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Figure S1: Perturbations on the four MAFS for the Sahara model. 10%, 50% and 90% recovery are 

indicated with lines, dashed lines and dotted lines respectively. 10% and 50% are well ordered, 
with no or hardly any difference between the second, third and fourth MAF. 90% Recovery is not 
well-ordered since the perturbation on MAF 4 results in a higher recovery time. This result is 
summarized in figure 3. 
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Figure S2: Perturbations on the five MAFs for the genetic network. 10%, 50% and 90% recovery 

are indicated with lines, dashed lines and dotted lines respectively. 10% recovery is well ordered, 
50% and 90% recovery are not well-ordered. The figure clearly shows that the perturbation on 
MAF 3 ends up on MAF 1 (high deviation for blue and red in the same direction and a small 
deviation for yellow in the opposite direction). Also, the perturbations on MAF4 and MAF5 clearly 
show spiralling dynamics, therefore only the initial recovery rate (10% recovery) is well ordered. 
This result is summarized in figure 3. 
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Figure S3: frequency distribution of the recovery times of 1000 perturbations in random 
directions for 10% (up), 50% (middle) and 90% (bottom) recovery for the meta-population 
model. Dotted lines indicate the recovery time of a perturbation on the last MAF, solid lines 

indicate a perturbation on the first MAF. It shows that for the meta-population model MAF 
finds the direction of slow and of fast recovery. 
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Figure S4: frequency distribution of the recovery times of 1000 perturbations in random directions 
for 10% (up), 50% (middle) and 90% (bottom) recovery for the Sahara model. Dotted lines 
indicate the recovery time of a perturbation on the last MAF, solid lines indicate a perturbation on 
the first MAF. It shows that for the Sahara model MAF finds the direction of slow and of fast 
recovery. 

 

 

 

 

 

 



5 
 

 

Figure S5: frequency distribution of the recovery times of 1000 perturbations in random directions 
for 10% (up), 50% (middle) and 90% (bottom) recovery for the genetic network. Dotted lines 
indicate the recovery time of a perturbation on the last MAF, solid lines indicate a perturbation on 
the first MAF. It shows that for the genetic network, MAF cannot find the direction of the longest 
and shortest recovery. 
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Figure S6: Top row: Effect of time series length on MAF (top left) and PCA (top right) for the 
Sahara model. Solid lines indicate the medians of 100 blocks in a block bootstrap, shaded areas 
show the 90% confidence interval. The figures show that both methods improve for increasing data 
length, but converge at around 100.000 datapoints. Bottom row: Effect of data resolution on MAF 

(bottom left) and PCA (bottom right) showing that if the distance between datapoints becomes too 
large, MAF results do not converge anymore, whereas this distance does not affect PCA. 
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Figure S7: Top row: Effect of time series length on MAF (top left) and PCA (top right) for the 
genetic network. Solid lines indicate the medians of 100 blocks in a block bootstrap, shaded areas 
show the 90% confidence interval. The figures show that both methods improve for increasing data 
length, but converge at around 30.000 datapoints Furthermore, note that when converged, MAF 

and PCA yield slightly different directions. Bottom row: Effect of data resolution on MAF (bottom 
left) and PCA (bottom right) showing that if the distance between datapoints becomes too large, 
MAF results do not converge anymore, whereas this distance does not affect PCA. 
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Figure S8: Performance of (a) MAF and (b) PCA for different noise regimes for the meta-population 
model with three patches. A location in the plot shows how the noise in distributed over the three 
variables. In the middle, every variable gets the same amount of noise. In every location, the sum 
of the three noise levels is 0.4, which is twice as high as figure 5. The performance is calculated by 
the similarity of the MAF or PCA result to the slowest direction. For noise that is the same for all 
variables, MAF and PCA give the same (correct) result, as indicated with the high similarity index in 

the middle of the panels (bright yellow colour). If one or more of the variables receive little or no 
noise, MAF does not perform well. MAF outperforms PCA in most other cases. The area inside the 
dotted lines is the area where the similarity is higher that 0.95 (reasonable performance), the area 
within the black lines is the area where similarity is higher than 0.99 (good performance). 
Comparison with figure 5 indicates that for this model the results remain unchanged for higher 
noise levels (provided that the noise does not force the system into a new regime). This may be 
due to the smooth stability landscape of this gradient system. 
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Figure S9: Same as figure S8 but with only 300 data points, as opposed to 4000 as in figure 5 and 
S8. For equal noise levels over three variables, PCA results are more reliable than MAF results, 
since there is a clear black circle (99% similarity to true direction of slowest recovery) around the 
middle of panel B. However, when noise levels vary over variables, both methods become 

inaccurate, but MAF has a larger region where the performance is at least “reasonable” (95% 
similarity to true direction of slowest recovery, are within dotted lines). 
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Gradient systems and reactivity 

Gradient systems are systems that have a potential. This means that if you perturb that system in one 

direction, it will always follow the same path. No spiralling dynamics will occur (i.e. eigenvalues are real). 

Completely gradient systems are not common in the real world. However, various systems may behave as a 

gradient system locally around a stable equilibrium. If a system is described by 
𝑑𝑥𝑖

𝑑𝑡
= 𝑓𝑖(𝑥⃗), one can evaluate 

whether or not it is a locally gradient system by checking the equality: 

𝜕𝑓𝑖

𝜕𝑥𝑗

=
𝜕𝑓𝑗

𝜕𝑥𝑖

∶  𝑖 ≠ 𝑗 

This means that the Jacobian is symmetric for all possible values for 𝑥. If the jacobian is only symmetric at a 

stable equilibrium, we say that the system locally has a potential. If this is the case, we expect simple dynamics 

and autocorrelation should correspond to recovery time. For these type of systems a method such as MAF is 

most useful. 

Autocorrelation still corresponds to recovery time for more complex systems. If the system does not have a 

potential (i.e. it is not a gradient system), it can still recover from perturbations in a smooth way. However, for 

certain types of systems there exist directions where a perturbation will amplify before returning to the 

equilibrium, even though the equilibrium is stable. These systems are called reactive systems.  

Whether or not a system is reactive can be tested by comparing the dominant eigenvalue (highest eigenvalue) 

of the Jacobian to the dominant eigenvalue of the corresponding Hermitian. The Hermitian is calculated as  𝐻 =

 
𝐽+𝐽′

2
 , where H is the Hermitian and J is the Jacobian. If the eigenvalues for the Jacobian are all negative this 

indicates a stable equilibrium. If however the Hermitian has also at least one positive eigenvalue, this means 

that the system is reactive. 

For all deterministic models we calculated the Jacobian, the dominant eigenvalue of the Jacobian and the 

dominant eigenvalue of the corresponding Hermitian in order to evaluate whether or not the system is locally 

gradient and/or reactive.  

Metapopulation model 

The Jacobian of the threepatch model is symmetric, indicating that this system locally behaves like a gradient 

system (actually, this system is a completely gradient system, but we are only interested in local dynamics). 

Consequently, the dominant eigenvalue of the Jacobian (-0.2851) is the same as the dominant eigenvalue of 

the Hermitian (-0.2851) indicating no reactivity. Therefore this is a system where autocorrelation is expected to 

correspond to recovery time. 

Sahara model 

The Jacobian of the Sahara model is not symmetric and therefore this is not a gradient system. The dominant 

eigenvalue of the Jacobian (-0.5223) is different from the dominant eigenvalue of the Hermitian (-0.4621), but 

since both eigenvalues are negative this should not lead to reactive behaviour and autocorrelation is expected 

to correspond to recovery time. 

Genetic network 

The Jacobian of the genetic network is not symmetric and therefore this is not a gradient system. The dominant 

eigenvalue of the Jacobian (-10.50) differs considerably from the eigenvalue of the Hermitian (10.99). 

Furthermore, even though the dominant eigenvalue of the Jacobian is negative, corresponding to a stable 

equilibrium, the dominant eigenvalue of the Hermitian is positive, which means that it is possible that some 

perturbations grow initially even though the equilibrium is stable. In these directions, perturbations will take a 

long time to recover even though the autocorrelation in this direction is not necessarily high. Consequently, 

autocorrelation in these systems is not a good indicator for recovery time. 

 


