1	
2	

5

Electronic Supplementary Material

Detailed Materials & Methods

6 Analysis of Drosophila Activity

7 Single flies were either systemically infected or control pricked as described above, and 8 immediately placed in a single DAM tube and allocated a random slot in one of 8 DAM 9 monitor units (each unit is capable of housing a maximum of 32 tubes). We tested the effect 10 of DCV on locomotor activity in *D. melanogaster* by comparing infected and uninfected 11 individuals, rather than monitoring the same individual before and after infection, as this 12 would require removing and reintroducing the flies into the DAM. Our design therefore compares locomotion in healthy vs infected flies without the potentially confounding source 13 of stress and damage that would come from manipulating the same fly. At least one slot of 14 each monitor unit was left empty and another contained an empty tube, as negative controls. 15 16 While flies were monitored continuously for 4 complete days. Flies that died during this 4-day 17 period were removed from the dataset. In total we analysed the activity of 872 flies, with n=18-18 27 flies for each combination of sex and genetic background (Table S1). Raw activity data 19 was processed using the DAM System File Scan Software [6], and the resulting data was manipulated using Microsoft Excel. Activity counts for each individual fly were combined into 20 21 5-minute bins. We analysed fly activity data using three metrics: total locomotor activity, 22 proportion of time spent asleep and the average activity when awake [7]. Total locomotor 23 activity refers to the sum of all recorded movements during the 4-day measuring period and 24 is an outcome of how often a fly sleeps and how much it moves during bouts of awake activity. 25 In Drosophila, sleep is defined as five minutes of continuous inactivity, sharing several 26 features with mammalian sleep, such as being followed by an increased arousal threshold, 27 and being regulated independently from the circadian clock [8]. To assess the proportion of time spent asleep, we used the proportion of all 5-min bouts (n=1152) where no activity was 28 29 logged. To quantify awake activity, we calculated the average level of locomotor activity across every 5-min period where at least one instance of movement was recorded. Average 30 31 activity when awake can help characterise lethargy when individuals are active, an important 32 behavioural symptom of infection [9].

Genetic	М	ale	Fen	nale
Background	Control	Infected	Control	Infected
RAL-59	24 (7)	24 (4)	22 (5)	22 (5)
RAL-75	20 (3)	27 (2)	20 (5)	20 (6)
RAL-138	21 (5)	20 (2)	18 (4)	19 (5)
RAL-373	20 (1)	26 (2)	21 (4)	28 (10)
RAL-379	20 (4)	22 (3)	21 (3)	20 (2)
RAL-380	24 (5)	20 (4)	23 (4)	24 (7)
RAL-502	23 (3)	21 (3)	21 (4)	20 (2)
RAL-738	21 (4)	21 (7)	20 (4)	20 (1)
RAL-765	26 (8)	28 (7)	20 (5)	21 (5)
RAL-818	21 (5)	20 (2)	20 (6)	22 (9)

Table S1. The sample size of alive individuals from each treatment group, representing
every combination of sex, genetic background and infection status, that was used to
measure locomotor activity. Values in brackets represent the number of individuals that
died during the experiment and were removed from the final dataset.

44 Results 45 ____

Response Variable	Predictor	Df	X2	р
	Genetic Background	9	16.45	0.058
	Sex	1	0.0013	0.97
	Infection	1	0.0018	0.97
Alive after 4 days	Genetic Background × Sex	9	9.15	0.42
	Genetic Background × Infection	9	6.64	0.67
	Sex × Infection	1	0.74	0.39
	Genetic			
	Background × Sex × Infection	9	1.05	0.99

46 47 48

Table S2. Model outputs for the binomial logistic regression conducted on the number of flies

49 alive after 4 days of locomotor activity measurements in the DAM.

51 DCV Susceptibility

Fig S1. Survival of males and females from the 10 genetic backgrounds following system
infection with DCV by pricking. Genetic backgrounds (grey lines) demonstrate the presence
of variation in susceptibility to DCV infection through comparisons with the mean (black line).

Jonathon A. Siva-Jothy, Pedro F. Vale

Genetic Background	Sex	Median Lifespan	Lifespan SE
	Male	14	1.62
00	Female	14	1.22
75	Male	13.5	1.28
10	Female	12	1.77
138	Male	14	1.63
100	Female	13	0.99
373	Male	13	0.94
070	Female	11	1.0
370	Male	16	0.95
575	Female	13	0.8
380	Male	12	0.48
000	Female	10	1.52
502	Male	15	1.2
002	Female	11	1.25
738	Male	15	1.35
700	Female	11.5	1.1
765	Male	11.5	1.11
100	Female	11	2.1
818	Male	11	2.06
010	Female	12.5	0.64

56 57

Table S3. Summary statistics of the survival data presented in Figure S1. The susceptibility

58 rank is derived from a treatment groups median lifespan.

59 Social aggregation experiment

Social aggregation was measured in 55mm Petri dishes with 2% agar poured in until 3mm 60 61 from the lid in order to limit flight. Flies were pricked with DCV or TRIS as described in the 62 main methods and transferred to Petri dishes in groups of twelve after 72 hours of infection, 63 under light CO₂ anaesthesia. Due to reducing anaesthesia as much as possible to curtail 64 behavioural defects associated with over-exposure to $CO_2[1]$, and experimenter error, some 65 flies escaped Petri dishes before they were closed. A total of 448 dishes contained twelve 66 flies, while 113 and 19 contained eleven and ten, respectively. Flies within a Petri dish were 67 the same genetic background, sex and infection treatment. Once transferred, flies were left 68 in Petri dishes to acclimate for 30 minutes. This acclimation period was identified in a prior 69 experiment where it was observed that after 30 minutes, fly movement in arenas was minimal, 70 as shown previously [2,3]. A single image was recorded of each Petri dish using a 13 Megapixel camera, followed by a second image (10-20 minutes later). Using these images 71 we calculated the NND using ImageJ software [4], by marking flies in the centre of their 72 73 thorax with the multi-point tool. We calibrated the distance between flies in photos using the 74 55mm width of the Petri dish and calculated the nearest neighbour distance between each 75 pair of flies in millimetres using the 'NND' package in *ImageJ*. These values were used to 76 calculate the median NND for each petri dish [2,5]. To account for differences in body lengths between lines and sexes, we also calculated the NND using body lengths by dividing 77 millimetre distances by the mean body length of a randomly selected group of 30-40 78 79 individuals from each genetic background and sex combination (Figure S1). We also tested for differences in body lengths between males and females from these 10 genetic 80 81 backgrounds. This model tested an interaction between sex (male/female) and DGRP line (10 genetic backgrounds), all modelled as fixed effects. Incorporating this size difference 82 83 into measures of social aggregation, by measuring body lengths between individuals did not 84 alter the results qualitatively (Figure S2).

Jonathon A. Siva-Jothy, Pedro F. Vale

86 Figure S2. Mean±SE body length of flies calculated from 30 flies per line for males (red) and

88

90 F Response Predictor Df р Genetic Background 9 28.5 < 0.0001 Sex 440.8 1 < 0.0001 Body Length Genetic Background * 9 < 0.001 3.44 Sex

91

92 Table S4. Model outputs for statistical tests performed on body lengths of treatment groups

93 comprised of each combination of sex and genetic background.

94

Genetic Background

98

Figure S3. Mean±SE median nearest neighbour distance (NND) in body lengths of adult flies
placed in Petri dishes for at least 30 minutes until settled. (a) Uninfected female-only arenas
shown in blue, and infected female-only arenas in pale blue. (b) Uninfected male-only arenas
are shown in red, and infected male-only arenas in pink. The x-axis of both panels is ordered
from the lowest to highest mean median NND of female flies of a single genetic background.

Genetic Background

Response	Predictor	Df	F	р
Median NND (body length)	Genetic Background	9	6.55	<0.0001
	Sex	1	38.74	<0.0001
	Infection	1	24.3	<0.0001
	Genetic Background * Sex	9	1.56	0.12
	Genetic Background * Infection	9	0.99	0.45
	Sex * Infection	1	20.94	<0.0001
	Genetic Background * Sex * Infection	9	1.58	0.12

106

107 Table S5. Model outputs for statistical tests performed on social aggregation when measured

using body lengths, testing the causes of variation in sociality in males and females of 10 *D*.

109 *melanogaster* genetic backgrounds.

110

Figure S4. Activity counts of adult flies for the first 4 days locomotor activity was measured in
the DAM. The mean activity counts of DAM tubes containing single flies of the same sex and
DCV infection status are represented by generalised additive model lines where uninfected
females are shown in blue, infected females in pale blue, uninfected males are shown in red,
and infected males in pink.

121 References

- Colinet H., Renault D. 2012 Metabolic effects of CO2 anaesthesia in Drosophila melanogaster. *Biology Letters* 8, 1050–1054. (doi:10.1098/rsbl.2012.0601)
- Anderson BB, Scott A, Dukas R. 2016 Social behavior and activity are decoupled in larval and adult fruit flies. *Behavioral Ecology* 27, 820–828. (doi:10.1093/beheco/arv225)
- 3. Simon AF, Chou M-T, Salazar ED, Nicholson T, Saini N, Metchev S, Krantz DE. 2012 A
 simple assay to study social behavior in Drosophila: measurement of social space within a group. *Genes, brain, and behavior* 11, 243–52. (doi:10.1111/j.1601-183X.2011.00740.x)
- 4. Schneider CA, Rasband WS, Eliceiri KW. 2012 NIH Image to ImageJ: 25 years of Image Analysis. *Nat Methods* 9, 671–675.
- 5. Clark PJ, Evans FC. 1954 Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations. *Ecology* 35, 445–453. (doi:10.2307/1931034)
- 6. Pfeiffenberger C, Lear BC, Keegan KP, Allada R. 2010 Processing Sleep Data Created with the Drosophila Activity Monitoring (DAM) System. *Cold Spring Harb Protoc* 2010, pdb.prot5520. (doi:10.1101/pdb.prot5520)
- 137 7. Vale PF, Jardine MD. 2015 Sex-specific behavioural symptoms of viral gut infection and
 138 Wolbachia in Drosophila melanogaster. *Journal of Insect Physiology* 82, 28–32.
 139 (doi:10.1016/J.JINSPHYS.2015.08.005)
- 8. Shaw PJ, Cirelli C, Greenspan RJ, Tononi G. 2000 Correlates of sleep and waking in Drosophila melanogaster. *Science (New York, N.Y.)* 287, 1834–7.
 (doi:10.1126/SCIENCE.287.5459.1834)
- 143 9. Hart BL. 1988 Biological basis of the behavior of sick animals. *Neuroscience & Biobehavioral Reviews* 12, 123–137. (doi:10.1016/S0149-7634(88)80004-6)