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A The Positive Steady State of the generalized Lotka-Volterra
model

A.1 Asymptotic stability analysis

We can re-scale the generalized Lotka-Volterra model with two species to

dx1

dt
= r1x1(1− x1 + α12x2) (1)

dx2

dt
= r2x2(1− x2 + α21x1)

in order to simplify notation, and analyze asymptotic behavior of this model by performing straightforward
stability analysis on the equilibrium[1]. We see that eq. (1) has equilibrium at (0, 0), (1, 0), (0, 1) and

x∗ =

(
1 + α12

1− α12α21
,

1 + α21

1− α12α21

)
Furthermore, linearization about each of those points reveals that (0, 0) is never stable, (1, 0) is stable
if α21 < −1, (0, 1) is stable if α12 < −1. Lastly, x∗ ∈ R2

≥0 if and only if {α12 < −1, α21 < −1} or
{−1 < α12,−1 < α21, α12α21 < 1} and if {α12 < −1, α21 < −1}, then x∗ is unstable, and is in fact a saddle
point. If {−1 < α12,−1 < α21, α12α21 < 1}, then x∗ is stable. All of this can be done through symbolic
analysis of the Jacobian matrix evaluated at x∗.

We can now characterize the outcomes observed in the paper using the parameters α12 and α21:

(a) Coexistence: this is stability of the positive state, and so requires {−1 < α12,−1 < α21, α12α21 < 1}.

(b) Invasion of one species regardless of initial condition: this is stability of one boundary state and instability
of the other. This requires α12 < −1, α21 > −1 or the opposite. If α12 < −1 then 2 invades 1.

(c) Bi-stability: This is stability of both boundary states, and requires {α12 < −1, α21 < −1}.

Interestingly, case (c) is not observed in the data of [2].
The three species model is

dx1

dt
= r1x1(1− x1 + α12x2 + α13x3) (2)

dx2

dt
= r2x2(1− x2 + α21x1 + α23x3) (3)

dx3

dt
= r3x3(1− x3 + α31x1 + α32x2) (4)
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and here again we can compute model equilibrium states and stability. There are 8 equilibrium points,
corresponding to each qualitative possibility of survival & extinction. Again, the (0, 0, 0) equilibrium is
never stable. There exist simple conditions on the parameters for local stability of all equilibrium points
except for the state which represents coexistence of all three microbes. Stability of this last state can,
however, be easily evaluated for any given parameters.

We can compute the Jacobian determinant to see that the stability conditions for the double extinction
equilibrium points are

• (1, 0, 0) : α21 < −1, α31 < −1

• (0, 1, 0) : α12 < −1, α32 < −1

• (0, 0, 1) : α13 < −1, α23 < −1

Taking advantage of symmetry, we investigate only one of the three single extinction equilibrium, which

have the form
(

1+α12

1−α12α21
, 1+α21

1−α12α21
, 0
)

. The first two eigenvalues of the Jacobian matrix at these points

will follow the two dimensional case, so we have the necessary conditions for stability {−1 < α12,−1 <
α21, α12α21 < 1}. This is simply because after extinction of species k, the model is identical to the pair
model. While unsurprising, this fact does imply that not all hypothetical combinations of existence and
extinction outcomes for pair and trio experiments can be simultaneously explained by the parameters of the
generalized Lotka-Volterra model. However, there were no instances in the trio experiments being considered
in which such a “smoking gun” scenario was observed.

The third eigenvalue is the value of r3(1− 2x3 + α31x1 + α32x2) evaluated at this point, which is

λ3 = r3

(
1 + α31

1 + α12

1− α12α21
+ α32

1 + α21

1− α12α21

)
(5)

Clearly if α31 and α32 are both positive, this state is unstable. The condition for linear stability is

α31
1 + α12

1− α12α21
+ α32

1 + α21

1− α12α21
< −1. (6)

A.2 Lack of limit cycles of the two-species gLV model

We can rule out closed orbits in the two species gLV model using Dulac’s criterion. Letting

g(x1, x2) =
1

x1x2
(7)

we compute

∇ ·
(

(
dx1

dt
,
dx2

dt
)g(x1, x2)

)
= − r1

x2
− r2

x1
< 0 (8)

for all x1, x2 > 0. This implies that there are no solution to eq. (1) is a closed orbit in the positive quadrant.
Note the that the standard predator-prey “Lotka-Volterra” model does allow closed orbits. This is because

that model does not include the quadratic terms −r1x
2
1 and −r2x

2
2 that appear in eq. (1), and because that

model does not enforce the assumption that ri > 0. This can be interpreted as an assumption of infinite
carrying capacity of the prey species and exponential decay of the predator.

A.3 Pseudo-Genetic Algorithm

We search for a parameter set to fit qualitative growth behavior by performing a pseudo-genetic algorithm
which attempts to minimize

M =
∑
trios

(∑
Λi

λ∗ + pi

)
(9)

where Λi is the set of eigenvalues which corresponded to the equilibrium point which matches the experi-
mental outcome of trio i, and pi = 0 if the three pairs of trio i match experimental outcome, and pi = 1000
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otherwise. The chromosomes of the genetic search are taken to be the parameter sets, represented as a
matrix whose i, j entry contained αij . We use the rows of this matrix as genes, and so the mating procedure
is to choose for each row of the child the row of one or the other parent with even probability.

We describe this as a “pseudo-genetic” algorithm because we are searching over a continuous parameter
space. In order to account for this, random mutation of parameters is done by perturbation with a continuous
random variable. First, to determine if mutation occurred, we draw a uniform random variable in (0, 1) and
mutate if this variable is less than a thresh-hold of 0.2. If mutation occurs, a random matrix whose entries
are generated uniformly in [−0.05, 0.05] is added to the matrix representing the parameter set.

A.4 The stochastic generalized Lotka-Volterra model

The model is as follows:

Xi(t) = Xi(0) + Y 1
i

(
ri

∫ t

0

Xi(s)ds

)
− Y 2

i

(
r̂i

∫ t

0

Xi(s)(Xi(s)− 1)ds

)
+
∑
i 6=j

Yij

(
α̂ij

∫ t

0

Xi(s)Xj(s)ds

)
. (10)

Here, Y (p(t)) are non-homogeneous Poisson (jump) processes with time-varying propensity p(t) =
∫ t

0
f(s)ds.

The new parameters r̂i and α̂ij depend on the “volume” of the experiment, i.e. the population size scale.
Precisely, with a volume N we take αij as fitted to pair growth experiments and let

r̂i =
ri
N

α̂ij =
αij
N

Then, as N → ∞, realizations of the stochastic model X
N approach trajectories of the deterministic model

[3].

B Stability of equilibrium of QSMI model.

Consider the model for n microbes

d

dt
xi = κixiy − dixi i = 1, .., n (11)

d

dt
y = fy − dyy −

n∑
i=1

κixiy (12)

This has equilibrium at xi = 0, y =
fy
dy

, and at y = di
κi

for each i, with xj > 0 if and only if
dj
κj

= di
κi

. The

general form of the characteristic equation of the Jacobian matrix about any steady state for this system is

det(J − λI) = (−dy −
n∑
i=1

κixi − λ)

n∏
i=1

(κiy − di − λ) +

n∑
i=1

κ2
i yxi

∏
j 6=i

(κjy − dj − λ) (13)

Solving at the extinction steady state xi = 0, y =
fy
dy

, we have eigenvalues λn+1 = −dy, λj =
κjfy
dy
− dj .

Therefore, this state is linearly stable if and only if

didy > kify ∀i (14)
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Next, for each i let Qi =
{
j| djκj

= di
κi

}
. Then for each i we have the set of equilibrium defined by

∑
j∈Qi

κjxj =
κi
di

(
fy − dy

di
κi

)
(15)

and xl = 0 if l 6∈ Qi. The characteristic equation becomes

det(J − λI) = −

λ2 + λdy + λ
κi
di

(
fy − dy

di
κi

)
+
∑
j∈Qi

κ2
jxj

λ|Qi|−1
∏
l 6∈Qi

(
κl
di
κi
− dl − λ

)
(16)

First, we see that if di
κi
6= minl=1,...,n

{
dl
κl

}
, then this is unstable. If we do have the minimum di

κi
, then the

remaining nonzero eigenvalues are

λ± =
1

2

[
−B ±

(
B2 + 4A

)1/2]
(17)

where B = dy + κi

di

(
fy − dy diκi

)
> 0 and A =

∑
j∈Qi

κ2
jxj > 0. These both then have negative real part,

implying that the hyperplane of solutions is attracting (note that if |Qi| = 1, this implies a linearly stable
equilibrium point).

Next, we consider the two species cross-feeding or cross-poisoning model:

d

dt
x1 = κ11x1y1 − d1x1 + ψ12x1y2 (18)

d

dt
x2 = κ21x2y1 − d2x2 (19)

d

dt
y1 = f1 − d∗1y1 − κ11x1y1 − κ21x2y1 (20)

d

dt
y2 = κ21x2y1 − d∗2y2 − κ12x1y2 (21)

Here, conditions for stability of the double extinction state are the same as above. Suppose d2κ11 > d1κ21,
so that if ψ12 = 0, this model behaves as the single metabolite model, and the state with x2 = 0, x1 > 0 is
stable. We are interested in causing the opposite extinction. That steady state is

(x1, x2, y1, y2) =

(
0,

1

d2

(
f1 − d∗1

d2

κ21

)
,
d2

κ21
,

1

d∗2

(
f1 − d∗1

d2

κ21

))
(22)

and the eigenvalues of the Jacobian matrix at this state can be computed symbolically, and the relavant
eigenvalue is

λ = κ11
d2

κ21
− d1 + ψ12

(
f1 − d∗1

d2

κ21

)
(23)

giving a condition for stability on ψ12 that can be achieved.
For coexistence, we will assume that the initial model with ψ12 = 0 has survival of x2, so d2κ11 < d1κ21.

Then we simply repeat the argument above to destabilize the equilibrium point, causing λ > 0. Then,
all three of the double extinction and both single extinction equilibrium are unstable. We can conclude
coexistence.

C Algorithmically created metabolite mediated models - Creation
and Complexity

To estimate the complexity of metabolite mediated models which recapitulate some experimental outcome,
we randomly generate experimental outcomes and algorithmically build models to recapitulate these results.
The algorithm which builds the model follows the following steps:
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Figure 1: Number of metabolites in model vs. coverage of randomly generated result set

(1) Randomly choose growth parameters for a single-metabolite model.

(2) Add cross talk pathways so that pair experiments are recapitulated.

(3) Add cross talk pathways so that trio experiments are recapitulated.

Notice that step (1) causes some set of pair predictions which must be adjusted by step (2), and this
in turns causes some set of trio predictions which must be corrected by step (3). Furthermore, a model
is determined by the choice in step (1). Thus, optimization can be done over set of parameters chosen in
step (1). A python script for generating random outcomes and corresponding models can be found in the
supplemental code repository, labeled random_metab.py.

For any set of randomly generated outcomes, we record the coverage and number of metabolites in the
best model we create. Histograms of the results are shown in the manuscript, in Figure 7. Below, in fig. 1,
we show a scatter plot of number of molecules vs. coverage for these same models.
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