh and β = 1, 2, . . . , N i
v, so that α = 1/2, 2Nh+

1/2 are the inflow and outflow boundaries, respectively; α = Nh+1/2 is the frozen-molten transition,
and β = 1/2, N i

v + 1/2 are the ice-bed interface and the ice surface. The spacing between ψ−grid
points is ∆Xj, ∆Zk, with 1 ≤ j ≤ 2Nh, 1 ≤ k ≤ N i

v, where the indices j, k are restricted to integer
values. Lastly the position of grid points given by

Zβ =

[(
β − 1

2

)
1

N i
v

]m
, (32a)

Xα =


−
∣∣∣∣(α− 1

2

)
Lh
Nh

− Lh
∣∣∣∣m if α ≤ Nh,[(

α− 1

2
−Nh

)
Lh
Nh

]m
if α > Nh,

(32b)

where m ≥ 1, and m = 1 denotes an evenly spaced grid.
For the temperature field, our computational domain is the strip −Lmh < X < Lmh , and −Lmv <

Z < 1 (with Lh, Lv > 1), where we define a regular, two-dimensional, rectilinear grid locally refined
near the ice-bed interface (in the vertical direction) and near the origin (in the horizontal direction).
The grid has 2Nh + 1 grid points in the horizontal and N i

v + N b
v + 1 grid points in the vertical,

with Θ defined at cell centres (where we have dropped superscripts for simplicity). Note that the
Θ−grid is staggered with respect to the ψ−grid, so that Θ−nodes are located on ψ cell boundaries.
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Accordingly, the ice-bed contact, the ice surface, inflow and outflow boundaries, as well as the frozen
molten transition are all cell centres for the Θ−grid.

We label Θ−grid points by indices α = 1/2, 3/2, . . . , 2Nh + 1/2 and β = −N b
v + 1/2,−N b

v +
3/2, . . . , N i

v + 1/2, so that α = 1/2, 2Nh + 1/2 are the inflow and outflow boundaries, respectively,
α = Nh + 1/2 is the frozen-molten transition, and β = 1/2, N i

v + 1/2 are the ice-bed interface
and the ice surface. The spacing between Θ−grid points is ∆Xj, ∆Zk, with 1 ≤ j ≤ 2Nh + 1,
1 ≤ k ≤ N i

v +N b
v + 1, where the indices j, k are restricted to integer and positive values. Lastly the

position of grid points is given by

Zβ/2 =


[(
β − 1

2

)
1

N i
v

]m
for 1/2 ≤ β ≤ N i

v + 1/2,

−
∣∣∣∣(β − 1

2

)
Lv
N b
v

∣∣∣∣m for −N b
v + 1/2 ≤ β < 1/2,

(32c)

Xα/2 =


−
∣∣∣∣(α− 1

2

)
Lh
Nh

− Lh
∣∣∣∣m for 1/2 ≤ α ≤ Nh + 1/2,[(

α− 1

2
−Nh

)
Lh
Nh

]m
for Nh + 1/2 < α < 2Nh + 1/2.

(32d)

Mechanical problem

For the biharmonic problem (30a-30b) we use a second-order centered scheme both in the horizontal
and in the vertical, so in discrete form we get

1

∆Xj

[
2 (ψj+1,k − ψj,k)
∆Xj+1 + ∆Xj

− 2 (ψj,k − ψj−1,k)

∆Xj + ∆Xj−1

]
+

1

∆Zk

[
2 (ψj,k+1 − ψj,k)
∆Zk+1 + ∆Zk

− 2 (ψj,k − ψj,k−1)

∆Zk + ∆Zk−1

]
= ωj,k,

(33a)

1

∆Xj

[
2 (ωj+1,k − ωj,k)
∆Xj+1 + ∆Xj

− 2 (ωj,k − ωj−1,k)

∆Xj + ∆Xj−1

]
+

1

∆Zk

[
2 (ωj,k+1 − ωj,k)
∆Zk+1 + ∆Zk

− 2 (ωj,k − ωj,k−1)

∆Zk + ∆Zk−1

]
= 0.

(33b)

Regarding boundary condition, for j = 1, 2Nh the equations above require both ω and ψ at the
fictitious grid points α = j − 1/2 = 1/2 and α = j + 1/2 = 2Nh + 1/2. Here the far field conditions
(30h) apply, so we put

ψ2Nh+1/2 = ψ2Nh−1/2, ψ1/2 = ψ3/2, ω2Nh+1/2 = ω2Nh−1/2, ω1/2 = ω3/2. (33c)

At the ice surface, β = k + 1/2 = N i
v + 1/2, boundary conditions (30c) apply, so we put

2 (ψj,k+1 − ψj,k)
∆Zk+1 + ∆Zk

=2

(
∆Z2

k−1 + 4∆Zk∆Zk−1 + 3∆Z2
k

)
∆Zk(∆Zk + ∆Zk−1)(2∆Zk + ∆Zk−1)

+ 2
∆Z2

kψj,k−1 − (∆Zk−1 + 2∆Zk)
2ψj,k

∆Zk(∆Zk + ∆Zk−1)(2∆Zk + ∆Zk−1)

for k = N i
v, (33d)

2 (ωj,k+1 − ωj,k)
∆Zk+1 + ∆Zk

= 2
∆Z2

kωj,k−1 − (∆Zk−1 + 2∆Zk)
2ωj,k

∆Zk(∆Zk + ∆Zk−1)(2∆Zk + ∆Zk−1)
for k = N i

v, (33e)

where we have used a second-order accurate polynomial extrapolation on the boundary to compute
fluxes there. Similarly, to satisfy the boundary conditions (30e-30g) at the bed, β = k− 1/2 = 1/2,
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we put

2 (ψj,k − ψj,k−1)

∆Zk + ∆Zk−1

= −2
∆Z2

kψj,k+1 − (∆Zk+1 + 2∆Zk)
2ψj,k

∆Zk(∆Zk + ∆Zk+1)(2∆Zk + ∆Zk+1)
for k = 1, (33f)

2 (ωj,k − ωj,k−1)

∆Zk + ∆Zk−1

=− 2

(
∆Z2

k+1 + 4∆Zk∆Zk+1 + 3∆Z2
k

)
ωj,k−1/2

∆Zk(∆Zk + ∆Zk+1)(2∆Zk + ∆Zk+1)

− 2
∆Z2

kωj,k+1 − (∆Zk+1 + 2∆Zk)
2ωj,k

∆Zk(∆Zk + ∆Zk+1)(2∆Zk + ∆Zk+1)

for k = 1, (33g)

with

ωj,1/2 =

γ
2 (ψj,k − ψj,k−1)

∆Zk + ∆Zk−1

if Nh + 1 ≤ j ≤ 2Nh,

ωj,ghost if 1 ≤ j ≤ Nh,

(33h)

where ωj,ghost is constrained by the no-slip condition at the bed (30f), which along with (33d) implies

2 (ψj,k − ψj,k−1)

∆Zk + ∆Zk−1

= −2
∆Z2

kψj,k+1 − (∆Zk+1 + 2∆Zk)
2ψj,k

∆Zk(∆Zk + ∆Zk+1)(2∆Zk + ∆Zk+1)
= 0 for k = 1. (33i)

Thermal problem

For 1 ≤ j ≤ 2Nh + 1 and N b
v + 1 ≤ k ≤ N i

v + N b
v + 1, energy conservation in the ice (31a) is

discretized with a second-order centered schemes for the diffusive fluxes and the vertical advective
flux, while we use a first-order upwind scheme for the horizontal advective flux, leading to

Uj,k−Nb
v−1/2Θj−1/2,k−1/2 − Uj−1,k−Nb

v−1/2Θj−3/2,k−1/2

∆Xj−1/2

+

1

∆Zk−1/2

[
Wj−1/2,k−Nb

v

Θj−1/2,k+1/2∆Zk−1/2 + Θj−1/2,k−1/2∆Zk+1/2

∆Zk+1/2 + ∆Zk−1/2

−

Wj−1/2,k−Nb
v−1

Θj−1/2,k−1/2∆Zk−3/2 + Θj−1/2,k−3/2∆Zk−1/2

∆Zk−1/2 + ∆Zk−3/2

]
−

1

Pe BL∆Zk−1/2

[
2
(
Θj−1/2,k+1/2 −Θj−1/2,k−1/2

)
∆Zk+1/2 + ∆Zk−1/2

−
2
(
Θj−1/2,k−1/2 −Θj−1/2,k−3/2

)
∆Zk−1/2 + ∆Zk−3/2

]
−

1

Pe BL∆Xj−1/2

[
2
(
Θj+1/2,k−1/2 −Θj−1/2,k−1/2

)
∆Xj+1/2 + ∆Xj−1/2

−
2
(
Θj−1/2,k−1/2 −Θj−3/2,k−1/2

)
∆Xj−1/2 + ∆Xj−3/2

]
−

α

Pe BL
aj−1/2,k−1/2 =0,

(34a)

while for 1 ≤ k ≤ N b
v , energy conservation in the bed (31b) is discretized with a second-order

centered scheme leading to

1

∆Zk−1/2

[
2
(
Θj−1/2,k+1/2 −Θj−1/2,k−1/2

)
∆Zk+1/2 + ∆Zk−1/2

+
2
(
Θj−1/2,k−1/2 −Θj−1/2,k−3/2

)
∆Zk−1/2 + ∆Zk−3/2

]
−

1

∆Xj−1/2

[
2
(
Θj+1/2,k−1/2 −Θj−1/2,k−1/2

)
∆Xj+1/2 + ∆Xj−1/2

−
2
(
Θj−1/2,k−1/2 −Θj−3/2,k−1/2

)
∆Xj−1/2 + ∆Xj−3/2

]
= 0.

(34b)
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Horizontal and vertical velocities are computed in terms of stream function as

Uj,k−Nb
v−1/2 =2

ψj,k−Nb
v
− ψj,k−Nb

v−1

∆Zk−Nb
v

+ ∆Zk−Nb
v−1

, (34c)

Wj−1/2,k−Nb
v

=2
ψj,k−Nb

v
− ψj−1,k−Nb

v

∆Xj + ∆Xj−1

. (34d)

For the heating term, it’s worth noting that the extensional part, aE, is naturally defined at Θ
cell centres, as required, where the shearing part, aS is defined at ψ cell centres; using a 4−point
average for the shearing part, we put

aj−1/2,k−1/2 = aEj−1/2,k−1/2+
aS
j,k−Nb

v−1

4∆Zk−Nb
v−1∆Xj

+
aS
j,k−Nb

v

4∆Zk−Nb
v
∆Xj

+
aS
j−1,k−Nb

v−1

4∆Zk−Nb
v−1∆Xj−1

+
aS
j−1,k−Nb

v

4∆Zk−Nb
v
∆Xj−1

,

(34e)
where

aEj−1/2,k−1/2 =

[
4

∆Xj + ∆Xj−1

(
2
(
ψj,k−Nb

v
− ψj,k−Nb

v−1

)
∆Zk−Nb

v
+ ∆Zk−Nb

v−1

−
2
(
ψj−1,k−Nb

v
− ψj−1,k−Nb

v−1

)
∆Zk−Nb

v
+ ∆Zk−Nb

v−1

)]2

,

(34f)

aSj,k−Nb
v

=

[
1

∆Xj

(
2
(
ψj+1,k−Nb

v
− ψj,k−Nb

v

)
∆Xj+1 + ∆Xj

−
2
(
ψj,k−Nb

v
− ψj−1,k−Nb

v

)
∆Xj + ∆Xj−1

)
+

1

∆Zk−Nb
v

(
2
(
ψj,k−Nb

v+1 − ψj,k−Nb
v

)
∆Zk−Nb

v+1 + ∆Zk−Nb
v

−
2
(
ψj,k−Nb

v
− ψj,k−Nb

v−1

)
∆Zk−Nb

v
+ ∆Zk−Nb

v−1

)]2

.

(34g)

Regarding boundary conditions, we start from the ice surface, k = N b
v +N i

v+1. Recalling that Θ
nodes lie on the ice surface itself, for these nodes we replace the conservation law with the Dirichlet
condition (31d)

Θj−1/2,Nb
v+N i

v+1/2 = TS. (34h)

Similarly, at the ice-bed interface on the temperate side, k = N b
v +1, j > Nh, we enforce the melting

point temperature,
Θj−1/2,Nb

v+1/2 = 0 for j > Nh. (34i)

On the cold side, j ≤ Nh, the discretization automatically ensures that the diffusive heat flux
remains continuous across the bed, while bed impermeability implies that the vertical advective
flux vanishes on the boundary, thus we put

Wj−1/2,k−Nb
v−1

Θj−1/2,k−1/2∆Zk−3/2 + Θj−1/2,k−3/2∆Zk−1/2

∆Zk−1/2 + ∆Zk−3/2

= 0 for k = N b
v + 1. (34j)

At the inflow boundary, j = 1, the solution must match the prescribed temperature profile (31k),
so once more we replace the conservation law with the Dirichlet condition

Θ1/2,k−1/2 = Tinflow(Zk−1/2), (34k)

while at the outflow boundary the boundary layer nature of the problem suggests

Θ2Nh+3/2,k−1/2 = Θ2Nh+1/2,k−1/2, aE2Nh+1/2,k−1/2 = 0, aS2Nh+1,k = aS2Nh,k
. (34l)
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Solution

In the discrete problem above, we treat the inflow temperature profile as a one-parameter degree of
freedom, where bed temperature Tb,∞ is effectively arbitrary. Solving the boundary layer problem
therefore amounts to finding Tb,∞ such that the inequality constraints in (31e-31f) are satisfied at
least locally near the transition point.

We do so by means of a bisection algorithm, similarly to Haseloff et al. [5, 6], whereby we seek to
satisfy the discrete version of the inequality constraints (31e-31f) near the transition point, namely
for the cold side, j ≤ Nh + 1

ΘNb
v+1/2,j−1/2 < 0, (35a)

and for the temperate side, j > Nh + 1,

2
ΘNb

v+3/2,j−1/2 −ΘNb
v+1/2,j−1/2

∆ZNb
v+1/2 + ∆ZNb

v+3/2

− 2
ΘNb

v+1/2,j−1/2 −ΘNb
v−1/2,j−1/2

∆ZNb
v+1/2 + ∆ZNb

v−1/2

+ αω1/2,j−1/2U1/2,j−1/2 > 0. (35b)

Note that in the latter expression we compute the heating term by averaging the sliding law (33h1)
and the basal velocity (given by 34c) over adjacent grid cells.

2.8.3 Results

Here we illustrate the behaviour of solutions to the discrete problem described in §(2.8.2); as we are
interested in the behaviour of the leading order thermal problem derived in sections (2.5-2.7), we
also set to zero the strength of strain heating, α, because the asymptotics show that strain heating
is a higher order correction throughout the domain. The reader is referred to the main text, §3c,
for solutions with finite α.

Figure 2 shows the solution with α = 0: the velocity and temperature fields are displayed
in panels (a) and (b) respectively, and the inequality constraints along the bed in panel (c). It’s
immediately obvious that, even though the inequality constraints are locally satisfied near the origin
(inset of panel (c)), they are violated away from the origin both on the cold (X < 0, green curve)
and temperate (X > 0 yellow curve) side of the transition, so the boundary layer problem appears
to have no solution.

Let us examine our results in more detail: on the cold side (X < 0), bed temperature is
consistently above the melting point except for a small region about the origin, |X| < 0.001;
moreover, basal temperature decreases as the origin is approached, which along with the behaviour
of isotherms above the bed (panel (b)) confirms that the advection-diffusion boundary layer cools
down as the origin is approached. On the temperate side (X > 0), the basal energy budget remains
positive for X < 0.04, and turns negative further away as predicted by the asymptotic analysis in
sections (2.5-2.7).

Next, we focus on the solution of the thermal problem near the origin. We have shown in §2.6
that the analytical solution of the diffusion-only problem near the origin in general has leading
order term ∼ R1/2, which however leads to singular freezing on the temperate side. We therefore
concluded that suitable farfield conditions (that is, basal temperature at the inflow, Tb,∞) must
be such that the leading order term is suppressed, and therefore the inequality constraints can be
satisfied at O(R3/2). We now want to confirm this behaviour numerically.

Panel (d) of figure 2 illustrates the behaviour of basal temperature against distance from the
origin for different values of Tb∞. Circles denote results from the numerics while solid lines are
analytical approximations constructed with the first three terms of the analytical solution for the
diffusion-only problem near the origin, eq. (25a). The actual solution (same as panels a-c) is for
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Figure 2: Numerical solution of the problem (12-13) with PeBL = 200, α = 0, ν = 1, γ = 1,
TS = −1, Tb∞ = 0.0356. Panel a: velocity field (color) and streamlines (black lines). Panel b:
temperature field. Thin solid lines are isotherms (evenly spaced by ∆Θ = 0.2), the thick solid lines
denotes the Θ = 0 isotherm, and the dashed black line denotes the bed, Z = 0. Panel c (and inset):
basal temperature and basal energy budget; the inset displays a zoom near the origin. Panel (d):
basal temperature on the cold side as a function of distance from the origin for different values of
Tb,∞.
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Tb,∞ = 0.0356, and is marked with (5). The shaded area denotes the region with R < Pe
−2/3
BL , which

is an upper bound for the region of validity of the analytical approximation.
A general note is that numerical (circles) and analytical (solid lines) solutions compare favor-

ably, with the discrepancy increasing with distance from the origin as expected (the error of the
approximation is of order ∼ O(R5/2)). Changes in Tb,∞ have two effects: first of all, as Tb,∞ increases
we observe a transition from negative basal temperature (closed circles) immediately upstream of
the origin (curves 1-5) to positive basal temperature (open circles, curve 6). This also corresponds
to a transition from singular freezing to a positive basal energy budget on the temperate side (not
shown), thus suggesting that the value of Tb,∞ that satisfies both inequalities is unique [see also 8].
Secondly, we observe that the portion of the solution that is approximated by the curve Θ(0) ∼ |X|1/2
can be reduced to a region near the origin that is comparable with the local grid spacing (curve 5),
while it is larger for smaller (curves 1-4) or larger (curve 6) values of Tb,∞. We are therefore confi-
dent that it is possible to find a value of Tb,∞ such that the right analytical behaviour is recovered
except within a region that is comparable with the numerical grid spacing.

3 Supporting information for §4

3.1 Freezing in the subtemperate region with δ ∼ O(1)

In this section we seek to derive a reduced heat transport model for the basal heat flux that
holds in the case of subtemperate sliding with δ ∼ O(1). Let us assume that the subtemperate
region is short, meaning that basal temperature changes of O(1) over distances comparable with
the ice thickness. Over these short horizontal distances, and with ice sheet scale Péclet number
Pe ∼ O(1), the heat transport problem is advection-dominated, and the leading order model (16a)
applies within the ice. The key difference with respect to fully temperate sliding, or subtemperate
sliding in the limit of δ → 0 is that here temperature changes along the bed, so the derivation of
the standard Q−equation (§3b of the main text) no longer holds. We therefore seek to derive a
generalized version of the Q−equation that accounts for spatially variable basal temperature.

We start from equation (16a), differentiate with respect to Z, and take the limit of Z → 0; this
yields

∂U (0)

∂Z

∂Θ(0)

∂X
+ U (0) ∂

∂X

(
∂Θ(0)

∂Z

)
+
∂W (0)

∂Z

∂Θ(0)

∂Z
+W

∂Θ(0)

∂Z
= 0 on Z = 0. (36a)

We now seek to simplify the latter expression. With impermeability of the bed (12e), and assuming
sliding to be ∼ O(1), a Taylor expansion near the bed yields

U (0) ∼ Ub
(0) +O(Z), W (0) ∼ ∂W

∂Z

∣∣∣∣
Z=0

Z +O(Z2) = −∂Ub
(0)

∂X
Z +O(Z2) for Z → 0, (36b)

where we have used mass conservation (12a) to obtain the expression for W (0). Defining the basal
heat flux as Q = −∂Θ(0)/∂Z, we obtain the generalized version of the steady state Q−equation

Ub
(0) ∂Q

∂X
=
∂U (0)

∂Z

∂Θ(0)

∂X
+
∂Ub

(0)

∂X
Q. (36c)

Recalling that Ub is a monotonically increasing function of Θ(0), that the heat flux is into the ice so
Q > 0, and that the bed has to warm along the subtemperate region, it is straightforward to see
that the rhs of eq. (36c) is positive. As a result, ∂Q/∂X > 0 and larger than it would be if the bed
was an isotherm, i.e., ∂Θ(0)/∂X = 0.
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Given that for the case with ∂Θ(0)/∂X = 0 (that is, for δ = 0) we argued that the basal heat flux
has to become asymptotically large over finite distances downstream of sliding onset, thus leading to
refreezing, we understand that the behaviour for δ → 0 is effectively a lower bound, hence refreezing
must necessarily happen also for δ ∼ O(1).

4 Supporting information for §5

4.1 Model reformulation in a stretched coordinate system

Let us consider the ice sheet scale model presented in §(2.1) modified with basal boundary conditions

[∂T/∂z]+− = ub = 0 if T ≤ 0, (37a)[
∂T

∂z

]+

−
+ αubτb = T = 0 if ub < γ−1τb, (37b)

T = ub − γ−1τb = 0 if

[
∂T

∂z

]+

−
+ αubτb > 0, (37c)

and continuity requirements at subdomain boundaries

[q]+− = [h]+− =

[
∂T

∂z

]+

−
= 0, (37d)

and denote the downstream and upstream boundaries of each subdomain with xd(t) and xu(t).
Then we introduce the stretched coordinate system

ξ = ξi0 +
x− xiu
xid − xiu

, η =
z − b
h

, τ = t, (38a)

which maps the length and height of each subdomain to the rectangular domain ξi0 < ξ < ξi0 + 1,
0 < η < 1. We will take ξi0 = i − 1 for i = (1, 2, 3) so that the ice divide is located at ξ = 0, the
cold-subtemperate boundary at ξ = 1, the subtemperate-temperate boundary at ξ = 2, and the
grounding line at ξ = 3 (see figure 3).

In the new coordinate system we have dependent variables

h∗(ξ, τ) = h(x, t), u∗(ξ, η, τ) = u(x, z, t), w∗(ξ, η, τ) = w(x, z, t), T ∗(ξ, η, τ) = T (x, z, t),

x∗s(ξ, τ) = xs(t), x∗t (ξ, τ) = xs(t), x∗g(ξ, τ) = xg(t),

while bed elevation b remains a known function of x(ξ, τ). Then, under the chain rule, derivatives
map to

∂

∂x
=

1

x∗,id − x
∗,i
u

∂

∂ξ
− 1

h∗

(
db

dx
+

η

x∗,id − x
∗,i
u

∂h∗

∂ξ

)
∂

∂η
, (38b)

∂

∂z
=

1

h∗
∂

∂η
, (38c)

∂

∂t
=

∂

∂τ
+

1

x∗,id − x
∗,i
u

[
(ξ − (ξi0 + 1))

∂x∗,iu
∂τ
− (ξ − ξi0)

∂x∗,id
∂τ

]
∂

∂ξ

− η

h∗

[
∂h∗

∂τ
+

1

x∗,id − x
∗,i
u

(
(ξ − 1)

∂x∗,iu
∂τ
− ξ ∂x

∗,i
d

∂τ

)
∂h∗

∂ξ

]
∂

∂η

. (38d)
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4.1.1 Ice thickness evolution

Dropping asterisks for simplicity, and applying the coordinate transformation above as well as the
product rule, global mass conservation (7c) becomes

∂

∂τ

[
(xid − xiu)h

]
+
∂qe
∂ξ
−
(
xid − xiu

)
ḃ = 0, (39a)

with effective mass flux and effective velocity velocity defined as

qe =

∫ 1

0

ue(ξ, η, τ) dη, ue = ud + ub + ua, (39b)

where ud is the shearing portion of the velocity profile,

ud = −h
2

2

[
1− (1− η)2

]( db

dx
+

1

xid − xiu
∂h

∂ξ

)
, (39c)

ua is an apparent velocity (independent of η) related to the motion of subdomain boundaries

ua =
[
ξ − (ξi0 + 1)

] ∂xiu
∂τ
− (ξ − ξi0)

∂xid
∂τ

, (39d)

and ub is the sliding velocity

ub = 0 for i = 1, (39e)

ub =
1

ατb
(Q− ν) for i = 2, (39f)

ub =
1

γ
τb for i = 3, (39g)

with vertical shear stress

τxz = −h(1− η)

(
∂b

∂x
+

1

xid − xiu
∂h

∂ξ

)
, τb = τxz|η=0. (39h)

and basal heat flux

Q = − 1

h

∂T

∂η

∣∣∣∣
η=0

. (39i)

Eq. (39a) with the constitutive relations above is the standard diffusion problem for h arising
from shallow ice approximations. Rewriting the flux as qe = q + qa, where q = qd + qb is the
sum of the mass flux by shearing and by basal sliding while qa is the apparent mass flux (that

is qi =
∫ 1

0
ui dη, with i = d, b, a), and noting that qa is continuous by construction at subdomain

boundaries while it vanishes on ξ = 0, suitable boundary conditions are

q = 0 on ξ = 0, (39j)

[q]+− = [h]+− = 0 on ξ = 1, ξ = 2, (39k)

h = − ρ

ρw
b on ξ = 3, (39l)

q = Qg(h) on ξ = 3. (39m)
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Figure 3: Schematic of the computational domain in the stretched coordinate system.

where the function Qg is given by Schoof [11], and reads (translated to the current non - dimen-
sionalization)

Qg = q0γ
−1/3h5/2, q0 = ε−1

(
1− ρ−1

w ρ

8

)1/2

∼ O(1). (39n)

Note that, since the ice thickness at the grounding line is a known function of bed elevation through
the flotation condition (39l), eq. (39m) effectively fixes the location of the grounding line, xg = x3

d.

4.1.2 Temperature evolution

Applying the same coordinate transformation to energy conservation within the ice, eq. (9a), as
well as the product rule, yields

∂

∂τ

[
(xid − xiu)hT

]
+

∂

∂ξ
[uehT ] +

∂

∂η

[
(xid − xiu)weT −

(xid − xiu)
Pe h

∂T

∂η

]
=

α

Pe
(xid − xiu)τxz

∂u

∂η
, (40a)

with we the vertical effective velocity, defined as

we = w − u
(

db

dx
+

η

xid − xiu
∂h

∂ξ

)
− η

[
∂h

∂τ
+

1

xid − xiu

[
(ξ − (ξi0 + 1))

∂xiu
∂τ
− (ξ − ξi0)

∂xid
∂τ

]
∂h

∂ξ

]
.

(40b)

For the heat equation in the bed, we restrict ourselves to the simple case of a linear temperature
profile with heat flux equal to the geothermal heat flux. This is effectively the solution to eq.
(9b) in a steady state or in the limit of Pe � 1; as most of the following analyses are concerned
with steady state computations, and also considering that both in the subtemperate and temperate
region boundary values are independent of time, we disregard transient effects in the bed at the ice
sheet scale. As a result, boundary conditions for the heat equation simplify to

T = TS on η = 1, (40c)

− 1

h

∂T

∂η
= ν on η = 0 for i = 1, (40d)

T = 0 on η = 0 for i = 2, 3, (40e)

whereas on vertical domain boundaries we demand

∂T

∂ξ
= 0 on ξ = 0, (40f)

[T ]+− = 0 on ξ = 1, ξ = 2, (40g)
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which ensure no flux across the divide, and a continuous heat flux across subdomain boundaries.
To close the model, we need an evolution equation for we. We start by applying the coordinate

transformation and the product rule to the local mass conservation, eq. (8a), which yields

∂

∂η

[
w − u

(
db

dx
+

η

xid − xiu
∂h

∂ξ

)]
+

1

xid − xiu
∂(uh)

∂ξ
= 0, (41a)

with boundary condition at the bed, η = 0

w = 0 for i = 1, (41b)

w = u bx, for i = 2, 3. (41c)

Then, substituting the definition (40b) into (41a), and also using the global mass conservation (39a)
yields the desired evolution equation for we,

∂we
∂η

+
1

xid − xiu
∂

∂ξ
[udh− qd] = −ḃ, (42a)

with boundary condition at the bed

we = 0 on η = 0. (42b)

We note that, from a numerical perspective, eq. (42a) is preferrable to (41a) because, provided the
mass flux q is discretized consistently in eq. (39a) and in eq. (42a), then eq. (42a) automatically
ensures that the vertical velocity field is mass-conserving.

4.1.3 Sub-domain boundaries

Lastly, we need constraints for the location of the cold-subtemperate and subtemperate-temperate
boundaries. At these boundaries, the inequality constraints in eqs. (37a-37c) must hold simultane-
ously, that is

T = 0 on η = 0, ξ = 1, (43a)

1

ατb
(Q− ν) =

1

γ
τb on ξ = 2. (43b)

These equalities effectively fix the location of cold-subtemperate (xs = x1
d, x

2
u) and subtemperate-

temperate (xt = x2
d, x

3
u) boundaries. As we are not solving for enthalpy of the bed, we cannot

enforce directly a positive basal energy budget on the temperate side. Rather, we will verify a
posteriori that solutions satisfy this constraint.

4.2 Discretization

We discretize our model using finite volumes. We define a uniformly spaced, one-dimensional grid
for h in each subdomain, with N1

h grid points in 0 < ξ < 1, N2
h in 1 < ξ < 2, and N3

h in 2 < ξ < 3.
The junctions ξ = 1, 2 as well as the grounding line and ice divide, ξ = 0, 3, are cell boundaries. We
label h-grid points by indices α = 1, 2, . . . , N1

h +N2
h +N3

h so α = 1/2 is the ice divide, α = N1
h + 1/2

is the cold-subtemperate boundary, α = N1
h + N2

h + 1/2 is the subtemperate-temperate boundary,
and α = N1

h + N2
h + N3

h + 1/2 is the grounding line. The spacing between h−grid points is ∆ξj
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with ∆ξj = ∆ξ1 for 1 ≤ α ≤ N1
h , and similarly ∆ξj = ∆ξ2 and ∆ξj = ∆ξ3 for N1

h ≤ α ≤ N1
h and

N2
h ≤ α ≤ N3

h . The positions of grid points are

ξα =



(
α− 1

2

)
∆ξ1 for 1 ≤ α ≤ N1

h(
N1
h −

1

2

)
∆ξ1 +

(
α−N1

h −
1

2

)
∆ξ2 for N1

h ≤ α ≤ N2
h(

N1
h −

1

2

)
∆ξ1 +

(
N2
h −N1

h −
1

2

)
∆ξ2 +

(
α−N2

h −
1

2

)
∆ξ3 for N2

h ≤ α ≤ N3
h .

(44a)
For T and we we define a uniformly spaced, two-dimensional, vertically staggered grid, with N1

h

grid points along the horizontal direction in 0 < ξ < 1, N2
h in 1 < ξ < 2, and N3

h in 2 < ξ < 3, and
Nv grid points along the vertical. The bed η = 0 and the ice surface η = 1 are we points, while
the junctions ξ = 1, 2 as well as the grounding line and ice divide, ξ = 0, 3 are both T and we cell
boundaries. Thus the T−grid and the we−grid are co-located with the h−grid.

We label T−grid points by indices α = 1, 2, . . . , N1
h + N2

h + N3
h and β = 1, 2, . . . , Nv, while

we−grid points with α = 1, 2, . . . , N1
h +N2

h +N3
h and β = 1/2, 3/2, . . . , Nv + 1/2. So β = 1/2 is the

bed and β = Nv + 1/2 is the ice surface. The horizontal spacing is identical to the spacing of the
h−grid: the spacing between grid points with 1 ≤ α ≤ N1

h is ∆ξ1, and similarly ∆ξ2 and ∆ξ3 for
N1
h ≤ α ≤ N1

h and N2
h ≤ α ≤ N3

h . The horizontal spacing is ∆η, uniform across subdomains. The
position of grid points along the ξ− axis is given by eq. (44a), while the position along the η−axis
is

ηβ =

(
β − 1

2

)
∆η. (44b)

Indices j, k will be restricted to integer values. In the light of the linear stability analysis we will
perform in part II, we keep time as a continuous variable, thus hj = h(ξj, τ), Tjk = T (ξj, ηk, τ), etc.
Bed elevation remains a known, differentiable function of x, so bj+1/2 = b((ξ − (ξ0)j)[(xd)j − (xu)j],
where ((ξ0)j, (xd)j, (xu)j) = (0, xs, 0) for 1 ≤ j ≤ N1

h , ((ξ0)j, (xd)j, (xu)j) = (1, xt, xs) for N1
h ≤ j ≤

N1
h , and ((ξ0)j, (xd)j, (xu)j) = (2, xg, xt) for N2

h ≤ α ≤ N3
h .

4.2.1 Ice thickness evolution

For 1 ≤ j ≤ N1
h +N2

h +N3
h , equation (39a) is discretised as

∂

∂τ
[[(xd)j − (xu)j]hj] +

(qe)j+1/2 − (qe)j−1/2

∆ξij
− [(xd)j − (xu)j] ḃ = 0. (45a)

The effective mass flux, as well as the effective horizontal velocity, are split in the sum of a defor-
mational, a sliding, and an apparent component as

(qe)j+1/2 = (qd)j+1/2 + (qb)j+1/2 + (qa)j+1/2, (ue)j+1/2,k = (ud)j+1/2,k + (ub)j+1/2 + (ua)j+1/2, (45b)

where the latter represents the mass flux resulting from motion of the boundaries in the stretched
coordinate system. As for the flux, we discretize the deformational component with a second-order
centered scheme in the vertical, while we use a first-order upwind scheme to stabilize the advective
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part,

(qd)j+1/2 =
∆η

2
hj+1/2

k=Nv∑
k=1

[
(ud)j+1/2,k+1/2 − (ud)j+1/2,k−1/2

]
, (45c)

(qb)j+1/2 = (ub)j+1/2hj, (45d)

(qa)j+1/2 = (ua)j+1/2hj, (45e)

where hj+1/2 is computed with a centered scheme that accounts for variable cell length,

hj+1/2 =
hj [(xd)j+1 − (xu)j+1] ∆ξj+1 + hj+1 [(xd)j − (xu)j] ∆ξj

[(xd)j+1 − (xu)j+1] ∆ξj+1 + [(xd)j − (xu)j] ∆ξj
. (45f)

For the upwind scheme used for the advective component of the mass flux we have prescribed the
direction of advection to be in the positive ξ direction. We note that this is necessarily the case for
the steady state and linear stability computations we are interested in, but in an unsteady problem
the direction of advection should be allowed to change depending on the sign of ue.

We now look at the discretization of the horizontal velocity. The deformational velocity is
discretized with a second-order centered scheme that accounts for variable cell size

(ud)j+1/2,α = −
(hj+1/2)2

2

[
1− (1− ηα)2

]( db

dx

∣∣∣∣
j+1/2

+
2(hj+1 − hj)

[(xd)j+1 − (xu)j+1] ∆ξj+1 + [(xd)j − (xu)j] ∆ξj

)
,

(45g)
while for the sliding velocity we have

(ub)j+1/2 = 0 for 1 ≤ j ≤ N1
h , (45h)

(ub)j+1/2 =
1

α(τb)j+1/2

(
Qj+1/2 − ν

)
for N1

h < j ≤ N2
h , (45i)

(ub)j+1/2 =
1

γ
(τb)j+1/2 for N2

h < j ≤ N3
h , (45j)

with

(τxz)j+1/2,α = −hj+1/2(1− ηα)

(
db

dx

∣∣∣∣
j+1/2

+
2(hj+1 − hj)

[(xd)j+1 − (xu)j+1] ∆ξj+1 + [(xd)j − (xu)j] ∆ξj

)
,

(45k)
so that (τb)j+1/2 = (τxz)j+1/2,α=1/2.

The sliding velocity in the subtemperate region, N1
h ≤ j ≤ N2

h , requires the basal heat flux
Qj+1/2. Considering the time-like nature of the horizontal direction for the heat equation, and
taking advantage of the Dirichlet condition at the bed (40e), we implement the first-order upwind
scheme

Qj+1/2 = − 1

hj+1/2

2

∆η
Tj+1/2,1, Tj+1/2,k = Tj, (45l)

where once again we have prescribed that advection is in the positive ξ direction.
Finally, the discrete apparent velocity reads

(ua)j+1/2 =
[
ξj+1/2 − ((ξ0)j + 1)

] ∂(xu)j
∂t

− (ξj+1/2 − (ξ0)j)
∂(xd)j
∂t

. (45m)
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We now consider boundary conditions. For j = 1 eq. (45a) involves the grid point α = j−1/2 =
1/2, located at ξ = 0. Here the symmetry condition at the divide, eq. (39j), holds, thus we put

(qe)1/2 = q1/2 = 0. (45n)

For j = N1
h +N2

h +N3
h , we have the grid point α = j + 1/2 = N1

h +N2
h +N3

h + 1/2 located on the
grounding line at ξ = 3. We compute ice thickness on the grounding line by linearly extrapolating
onto the boundary from the two nearest h−grid points,

hN1
h+N2

h+N3
h+1/2 =

3hN1
h+N2

h+N3
h
− hN1

h+N2
h+N3

h−1

2
, (45o)

while eq. (39m) demands

(qd)N1
h+N2

h+N3
h+1/2 + (qb)N1

h+N2
h+N3

h+1/2 = Qg(hN1
h+N2

h+N3
h+1/2), (45p)

where the right hand side is known. We are now going to show that the latter equation effectively
constrains the sliding velocity at the grounding line. In fact, we can fix (qd)N1

h+N2
h+N3

h+1/2 with the
aid of eq. (45g) and using a one-sided approximation for surface slope, which provides h at the
fictitious grid point N1

h +N2
h +N3

h + 1

hN1
h+N2

h+N3
h+1 = 2hN1

h+N2
h+N3

h
− hN1

h+N2
h+N3

h−1. (45q)

Then, with qb given by (45d) and with the help of (45o), it is clear that the only unknown in eq.
(45p) is (ub)N1

h+N2
h+N3

h+1/2, which we fix in such a way to balance the prescribed grounding line flux.
This approach allows us to keep consistency between prescribed grounding line flux and sliding and
deformational components of the mass flux, yet avoiding to use Qg to back out the stress at the
grounding line, which would be physically meaningless.

Lastly, at the junctions between subdomains, α = N1
h + 1/2, α = N1

h + N2
h + 1/2, the finite

volume scheme ensures that q is conserved automatically, while the centered scheme for h effectively
ensures continuity of the ice thickness.

4.2.2 Temperature evolution

For 1 ≤ j ≤ N1
h +N2

h +N3
h and 1 ≤ k ≤ Nv, equation (40a) is discretized as

∂

∂τ
[[(xd)j − (xu)j]hjTj,k] + 2

(ue)j+1/2,khj+1/2Tj,k − (ue)j−1/2,khj−1/2Tj−1,k

[(xd)j+1 − (xu)j+1] ∆ξj+1 + [(xd)j − (xu)j] ∆ξj
+

[(xd)j − (xu)j]

∆η

[
(we)j,k+1/2

Tj,k+1 + Tj,k
2

− (we)j,k−1/2
Tj,k + Tj,k−1

2

]
+

[(xd)j − (xu)j] [Tj,k−1 − 2Tj,k + Tj,k+1]

Pe hj∆η2
− α

Pe
[(xd)j − (xu)j]Sj,k = 0.

(46a)

where we have adopted the first-order upwind scheme (45l2) for horizontal heat fluxes, and we have
discretised vertical fluxes with a second-order centered scheme. The horizontal effective velocity is
given by (45b) and subsequent closure relations, while an expression for (we)j,β follows from the
discrete version of (42a) with (42b).

Using a second-order centered scheme for the vertical velocity we get

(we)j,k+1/2 =k∆η

[
(qd)j+1/2 − (qd)j−1/2

[(xd)j − (xu)j] ∆ξj

]
− kḃ∆η−

∆η
hj+1/2

∑k
β=1

[
(ud)j+1/2,α

]
− hj−1/2

∑k
β=1

[
(ud)j−1/2,α

]
[(xd)j − (xu)j] ∆ξj

.

(46b)
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Recalling that ∆η = N−1
v , and with (qd)j+1/2 given by (45c), it is straightforward to show that at

the surface the effective velocity balances the accumulation term, (we)j,Nv+1/2 = −ḃ, meaning that
the vertical velocity is effectively mass-conserving.

The discretisation of the heating term Sj,k is chosen to ensure global conservation of energy, that
is, the volumetric heating integrated over the domain balances the rate of loss of potential energy
in discrete terms. We have

Sj,k =
Sj+1/2,k + Sj−1/2,k

2
, (46c)

with

Sj+1/2,k =

(
(ud)j+1/2,k+1/2 − (ud)j+1/2,k−1/2

∆η

)(
(τxz)j+1/2,k+1/2 + (τxz)j+1/2,k−1/2

2

)
(46d)

with (τx,z)j+1/2,α and (ud)j+1/2,α given by eqs. (45g), (45k), respectively. On domain boundaries,
respectively for α = j − 1/2 = 1/2 and α = j + 1/2 = N1

h +N2
h +N3

h + 1/2 we set

S1/2,k = 0, SN1
h+N2

h+N3
h+1/2,k = SN1

h+N2
h+N3

h,k
, (46e)

where the former follows from the symmetry of the divide, while the latter uses an upwind scheme
for the computation of the heating term at the grounding line in order to avoid using Qg to back
out the shear stress on the grounding line itself.

Next we consider boundary conditions. For j = 1 eq. (46a) involves the grid point α =
j − 1/2 = 1/2, which with the upwind scheme (45l2) demands T at the fictitious grid point j = 0.
By symmetry across the divide, we have

T0,k = T1,k, (ue)1/2,k = 0, (46f)

which ensures that the horizontal heat flux vanish there, while at the junctions between subdomains
the finite volume scheme ensures that temperature remains continuous.

For k = Nv, we require temperature at the fictitious grid point β = j = Nv + 1. In order to
satisfy the Dirichlet condition (40c) on the domain boundary, j = Nv + 1/2, by symmetry we put

Tj,Nv+1 = −2− Tj,Nv . (46g)

Lastly, at the bed, we need to specify temperature at the fictitious grid points β = j = 0, Here we
need to satisfy the Neumann condition (40d) for 1 ≤ j ≤ N1

h , while we have the Dirichlet condition
(40e) for j ≥ N1

h . Thus we put

Tj,0 = Tj,1 + hjν∆η for 1 ≤ j ≤ N1
h , Tj,0 = −Tj,1 for j ≥ N1

h . (46h)

4.2.3 Sub-domain boundaries

Lastly, we need to determine the position of subdomain boundaries. From the conditions (43) and
the flotation condition (39l) we have

− 1

hj+1/2

Tj+1/2,1

∆η
= ν for j = N1

h , (47a)

1

hj+1/2

Tj+1/2,1

∆η
+ ν + α(τb)j+1/2(ub)j+1/2 = 0 for j = N1

h +N2
h , (47b)

hj+1/2 = − ρ

ρw
bj+1/2 for j = N1

h +N2
h +N3

h , (47c)

where we use the upwind scheme (45l2) for Tj+1/2,1, and hN1
h+N2

h+N3
h+1/2 is obtained by linear ex-

trapolation onto the boundary as described by eq. (45o).
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4.3 Numerical solution of the steady state problem

To compute steady state solutions, we start with setting time derivatives to zero in eqs. (45a,
46a). Then, for a given set of locations for the free boundaries xs, xt and xg as well as a given ice
thickness h0 at the centre of the ice sheet, ice thickness, temperature and ice velocity can be solved
for sequentially, one column of grid cells at a time.

In steady state, ice flux is known at every horizontal cell boundary from the integral of surface
mass balance,

(qd)j+1/2 + (qb)j+1/2 = [(xd)j − (xu)j] ḃ∆ξ
i
j + (qd)j−1/2 + (qb)j−1/2 (48a)

with symmetry at the divide demanding that

(qd)j−1/2 = (qb)j−1/2 = 0 for j = 1. (48b)

With basal heat flux at the cell boundary j+ 1/2 set equal to its upstream cell centre value (see eq.
(45l)), the known ice flux corresponds to a unique velocity field and, through the dependence of the
velocity field on surface slope (either through 45g or through 45i, 45j, and 45k), we can compute ice
thickness at the next cell centre downstream, j+ 1. Depending on the subdomain, the computation
of hj+1 may or may not decouple from the computation of temperature: in the cold and temperate
subdomains the two are fully decoupled, so we solve eq. (45a) at prescribed along-flow location
j with a backward Euler step in the horizontal coordinate to find hj+1, and then solve the linear
temperature problem (46a) for Tj,k with prescribed velocity field. In the subtemperate region mass
and energy conservation are coupled through the sliding law, so we solve the fully coupled problem
with a backward Euler step in the horizontal coordinate to find hj+1 and Tj,k.

For a given guess for (h0, xc, xs, xg), we can therefore compute the residual of the continuity
conditions (47a-47b) at xs, xt, and in the flotation and flux condition at xg, eqs. (47c, 45p).
Solving the steady state problem amounts to finding the appropriate roots that reduce all four
residuals to zero. We do so by means of a bisection algorithm, with accuracy set at 10−4.

4.4 A discontinuous acceleration at the subtemperate - temperate bound-
ary

One peculiar feature of the boundary conditions (37) is that the sliding velocity remains continuous
at sub-domain boundaries, x = xs, xt. However, the acceleration might be discontinuous across the
transition points, leading to streamlines that are continuous but not differentiable. In this section
we illustrate that this is actually the case in the context of a standard shallow ice model, and derive
constraints for the sign of the jump in gradients of sliding velocity and basal heat flux normal to
the subtemperate-temperate boundary.

Let us consider the ice sheet scale model presented in §(2.1) and updated with basal boundary
conditions (37) and continuity statements at subdomain boundaries (37d). With the mass flux
defined as

q =
h2

3
τb + ubh, (49a)

continuity of mass flux and thickness imply that the basal shear stress and strain heating are also
continuous,

[τb]
+
− = [a]+− = 0, (49b)
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with the former in turn implying [
∂h

∂x

]+

−
= 0. (49c)

Equipped with these continuity statements, we use the large scale mass conservation, eq. (7c) to
derive a relationship between ∂ub/∂x on either sides of the boundary. Given that the accumulation
rate ḃ is continuous at x = xt, it follows from mass conservation that[

∂q

∂x

]+

−
= 0 (49d)

in a steady state. Using the definition of the flux (49a) and the continuity statements (37d,49c) we
can rewrite the latter expression as[

∂q

∂x

]+

−
=
h2

3

[
∂τb
∂x

]+

−
+ h

[
∂ub
∂x

]+

−
= 0. (49e)

Direct differentiation of the sliding law

ub =


γ−1τb on x > xt
Q− ν
ατb

on x < xt
(49f)

where Q = −∂T/∂z|z=b is the basal heat flux then yields an expression for ∂τb/∂x in terms of
derivatives of the heat flux and the sliding velocity,

∂τb
∂x

∣∣∣∣+ =
τb
ub

∂ub
∂x

∣∣∣∣+ , (49g)

∂τb
∂x

∣∣∣∣− =
1

αub

∂Q

∂x

∣∣∣∣− − τb
ub

∂ub
∂x

∣∣∣∣− , (49h)

which substituted into (49e) allows us to derive a relationship between the gradient of the sliding
velocity on either sides of the transition and the gradient of the subtemperate heat flux,(

1 +
h

3

τb
ub

)
∂ub
∂x

∣∣∣∣+ =

(
1− h

3

τb
ub

)
∂ub
∂x

∣∣∣∣− +
h

3αub

∂Q

∂x

∣∣∣∣− . (49i)

In order to close the problem, we need a constraint on the sign of the velocity gradients, as well
as a relationship between the sliding velocity and the gradient of the basal heat flux. The former is
provided by the requirement that the bed does not freeze on the temperate side,

−Q+ ν + ατbub ≥ 0 on x > xt. (49j)

Taylor-expanding about x = xt, and recalling that the equality must hold at the transition proper,
we find

α

(
τb
∂ub
∂x

∣∣∣∣+ + ub
∂τb
∂x

∣∣∣∣+
)
≥ ∂Q

∂x

∣∣∣∣+ . (49k)

Then, in order to find a relationship between velocity and flux gradients, we extend the derivation
of the Q−equation (§3b of the main paper) to the case of Pe ∼ O(1). Following the derivation in
the main text, but starting with eq. (9a), we find

ub
∂Q

∂x
−Q∂ub

∂x
− 1

Pe

∂2Q

∂z2
=

α

Pe

∂a

∂z

∣∣∣∣
z=b

, (49l)
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which holds in both the subtemperate and temperate subdomains at the ice sheet scale. Taking the
difference across the boundary, we have

ub

[
∂Q

∂x

]+

−
−Q

[
∂ub
∂x

]+

−
=

1

Pe

[
∂2Q

∂z2

]+

−
+

α

Pe

[
∂a

∂z

]+

−
, (49m)

where the two rhs terms vanish as a result of the continuity statements (37d,49b). We are therefore
left with the desired relationship between flux and sliding velocity gradients at the transition,

ub

[
∂Q

∂x

]+

−
−Q

[
∂ub
∂x

]+

−
= 0. (49n)

Finally, we find a constraint on the sign of [∂ub/∂x]+− by combining (49k) with (49i), and making
use of (49n), (49g) and (49f), leading to(

3αub
h

+
ν

ub

)[
∂ub
∂x

]+

−
≤ 0. (49o)

The term in brackets is strictly positive, therefore [∂ub/∂x]+− can either be negative, or vanish. The
equality holds at the transition point, but we expect the basal energy budget to turn positive as we
move away from the transition point into the temperate subdomain. Therefore we conclude that
[∂ub/∂x]+− has to be negative, and so is [∂Q/∂x]+− from (49n).

5 The length of the subtemperate region with Pe = 0

5.1 On Fowler’s (2001) argument about the impossibility of a hard
switch

In this section we revisit the argument in Fowler [9] and Fowler and Larson [3] on the necessity of
an extended subtemperate region, and demostrate that it does not automatically apply to the case
of a finite Péclet number.

Let us consider a frozen-temperate transition that involves an extended region of subtemperate
sliding for x ∈ [xs, xt], such that at the bed we have

−Q+ ν + ατbub = 0, ub = F (T/δ, τb) on z = b, (50)

and the sliding velocity is such that ub(xs) = 0 and ub(xt) = γ−1τb, with ub < γ−1τb for x < xt.
Then, assuming that the shallow ice model of §2.1 holds for ice mechanics, and also assuming a

strongly diffusive temperature field, Pe = 0, the heat transport problem for the ice reduces to

− ∂2T

∂z2
= α

(
∂u

∂z

)2

for b < z < s, (51a)

with prescribed surface temperature

T = TS(x) on z = s, (51b)

and the basal energy budget condition eq. (501) at the bed.
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We are now going to illustrate that, under these conditions, the temperature-dependent sliding
law ub = f(T, τb) can be rewritten as ub = g(Ts, q), where q =

∫ s
b
u dz is the ice flux. As far as

the heat equation is concerned, integrating eq. (51a) once on b < z < s and using the shallow ice
solution (7a) yields

−∂T
∂z

∣∣∣∣s
b

= α|∇s|2h
3

3
; (52)

substituting then the heat flux Q = −∂T/∂z|z=b from the basal energy budget (501) gives an
expression for the heat flux at the surface

−∂T
∂z

= ν + α|∇s|q on z = s. (53)

Equipped with this latter expression, as well as with the Dirichlet condition (51b), we can now see
the diffusion problem (51a) as a well-posed initial value problem that provides basal temperature
as a function of a prescribed distribution of surface temperature, Ts(x), and automatically satisfies
the constraint of a basal energy budget in balance.

Now, taking the limit of δ → 0, basal temperature is prescribed in the subtemperate region and
equal to the melting point. Then, for a prescribed mass flux, and with fixed temperature at the bed,
the initial value problem for T effectively determines the ice thickness and the basal shear stress as
functions of Ts. Knowing the ice thickness, the sliding velocity can be backed out from the basal
energy budget, and is therefore also a function of Ts and q, as previously advertised. Lastly, the
mass flux is the solution to the global mass conservation, while once again the sliding law constrains
the first order correction to basal temperature.

From here, Fowler [9] uses a continuity argument to demonstrate that the sliding velocity cannot
be discontinuous, and therefore the boundaries of the subtemperate region xs and xt cannot collapse
onto each other as δ vanishes. The argument goes as follows: by construction, the sliding velocity
ub = g(Ts, q) changes of O(1) across the subtemperate region, and does so continuously because Ts
and q are continuous functions of x. If taking the limit of δ → 0 caused the subtemperate region to
become infinitesimal, then this would imply a discontinuity in ub, which is not possible given that
Ts and q are continuous functions of x.

It is now clear why the argument that allowed us to formulate the heat equation as an initial
value problem in z cannot be extended to the case of a finite Péclet number: in fact, when Pe > 0
the heat equation becomes a parabolic problem with the horizontal coordinate acting in a time-like
fashion (as opposed to the second order ordinary differential equation problem for Pe = 0, which
Fowler [9] effectively tackles by a shooting method). Then, the depth-integration described above
requires us to impose two boundary conditions on a space-like boundary for a parabolic PDE, which
is an ill-posed procedure. Fowler’s argument therefore does not demonstrate that the subtemperate
region must be comparable in length with the ice sheet scale when Pe 6= 0.

5.2 A constraint from energy conservation

In this section we are going to take a different, more physically based approach to the problem
discussed by Fowler [9], which will allows us to highlight the physical paradox hidden behind the
notion of a hard switch in the Pe = 0 case. The key insight is that, at constant mass flux, ice
flow by shearing only dissipates more potential energy — and therefore produces more heat— than
ice flow by sliding and shearing. As a result, even if the melting point is reached, the decrease in
energy dissipation caused by sliding onset leads to refreezing immediately thereafter.
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The ingredients we require to demonstrate that this is true are (i) the solution to the heat
equation in the ice for Pe = 0 in the two cases of a frozen bed and of a prescribed melting point
temperature at the base. We will see shortly that the temperature T in the case of Pe = 0 can be
written in closed form as a function of ice thickness h and surface slope |∂s/∂x|. (ii) The definition
of the mass flux q for the two cases of flow by shearing only, and shearing and sliding combined.
Note that q also is a function of h and |∂s/∂x|. (iii) The inequality constraints demanding that
bed temperature is below freezing on the cold side, and that the melt rate remains positive on the
temperate side. Once again, these can be written in closed form only by virtue of having taken
Pe = 0.

Equipped with these ingredients, we will show that if the ice thickness is to be conserved at
the transition point, x = xonset, as it must, then the inequality constraints can be satisfied only if
the ice flux changes discontinuously across the transition, which violates mass conservation. Our
conclusion about the potential energy dissipation rate follows straightforwardly.

The derivation goes as follows. Given a standard shallow ice approximation for the velocity field
(7a), and assuming without loss of generality that b = 0, the solution of the diffusion-only problem
(9) with Pe = 0 reads

T =


α

3

∣∣∣∣∂h∂x
∣∣∣∣2 [−(h− z)4

4
− zh3 + h4

]
+ ν(h− z)− 1 for 0 < z < h,

α

4

∣∣∣∣∂h∂x
∣∣∣∣2 h4 + ν(h− z)− 1 for −∞ < z < 0,

(54a)

while for temperate bed we have

T =


α

12

∣∣∣∣∂h∂x
∣∣∣∣2 [−(h− z)4 − zh3 + h4

]
− z

h
for 0 < z < h,

− νz for −∞ < z < 0,

(54b)

which substituted into the inequality constraints yield

either −1 + νh+ α

∣∣∣∣∂h∂x
∣∣∣∣2(h4

4
+

1

γ
h3

)
≥ 0 if T = 0 on z = 0, (54c)

or −1 + νh+
α

4

∣∣∣∣∂h∂x
∣∣∣∣2 h4 < 0 if T < 0 on z = 0. (54d)

Let us recall that we intend to turn the inequality constraints (54c) into constraints for the mass
flux on either sides of the transition. To do so, let us denote the cold, upstream region with ·− and
the warm downstream region with ·+, and recall that the respective mass fluxes are given by

q− =
1

3
h3

∣∣∣∣∂h∂x
∣∣∣∣− , (54e)

q+ =

(
1

3
h3 +

1

γ
h2

) ∣∣∣∣∂h∂x
∣∣∣∣+ . (54f)

Then the inequality constraints (54c) can be reformulated in terms of ice flux as

q2 < (q−)2 :=
4(1− hν)(h3/3)2

αh4
, (54g)

q2 ≥ (q+)2 :=
4(1− νh)(h3/3 + h2/γ)2

α(h4 + 4h3/γ)
. (54h)
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In order to conserve mass across the transition point while at the same time satisfying the
inequality constraints, then the upstream and downstream flux must satisfy (q+)2 < (q−)2, or
equivalently (

q−

q+

)2

:=
(1 + 3Γ)2

1 + 4Γ
< 1, with Γ = (γh)−1 . (54i)

It is straightforward to show that the latter inequality cannot be satisfied. In fact, we have
(q−/q+)

2
= 1 for Γ = 0 and

d

dΓ
(1 + 3Γ)2 >

d

dΓ
(1 + 4γ), (54j)

so we can conclude that (q−/q+)2 > 1; in other words, mass conservation and the inequality
constraints regulating the thermal state of the bed cannot be satisfied simultaneously, meaning
that an abrupt transition is energetically impossible.

The physical interpretation of our result is related to energy dissipation. Total dissipation in
the flow corresponds to the rate of loss of potential energy, q|∂s/∂x|. At constant ice thickness and
mass flux, as is the case at the transition, surface slope is smaller in the warm-bedded region than
it is in the cold one,

|∂h/∂x|+ := q/(1/3h3 + h2/γ) < |∂h/∂x|− := q/(1/3h3), (55)

meaning that the cold branch of the solution dissipates more heat than the temperate branch. This
is because dissipation by strain heating, (s − z)|∂s/∂x|2, is smaller on the temperate side as a
result of reduced surface slope, and frictional heating at the bed is not large enough to offset larger
dissipation on the cold side. As a result of this disparity in dissipation rate, a warm-bedded region
can only exist for values of the mass flux larger than those at which the cold-bedded region persists.
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