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Simulation of past results

Rondeel, van Steenbergen, Holland, and van Knippenberg (2015): 2-back task. The average KL divergence between
prior and posterior in the 2-back task was quantified as the entropy of item probability distribution (Zénon, Solopchuk, &
Pezzulo, 2018). Since probability of letter repetition was 0.378 and assuming equal probabilities among the 25 remaining
letters, we obtained an entropy of 2.67: C = H(l) = −

∑26
i=1 p(li) log p(li), with p(l1−26) = [0.378, 0.0249, ...0.0249]. The cost

of maintaining past letters in memory was not taken into account, given that this cost should be constant over time and should
not affect the pupil response aligned on letter onset.

Rondeel et al. (2015): switch task and Stroop task. Computing the cost of Stroop and switching tasks required making
some assumption on the strength and flexibility of prior belief on context (Zénon et al., 2018). Assuming context learning rate
of 0.3 (like in Zénon et al. (2018)), we found that informational cost of the switching task was 4.25 for no switch trials and
6.85 for switch trials (see Zénon et al. (2018) for details). Finally, the cost of the Stroop task was estimated at 3.24 and 5.54
for congruent and incongruent trials, respectively (assuming prior belief on word naming context of 0.99).

Friedman, Hakerem, Sutton, and Fleiss (1973). Information cost for each stimulus was computed as their self-
information: C = −log(p), with p being equal to 0.2, 0.4, 0.6 or 0.8.

Qiyuan, Richer, Wagoner, and Beatty (1985). Information cost was computed as in Friedman et al. (1973) with p equal
to 0.1, 0.2, 0.3, 0.5 or 0.8.

Satterthwaite et al. (2007). Information cost was computed as the sum, along all steps of the drift diffusion process, of
the KL divergences between prior and posterior beliefs on choice. In each step of the drift diffusion process, the beta prior
over the chance of the face down card being the winning card (with α and β parameters set to one at the start) is updated by
sampling randomly a card and by adding one to α if that card value is superior to the one with the face up, or adding one
to β in the other case. The KL divergence between prior and posterior is computed in each of these steps. A log-likelihood
ratio is also computed as log(I0.5(α, β)) − log(1 − I0.5(α, β)), with I0.5(α, β) being the cumulative density function of the beta
distribution evaluated at p=0.5. The process is interrupted whenever the absolute value of the log-likelihood ratio reaches 3.5.
This threshold value is the only free parameter of the model. These simulations were used in Figure 1 and 3.

Kloosterman et al. (2015). Information cost in Kloosterman et al. (2015) was computed as the self-information relative
to stimulus occurence, based on the hazard rate functions described in the paper. Since pupil size are reported in % in
Kloosterman et al. (2015), pupil sizes are converted to mm assuming a baseline pupil size of 3 mm.

Murphy, Robertson, Balsters, and O’connell (2011). Similarly to Kloosterman et al. (2015), response to targets were
determined as a function of their time of occurrence, based on a hazard rate function with uniform delay distribution. In
addition, log(5) was added to the obtained value to account for the 20% chance of target display.
C = −

∑
p log(h) + log(5), with p = 1

890 for each of the possible delays, equally and linearly spaced between 2 and 2.9
seconds, and h =

p
cdf(p) , with cdf the cumulative distribution function.

Ariel and Castel (2014). C = − log( 7240
131×106 ) − R log( 7240

131×106 ), with R corresponding to the recall probability reported in
the Results section of Ariel and Castel (2014), to account for the variability of the encoding. The numeric values correspond
to reported word frequency.

Kahneman and Beatty (1966). C = m log(9), with m varying from 3 to 7 and representing the number of stimuli to
maintain in memory.

Richer and Beatty (1987). C = log(4) + log(r), with r representing the number of possible responses (Hick, 1952).
Kuchinke, Võ, Hofmann, and Jacobs (2007). Word frequency was modeled as a gamma distribution whose mean and

standard deviation were equal to the ones reported in the paper (table 1). Cost was then modeled as the entropy of these
distributions.

Preuschoff, ’t Hart, and Einhäuser (2011). Cost for first stimulus was computed as the KL divergence between uniform
prior belief and a posterior computed as the probability of winning given the value of the first stimulus. Cost for second
stimulus was the KL between the posterior following first stimulus onset and the posterior following second stimulus onset,
with p=0.99 for the actual outcome and p=0.01 for the case that did not occur. The relation of proportionality ρ between the
pupil data y and the KL simulations x was chosen so as to minimize the mean squared error (MSE) between pupil size and
KL values: ρ =

∑
xy∑
y2 . I then compared the AIC (n log MS E + 2K) from the original model (-192.8981) to the one computed

from the fit of the KL model (-202.8981). Despite comparable quality of fits between the two models, the KL approach was
preferable because of its lower complexity (one parameter as opposed to six in the original paper).
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van Steenbergen and Band (2013). Behavioural effect of switches was accounted by using the same approach as for
switch tasks in Rondeel et al. (2015), as described in Zénon et al. (2018). Initial preference for congruent was represented by
an assymetric prior joint distribution of stimulus occurrence with p=0.275 for congruent and p=0.225 for incongruent contexts.
Similarly as the simulation of Rondeel et al. (2015) above and as Zénon et al. (2018), a learning rate of 0.3 was assumed, and
the joint probability was updated following occurrence of congruent or incongruent stimuli. Cost was then computed as the
negative logarithm of the resulting probabilities.

Reinhard and Lachnit (2002). In Reinhard and Lachnit (2002), the cost of the GO signal was computed on the basis of
Fitt’s law, as log2( D

W + 1), with D the distance = 30cm and W the width of the key = 2cm. Self-information (− log p with p
probability of occurrence) was added to these values.
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