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S1 Data

Table S1 lists all publicly available datasets incorporated in our model and analysis. Table S2 provides country-

specific data sources, literature and reports used in the model and for validation. They are further tagged based on the

information they provide for different aspects of the model. Table S3 provides incidence reports from Bangladesh.

Code is available in Github [2].
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Table S1: Global data sets used for model construction.

Data Source Spatial or temporal resolution
Temperature WorldClim [26] 2.5 arc min., monthly.
Precipitation GPCC [14] 2.5 arc deg., monthly.

Humidity NASA [47] 1 arc deg., monthly.
NDVI NEO [46] 0.1 arc deg., monthly.

Country Production FAO [16] country, yearly.
Shape files of study region ADC Worldmap [4] country/province/district.

Cell Production Mapspam [65] 5 arc min., yearly. Gives vegetable and potato data.
Consumption FAO [18] country, yearly.

Population Landscan[37] 5 arc min.
Cities MAXMIND [40] city resolution

Distance between cities Google API [20] city resolution

Table S2: Country-specific data obtained from reports, peer-reviewed articles and experts’ inputs.

Country Seasons Production Consumption Domestic trade Processing International
tradeMarkets Flows

Bangladesh [6] [6] [17] [6] – [6, 63] [15]
Cambodia [8, 19, 53] [19, 53] [53] [53] [53] – [45, 53]
Indonesia [5, 21] [5, 21] [17] – – – [17]

Laos [34] [34] [34] [34] [34] – [34, 45]
Malaysia – [23, 42] [17] – – – [17]
Myanmar – [36, 51] [44] [36]

Philippines [7, 50] [50] [11] [12] ignored [12]
Singapore – [17] imp.-exp. city ignored
Thailand [30] [30, 43, 60] [60] [30, 60] [30] [43]
Vietnam [28, 62, 64] [64, Table 16] (2003) [64, Table 23] [9, 45, 64] [9, 45, 64] [3, 64] [45, 64]

Table S3: Data of T. absoluta infestation for Bangladesh (source: Bangladesh Agricultural Research Institute) and
neighbouring region of India.

Location Coordinates Month of first detection of T. absoluta

Chaklarhat, Panchagarh district 26.19◦ N, 88.43◦ E May 2016 [27]
Umiam [52], BARI Research Field, Gazipur district 23.99◦ N, 90.42◦ E January 2017

RARS, Akbarput, Moulvibazar district 24.25◦ N, 91.45◦ E February 2017
Lalakhal, Jointiapur, Sylhet district 25.07◦ N, 92.09◦ E February 2017

Palashbari, Gaibandha district 25.15◦ N, 89.23◦ E March 2017
Battara, Bogra district 24.48◦ N, 89.25◦ E February 2017

Barura, Comilla district 23.22◦ N, 91.06◦ E March 2017
Patengali, Jessore district 23.09◦ N, 89.10◦ E March 2017
Umiam, Meghalaya India January 2017 [52]

S2 T. absoluta biology.

The tomato leafminer exhibits a short life cycle of about 24–38 days (temperature at 25±3◦C), from egg to adult, as it

is a multivoltine species with overlapping generations in the field. It causes serious damage to numerous solanaceous
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crops such as eggplants, potatoes, and especially tomato crops [57]. It penetrates into tomato leaves, stems, or fruits,

wherein it feeds and develops by creating conspicuous mines as well as galleries. Considering the warm weather

throughout the year, particularly in the dry season, the study region presents ideal conditions for rapid development

and spread of T. absoluta. Pest risk analysis [59] shows that the Ecoclimatic Index for this region is above 50 (highly

suitable). Spatial distribution assessment survey of T. absoluta eggs has shown its high dispersive capacity in tomato

producing areas [39]. The dispersion in a tomato cultivation starts mainly at the periphery and the pest is able to migrate

between tomato farms to generate egg aggregation at the crop boundaries. The pest spread behaviour among seasonal

crop resources is often non-random and directional [39]. Sylla et al. [57] analysed host preference of T. absoluta

in France and Senegal. While the highest preference is for tomato, it can survive well on eggplant and potato, which

happen to be major vegetable crops in the study region. However, since T. absoluta primarily attacks leaves of eggplant

and potato, the chance of the pest spreading through trade of these crops seems to be low.

S3 Multi-pathway Model

S3.1 Model structure, parameter ranges and assumptions

Sylla et al. [58] show that relative area of host crops (particularly tomato and eggplant) is positively correlated with

number of trapped moths/trap/day. The authors also show that higher the host density, the greater the proportion of

infected plants. They use data from open field experiments and generalised linear mixed model (GLMM) to establish

these relationships. Hence, we model the infectiousness of a cell ρ(v, t) as a linear function of host density at time t,

for which we use the weighted sum of production volume of tomato, eggplant, and potato in that cell at time t. The

weights correspond to relative carrying capacity of T. absoluta on the three hosts. [57].

Transmission probability. At any given time t, for a cell v and its neighbour v′ corresponding to the considered

pathway, let ρ(v′, t) be the strength of infestation at v′. Let, α be the transmission rate corresponding to the pathway.

Then, the probability that the pest will be introduced to v from v′ is given by 1−exp
(
−αρ(v′, t)

)
. The function form

is similar to that in [41, 48], but with contact time between two nodes replaced with strength of infestation. Also, α

can be interpreted as the transmission probability per unit infestation. Since in our case production in the cell is used

as a surrogate for ρ(v′, t), it can be interpreted as the probability of infection per unit production (weighted by carrying

capacity). This form of the infection probability function has been seen before in epidemiological models [13, 24, 25],

both continuous and discrete time models. Diekmann et al. [13] consider a continuous time SI model, and define the

probability that an individual will not be infected with a function which relates to the form above, taking the exponent
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as an integral of the ”force of infection”. more complexity, but we also see some from the ”proportional hazards

model”. continuous time model and an exponential remaining susceptible. In [24], we see a discrete time version of

this function form, with the probability of still being exposed after t time steps as: P (t) = e−εt, where ε relates to the

”transfer rate”. This function form was derived when considering traditional SIR models mathematically in [25].

For long-distance dispersal we use the same function form (equation 3 in the main paper), with the infectiousness

of a cell replaced by infectiousness of a locality times the flow from that locality to the current cell’s locality. In the

literature, there is no clear consensus on the function form. For example, Stanaway et al. [54] model the colonisation

time as an exponential distribution with mean being the flow from source to target cell. Stansbury et al. [55] calculate

the probability of at least one establishment (E) using a binomial function: E = 1 − (1 − ptpc)I , where, I is the

number of successful entries in a year, pt is the proportion of contaminated ports, pc is the proportion of those ports

that result in establishment. Caton et al. [10] apply Central Limit Theorem to model the number of insects arriving on

contaminated flights by region.

Following Guimapi et al. [22], the Moore range rM was varied between 1 and 3 corresponding to spread per month

of approximately 25km, 50km and 75km respectively.

S3.2 Locality construction

In the model, localities are centres of consumption or production. From the perspective of consumption, we selected

cities with population greater than a certain population threshold (as per [40]) in the entire study region. The number

and size of localities is controlled by population threshold and locality radius parameters. We considered a range of

threshold values, and chose 250, 000 as the threshold for the model with the main criterion for the choice being cover-

age of population and knowledge of major wholesale markets (Figure S1). Then, we added major production centres

if their population did not meet the threshold. The locality radius was chosen to be 100km since local production in

an urban area was within 50–60km from the city centre for several countries in this region [8, 53, 64]. To obtain long

distance trade flows, the travel times between pairs of cities were computed using Google API [1].

S3.3 Seasonal production

We estimated monthly production volume of tomato, eggplant and potato for each cell using production data available

at the country/state/province level and the Spatial Production Allocation Model [65]. The latter uses a generalised

cross-entropy approach to allocate crop production in administrative units into individual pixels, through judicious

interpretation of all accessible evidence such as production statistics, farming systems, satellite image, crop biophysical

suitability, crop price, local market access and prior knowledge. The monthly production volume was estimated in
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Figure S1: Locality construction. The number of localities and the locality area is controlled by population threshold
and locality radius. We analysed the effect of these parameters on the amount of production and population captured
in the region. Setting a threshold of 250,000 and radius of 100km, 80% of the production and population is covered
by localities.

two steps: (i) Estimation of cell-level annual production, and (ii) disaggregation of annual production to monthly

production.

Annual production. From SPAM [65], we obtained annual production estimates for each cell. However, there

are several issues with directly using this data. Firstly, these are estimates for the year 2005, and secondly, tomato

and eggplant production estimates are not available. Instead, total vegetable production volume is available. Also, for

countries where data was available, we did not find any correlation between reported tomato (eggplant) production and

total SPAM vegetable production for that region. Therefore, for each country, we obtained the most recent production

data available (2013 or later) at the highest spatial resolution (region/province/country) (Table S1). The production of

a particular vegetable type at a cell was computed as follows:

Total production in the region
Total SPAM production for cells in the region

× SPAM production in the cell .

For tomato and eggplant, we used vegetable production as the surrogate. There were also cases where no data was

available (Cambodia, Myanmar and Laos for example). In such cases, for potato, we used SPAM data as is. For

tomato and eggplant, the SPAM value for vegetables was scaled by a scaling factor which was determined as follows.

For countries where data was available, we computed the ratio of total tomato production and total SPAM vegetable

production for the country. The median value (≈ 0.05) was used as the scaling factor. The same procedure was used

for eggplant.
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Monthly production. In order to estimate the seasonal production rates of tomatoes, we considered quarterly pro-

duction data from Philippines [50] for the 16 regions of the country and studied its relationship between precipitation,

elevation and temperature. We first assigned average monthly precipitation, temperature and elevation data to the cells

by latitude and longitude. Next, for each region, we obtained the seasonal relative tomato production (or production

rate). This was obtained by dividing each of the quarterly production volume by total annual production volume. We

conducted a linear regression with the product rate as a dependent variable and the precipitation as an independent

variable in SPSS 24.0. Since the dependent variable was highly skewed, we implemented a log-transformation for it.

To control elevation, we classified the elevations into two groups, high and low, using K means in SPSS 24.0. Due to

the small sample size, we excluded the samples in the high-elevation group and conducted a linear regression analysis

for the group of low elevation (< 235).

The regression results showed that precipitation was a statistically significant predictor (p < 0.001, R2 = 0.54).

When we accounted for temperature along with precipitation, theR value increased to 0.58 with temperature exhibiting

weak correlation with production. Though the results with both variables included gave a slightly stronger correlation,

in the validation step, the regression function corresponding to precipitation was a better match for the rest of the

study region. Thus we decided to use only precipitation as a predictor for seasonality of tomato production. Table S4

provides information on these regression results.

Table S4: Linear regression results for seasonal production as a function of precipitation.

B Std. Error Beta t Sig.

Intercept -0.208 0.229 -0.908 0.368
Precipitation -0.008 0.001 -0.734 -7.935 0.000

Validation. With the exception of data from Philippines on tomato and eggplant, there is no regional seasonal pro-

duction information for the three crops considered for other countries. However, there are several reports that provide

qualitative information. See Table S2, column “Seasons”. In some cases seasonal production data is available at the

country level. For example, for Bangladesh, eggplant production volume is available by season. Similar information is

available for Cambodia. In Figure S2, we have compared seasonal production predicted by the regression model with

available qualitative and quantitative information. We note that the precipitation based regression function captures

the general trend of seasonal production in the different regions considered.
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Figure S2: Comparing relative production as per the regression model with quantitative/qualitative reports for different
regions. For the plots corresponding to the regression model we chose representative cells for each administrative
region.

S3.4 Network construction

For each country, the domestic flow was estimated using a doubly constrained gravity model [32, 61]. For a city i,

let Oi and Ii denote total outflow and total inflow respectively, and L(i) denotes all cells which are assigned to it.

The flow Fij from city i to city j is given by Fij(t) = ai(t)bj(t)Oi(t)Ij(t)f(dij), where, dij is the time to travel

from i to j, and f(·) is the distance deterrence function: d−βij exp(−dij/κ), where β and κ are tunable parameters.
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The coefficients ai and bj are computed through an iterative process such that the total outflow and total inflow at each

node agree with the input values [32]. Overall, we have 12 networks representing flows for each month. The outflows

and inflows are calculated as follows:

Oi(t) = Prod(i, t) + Import(i, t)− Export(i, t)− Proc(i, t), (1)

Ii(t) = Pop(i) . (2)

Here, Prod(i, t) is the monthly production and Pop(i) is the population of the locality as a surrogate to consumption.

The latter is the sum total of population in every cell that belong to the locality. Export and Import are the monthly

total export to and import from outside the country respectively. Proc(i, t) is the tomato produced for processing.

Since for this purpose tomato is typically cultivated and consumed locally, we subtract this volume from the outflow.

Country specific details of how locality attributes were estimated is in Section S3.5.

S3.5 Locality production, consumption, imports, exports and processing

Monthly tomato production (consumption) at a locality was obtained by aggregating production (population) at all

cells that belong to it. Population data was obtained from Landscan (Table S1). For most countries, imports and

exports are a small fraction of domestic production. The main exceptions were the significant tomato imports from

India to Bangladesh and trade between Malaysia and Singapore. We identified major routes of trade from India to

Bangladesh [15] and the total imports from India (FAOSTAT) was distributed uniformly between three cities close to

the border with India along these routes. Finally, these imports were evenly distributed for the later half of the year

since Bangladesh imports mostly during the rainy season. To capture the significant trade between Singapore and

Malaysia, we included Singapore in the domestic flow network of Malaysia as there is high interaction between the

two countries. The resulting flow from the gravity model from Malaysia to Singapore was obtained by aggregating

network flows across months and across edges with Singapore as destination. This flow was comparable to the annual

imports from Malaysia to Singapore. With the exception for Thailand [43], Vietnam [64] and Cambodia (pers. comm.),

there is no information on the amount of tomato production consumed by the processing industry even though there

is evidence of processing industry in Malaysia and Indonesia. For each locality in Thailand, we scaled the monthly

production by the ratio annual production of fresh tomatoes over total annual production (fresh and processed).

For consumption, we used country-level production [18], which was available for half of the countries. For Singa-

pore, we estimated it as the difference between total inflow (production and imports) and total outflow (exports) based

on FAO data. For Vietnam, Wijk et al. [64] provides this information. For Myanmar, Cambodia and Laos, we found
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no information. We used median consumption for the region. We also analysed consumption with respect to per capita

gross domestic product (GDP). However, we did not find any correlation between GDP and consumption both globally

as well as restricted to the study region. In Venkatramanan et al. [61], consumption was modelled as a function of

population and Gross Domestic Product (GDP). In the study region, analysing FAO data on consumption [18] we did

not find any relation between GDP and consumption.

S3.6 Validation of domestic trade flows

Since no market-to-market flow data is available for the region, we searched the literature for evidence of tomato trade

between cities or regions for each country. Even this information is hardly available. The next step was to further

generalise the search by considering the flow of vegetables. The results of our comparison of the networks obtained

using gravity flow model with literature are shown Figure S3. Our general observations as follows: (i) To obtain good

representation of trade flow, at minimum, region/state level data of production is required; and (ii) densely populated

urban pockets are a good representation of consumption centres. Some country specific details follow.

Bangladesh. There is evidence of vegetable flow from Rangpur region to Dhaka particularly during winter [29, 56].

The flow from Southwest Bangladesh to Dhaka [33] is captured by the edge from Khulna to Dhaka (Figure S3a).

We assigned import of tomato from India to cities in the border based on information on important trade routes [15].

Since, there is no data on volume, we distributed it evenly.

Vietnam. There are primarily two consumption centres: Ho Chi Minh City in the south supplied by Central High-

lands and the Mekong River Delta, and Hanoi-Haiphong urban centres in the north supplied by Red River Delta. For

Ho Chi Minh City, Lam Dong is the main district that supplies vegetables [9]. In our model (Figure S3d), this flow is

represented by Buon Me Thuot–a city in Central Highlands–to Ho Chi Minh City. Buon Me Thuot is less than 100km

away from the Lam Dong province thus covering the production in the area. In the north, much of the production

surplus is assigned to the Haiphong locality, and therefore, it acts as a big source for almost all localities in the north.

Our network also has some long distance edges from north to south. This is mostly due to the large population in

the south. There is not much evidence of this flow and it could be a result of not accounting for heterogeneity in

consumption.

Malaysia and Singapore. We combined the locality corresponding to Singapore with Malaysia, so that the flow

between these two countries is treated as a domestic flow as there is free movement of people and goods between

these countries. The gravity model flows from Malaysia to Singapore is between 50,000–60,000 tonnes compared to
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(h) References corresponding to trade flow evidence.

Figure S3: Long-distance annual trade flows resulting from the gravity model. We combined monthly flows and
to avoid clutter, we have displayed only major flows (> 500). Some of the edges are labelled based on information
from literature. The references corresponding to the labels are listed in (h). For Laos, Cambodia and Brunei, there are
no flows as there is only one locality in each country.

≈ 30, 000 tonnes according to FAOSTAT. However, our network does not capture the flow from Cameron Highlands,

major tomato producer to cities of Malaysia. This shortcoming is mainly due to unavailability of state/province level

tomato production information.
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Philippines. The major production centres are in Cagayan de Oro and regions north of Manila. These are captured

by our network (Figure S3g).

S4 Parameterization and simulation

For each parameter setting, we evaluated the model output by comparing it with historical invasion data from Bangladesh

using a similarity score as defined in the main document (equation (4)). Simulations were run with 100 repetitions.

From the output we computed the empirical probability that a cell is in state I at time t, which in turn was used to

compute similarity scores. We applied Classification and Regression Trees (CART) to guide parameter space explo-

ration. Initially, the parameter space was coarsely sampled. The parameter values are listed in Table 1 in the main

document. For each of these samples, simulations were run and the similarity scores computed. With the model pa-

rameters as independent variables and similarity score as the dependent variable, we analysed the results using CART

(see Figure S4). We chose parameter subspaces with high similarity score (0.7 or more) and rejected those with lower

values. For each chosen parameter subspace, the process was repeated.

We recall that the emergent outcome of the model can be classified into two classes: Class A and Class B. In

Figure S4, we show the results of CART analysis on the parameter sets which yielded a similarity score of ≥ 0.7. The

chosen set is partitioned by Moore range rM and latency period `. For (rM, `) values that permit rapid range expansion

through short-distance spread over the contiguous landscape, including long-distance spread leads to faster spread than

observed leading to lower score. Hence, for those regimes, we observe only Class A spread. The corresponding (rM, `)

values are (1, 1), (2, 1), (2, 2) and (3, 1). For the regime (3, 1) we did not observe any instance with score > 5.5.

S4.1 Seeding scenarios

During the model evaluation phase, to account for both spatial and temporal observation noise, we considered six

seeding scenarios: The locations Bangladesh 1 and Bangladesh 2 (see Table S5) and start times March, April or

May (the month T. absoluta was reported). For the prediction phase, we constructed three different seeding scenarios

reflecting three different possible introductions to the region. The first corresponds to spread from Bangladesh through

northeast Myanmar. This region represents a possible pathway of T. absoluta should it spread radially through the

border with Bangladesh. The second scenario we considered is the region of Johor in Malaysia - including Singapore.

This region contains major ports in Malaysia including Tanjung Pelepas [35], and Singapore is also a major trading

hub for Bangladesh. We considered two scenarios of introduction for Philippines. The first is motivated by the fact

that there is a large migrant Filipino worker population travelling to and from infested countries. We seeded the
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Figure S4: CART analysis of the parameter space: The models with similarity score ≥ 0.7 were partitioned based on
the Moore range rM and latency period ` tuple and analysed. For the case (rM = 3, ` = 1), there were no instances
with similarity score ≥ 0.7 among the sampled instances. Minimum number of observations at a node for splitting
was set to 50. Minimum number of observations at each leaf node was set to 20.

port of Masinloc in this scenario as it processes many of these travellers. The second was the introduction to Northern

Mindanao region, one of the major tomato production areas in the country. We conducted country-specific experiments

in the case of Thailand and Vietnam. The seed locations were determined by spread observed from both Class A and

Class B models.
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Table S5: Seeding scenarios

Region seeded Description

Bangladesh 1 Parameterization phase: The cell corresponding to the location of first report
was seeded.

Bangladesh 2 Parameterization phase: The cells corresponding to the location of first report
and its adjacent cells (Moore neighbourhood 1) were seeded.

Bangladesh and Northeastern
Myanmar

This seeding is the estimated current range of T. absoluta in the study region. It
is used to study the spread in the rest of the region.

Singapore and southern (main-
land) Malaysia

This reflects possible introduction through trade, as Singapore is a major port.

Philippines 1 This reflects the possibility of T. absoluta being introduced through workers
travelling to and from India, and other countries, which have reported the pest.
The port of Masinloc was seeded.

Philippines 2 Northern Mindanao region
Thailand Northwestern region: informed by observed spread in Mainland Southeast Asia.
Vietnam Northwestern region: Informed by observed spread in Mainland Southeast Asia.

S4.2 Software and Computational aspects.

The model was implemented in Python 2.7. For data management and processing, we used PostGreSQL and SQlite.

Statistical analysis was done using Python, R 3.4.3 and SPSS 24.0. The experiments were run using Discovery, a high

performance computing cluster with 232 nodes (16-core Sandy Bridge-EP E5-2670 2.60GHz (3.30GHz Turbo) Dual

Processor (8 Cores per Processor) nodes with 32 GB of Memory and 500 GB Internal Hard Drive) in the Biocomplexity

Institute of Virginia Tech.

S5 Clustering analysis of the spread pattern

The analysis process is illustrated in Figure 1c. We recall that each simulation output has the following format.

Suppose, the simulations were run for T time steps. For every v, p(v, t) is the empirical probability that cell v is

infected at time t. Each simulation output can be viewed as a matrix of size n × T , where n is the number of

cells. To normalise each matrix, we introduced an extra index T + 1 which carries the residual probability, i.e.,

p(v, T + 1) =
∑T
t=1 p(v, t). The simulation outputs for models with similarity S ≥ 0.75 were thus processed

and clustered using two algorithms: hierarchical agglomerative clustering (SPSS 24.0) and k-means algorithm (using

Pyclustering [49]). In each case, the number of clusters considered ranged from k = 1 to 10.

To discover relationships between model parameters and cluster membership, we cast it as a classification problem.

With configurations as features and cluster index as labels, we applied CART. The resulting decision tree was used

to interpret the relationship between parameters and cluster membership. The results are in Figures S5 (hierarchical)

and S6 (k-means).
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Figure S5: Agglomerative clustering of simulation outputs. The 9-level hierarchy of the clusters is shown in (a).
At each level, we applied CART to understand which parameter was significantly influencing the split. Here, a long
corresponds to α`d, latency period is ` and moore is rM.
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Figure S6: k-means clustering of simulation outputs. For each k, the number of clusters, we applied CART to under-
stand which parameter was significantly influencing the split. Here, a long corresponds to α`d, latency period
is ` and moore is rM.
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S6 More results

S6.1 International trade

Figure S7a shows the annual tomato trade for the study region. The network was constructed using data from FAO-

STAT Trade matrix (Table S1). The trade within the focus region is represented by green edges. Imports from

T. absoluta affected countries categorised by region is represented by red edges, and the blue edges correspond to

exports from the focus region to countries yet to report the presence of the pest. The edge thickness is a function of

the trade volume. We note that with the exception of Philippines, there is considerable trade activity among countries

in the focus region. However, the majority of trading happens between neighbouring countries and except for a few

flows, the volume is negligible compared to production within. Most significant flow is from Malaysia to Singapore

(≈ 30, 000 tonnes), India to Bangladesh (≈ 20, 000 tonnes), and Thailand and Vietnam to Malaysia (between 1000

to 2, 000 tonnes). Philippines does not report any fresh tomato trade with other countries. We also analysed how the

network structure evolved across years. While we did not observe much variation in the network structure, there is

some change in the countries importing to and exporting from this region.

General trends. Figure S7b shows the evolution of trade and production volume over time. The total tomato pro-

duction in the study region obtained by summing the production for all countries is plotted for each year between 2004

to 2013 (blue). We computed the total tomato import volume per year (green) from outside the study region using

FAOSTAT Trade Matrix (Table S1). This was obtained by aggregating imports where the importing country belongs

to the study region and the exporting country is outside the region. Similarly export volume per year to outside the

study region (red) is shown. Finally, the amount of tomato traded within the study region was obtained by aggregating

tomato trade between countries in the region for each year (orange). In order to compare these plots, each plot was

normalised by dividing by the corresponding maximum value across all years. There is a steady increase in the pro-

duction and amount of internal trade, with comparable rate of change for both quantities. In comparison, the export

of tomato to outside of the focus region (plot “Exports”) has risen steeply in the recent years (after 2011), while the

imports generally indicate a downward trend (plot “Imports”). Recent efforts to increase production and trade infras-

tructure in these countries support these trends [8, 28, 45]. Under these circumstances, T. absoluta’s invasion can have

a high negative impact on the economy and livelihood of the people in this region.
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(c) Evolution over years 2011, 2012, 2013.

S6.2 Localities, production and trade

We identified 102 localities representing urban and production centres. For the purpose of this discussion, a major

source (major sink) is a locality with net outflow (inflow) at least 10 Kilo tonnes. Among these, less than 20% of the

localities have net outflow of at least 10 Kilo tonnes in the gravity model derived trade network, indicating that there

are few major sources (Figure S8a). We also note that there are a few high sinks which have production comparable

to some of the major sources. These are regions not only vulnerable to attacks, but also potentially sustain a huge

negative impact due to loss in production.

To predict seasonal production, we used linear regression to model the production rate as a function of precipitation,

temperature, and elevation using seasonal production data from different regions of Philippines. The results showed

that precipitation was a statistically significant predictor (p < 0.001). More details are in Section S3.3. To study

the effect of seasonality on monthly flows, we accumulated the net flow per month by directionality. For a locality i,

let Fi(m) denote the net flow in month m (positive means outflow, else inflow). The accumulated outflow is F+
i =
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∑12
m=1 I

(
Fi(m) > 0

)
Fi(m), where I(·) is the indicator function. Corresponding definition of accumulated inflow is

F−i =
∑12
m=1 I

(
Fi(m) < 0

)
Fi(m). The results in Figure S8b show that there are very few localities which switch

from the role of source to sink and vice versa. This is unlike what is observed in Nepal by Venkatramanan et al. [61].

The flow between high altitude regions and low altitude regions switches direction according to season. Here, while

the intensity of flows vary between seasons, we do not see such a switch in roles.
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Figure S8: Production, inflow and outflow at localities. These are results for β = 2 and κ = 500.

S6.3 Cellular automata model from Guimapi et al

Guimapi et al. [22] use a cellular automata approach to model the spread of T. absoluta through the study region of

Africa, Spain, and Portugal. Here, we implemented and applied the model to study the spread in the focus region.

Methodology. Each cell in the automata is of size 25km × 25km induced by a grid overlayed on the study region.

Both square and hexagonal cell configurations are considered, but square cells (Moore neighbourhood) were chosen in

order to cover a larger area per cell. Each cell can be in one of three states: S, E and I with very similar definitions as

in our model. The spread is modelled as follows: For an infected cell to spread to another, each cell within its moore

neighbourhood of respective distance is considered in each time step (one month). If this neighbour cell is suitable,

it will change states. The suitability of a cell for pest establishment depends on temperature, humidity, NDVI, and

tomato production in that cell at the given time step. Two Moore neighbourhoods were considered, one with a range

of 50 km and another with a range of 75 km.

Given a cell within the Moore neighbourhood of an infected cell, its state in the next time step depends on the

following rules.
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Figure S9: Parameter importance. Continued from Figure 2c
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• If NDVI ≥ NDVI threshold 1, then state becomes ”Exposed”.

• If NDVI≥ NDVI threshold 1 and temperature >= temperature threshold and humidity >= humidity threshold,

then state becomes ”Invaded”.

• If NDVI ≥ NDVI threshold 2 and tomato production high or very high, then state becomes ”Invaded”.

• Otherwise the state remains unchanged

Temperature, humidity, and NDVI data is at the level of the cell, while production data is at the country-level.

The temperature threshold is 22 degrees Celsius and humidity threshold is 55%. The NDVI threshold 1 is 0.1, and

threshold 2 is 0.3. The production yield threshold is 10 tons/hectare to be considered high or very high. Thus if a cell

is within a country with high or very high yield, that cell would be classified at high or very high yield.

Results. We applied the seeding scenarios described in Table S5. Each scenario was simulated with Moore neigh-

bourhoods of 2 and 3. The results are shown in Figure S10. The model predicts a rapid radial spread in this region

as vegetation and temperature are generally favourable throughout this region. The tomato production yield in each

country in the focus region is in the high or very high categories, and thus did not limit the spread. Generally, the

predicted range expansion is much faster compared to our models, particularly in the case where Moore range is 3.
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(a) Moore neighbourhood of 2
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(b) Moore neighbourhood of 3, baseline model

Figure S10: Guimapi et al. [22] model results: Here the region of Chin in northeast Myanmar was seeded.
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Figure S11: Spread in Mainland Southeast Asia with respect to distance from origin. The cells are binned based
on their distance from the origin of infection (Northern Myanmar). Given time step t (60 or five years from time of
start in this case), let Pr(v,≤ t) be the probability that cell v is in state I by time t. For each parameter instance, we
computed the “total infection” for every bin at time t by aggregating Pr(v,≤ t) for each v in the bin. Configurations
were grouped by model class and Moore range (rM). The average total infection for each group are plotted. The red
points referred to as “max” correspond to the total number of cells in each bin, which is also the maximum possible
accumulated probability for that bin. We observe that even though the models exhibit similar spread for Bangladesh,
there is high variance in spread rate in both classes for spread in in the case of he spread rate when applied to the rest
of the region. Also, the range of expansion is influenced by Moore range rM.
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(g) Bangladesh: spread intensity and dis-
tance with respect to origin
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(h) Thailand: spread intensity and dis-
tance with respect to origin
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Figure S12: Interventions. This is a continuation of Figure 3 from the main document.
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