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A Diffusion maps for undirected graphs

There exists extensive literature examining the implications of diffusion maps, as well as
their limitations and strengths [1, 2, 3, 4, 5]. What follows is therefore not an attempt to
re-derive these results or convince the reader of the validity of the method, but rather to
set notation and highlight the aspects that are relevant to our purposes. The exposition
below is also necessary to act as a foundation for the results of Perrault-Joncas and
Meilă that build upon the original concept of diffusion maps as put forth by Coifman,
Lafon, Nadler, and Kevrekidis.

In [4, 5], the authors consider a family of density-normalised (i.e. anisotropic) symmetric
kernels

k(α)
ε (x,y) =

kε(x,y)

pαε (x)pαε (y)

characterising the distance between high-dimensional points x,y ∈ M ⊆ Rp. The
kernel used here is the radial basis function kε(x,y) = exp

(
−d(x,y)2/ε

)
, which pro-

vides a similarity between points based on the Euclidean distance d in the original
space. The density-normalising factor pαε (x) depends on the manifold density, pε(x) =∫
kε(x,ypε(y)dy, and the choice of the power α leads to transition kernels of different

diffusion process operators (see below). The hyperparameter ε is the kernel width, which
corresponds to the time elapsed between observations of a putative diffusion process (see
below). For a finite set of points we can construct an adjacency matrix whose elements
are given by the kernel, for a network with points as nodes and weighted undirected
edges.

Assuming that the points were sampled by observing a diffusion process in the space
M, the authors then take the forward Markov transition probability kernel to be

M
(α)
f (x|y) = Pr [x(t+ ε) | x(t) = y] =

k
(α)
ε (x,y)

d
(α)
ε (y)

,

where d
(α)
ε (y) =

∫
M k

(α)
ε (x,y)p(x)dx is the graph Laplacian normalisation factor. Since

this is the transition probability for the putative continuous diffusion process evolving
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in the space M, the (forward) infinitesimal diffusion operator of the process is given
by

∂

∂t
= H(α)

f = lim
ε→0

[
T

(α)
f − I
ε

]
,

where I is the identity operator, and T
(α)
f is a (forward) transport operator defined as

T
(α)
f [φ](x) =

∫
MM

(α)
f (x|y)φ(y)p(y)dy, which evolves a function φ :M→ R according

to M
(α)
f and the manifold measure p(y) = e−U(x).

By asymptotic expansion of the relevant integrals, they show that the forward and
backward operator pair is

H(α)
f = ∆− 2α∇U · ∇+ (2α− 1)(‖∇U‖2 −∆U), and (1)

H(α)
b = ∆− 2(1− α)∇U · ∇ (2)

respectively.

We then regard the adjacency matrix W of a given network to be a discrete approx-
imation of the transition kernel kε defined over continuous space. From that, we can
construct discrete (in time and space) approximations to the diffusion operators Hα
above by performing the necessary normalisations. To retrieve the embedding coordi-
nates for each network vertex one needs to spectrally analyse the approximation to the
diffusion operator, taking the 1 to k+ 1 eigenvectors {ψj}dj=1 ordered by the associated

eigenvalues {−λj}dj=1 with λ0 = 0 > −λ1 ≥ −λ2 ≥ · · · ≥ −λd, to be the vertices’ coordi-
nates in the first k < d dimensions of the embedding. The first eigenvector is discarded
as a trivial dimension where every vertex has the same coordinate by construction. Thus,
the k-dimensional diffusion map at time t is defined as:

Ψt
k(x) :=

(
e−λ1tψ1(x), e−λ2tψ2(x), . . . , e−λktψk(x)

)
,

where we have discarded ψ0 associated with λ0 = 0 as a trivial dimension. The time
parameter t refers to the diffusion distance after time t which is preserved as Euclidean
distance in the embedding space. Trivially, as t→∞ all network nodes are mapped to
the same point since the diffusion distance vanishes.

The parameter α adjusts the effect that the manifold density has on the diffusion process.
Choosing α = 1 recovers the Laplace-Beltrami operator ∆ as the backward diffusion
operator, if the points approximately lie on a manifold M ⊂ Rd. Thus, the diffusion
map corresponds to an embedding of the points unaffected by the manifold density
(such that if two different networks were sampled from the same manifold M but with
different densities, we would recover consistent positions of the points onM). Choosing
α = 0 is equivalent to the Laplacian eigenmaps method which preceded diffusion maps
[6]. If the vertices are sampled uniformly from the hidden manifold, Laplacian eigenmap
becomes equivalent to analysing the Laplace-Beltrami operator, and so constructing a
diffusion map with α = 1 and with α = 0 will recover the same embedding [2].

Consider now an Itô stochastic differential equation (SDE) of the form

ẋ = µ(x) + σẇ, (3)

where wt is the d-dimensional Brownian motion. A probability distribution over the
state-space of this system φ(x, t) with condition φ(x, 0) = φ0(x), evolves forward in
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time according to the Fokker-Planck equation (FPE), also known as the Kolmogorov
forward equation (KFE):

∂tφ(x, t) = −
∑
i

∂i [µi(x)φ(x, t)] +
∑
i

∑
j

∂i∂j

[
1

2
σiσjφ(x, t)

]
, (4)

with the sums running over all d dimensions and ∂i denoting partial derivatives with
respect to the ith dimension (∂i = ∂/∂xi) [7]. Similarly, the probability distribution
ψ(y, s) for s ≤ t and condition ψ(y, t) = ψt(x) satisfies

−∂sψ = µ · ∇ψ +
1

2
σσ>∆ψ, (5)

where the differentiations are with respect to y. Terms in the backward FPE become

directly identifiable with the backward operator H(α)
b if we take σ =

√
2I and µ =

2(1− α)∇U .

The original formulation of diffusion maps, as described above, assumes a symmetric
kernel kε(x,y) = kε(y,x). Given a CTMC with a symmetric generator matrix Q, the
methodology laid out so far would be sufficient to recover an embedding for the states
on a continuous compact manifoldM, on which we can define an SDE approximation to
the Markov jump process of the CTMC. Encouragingly, it has also been shown that the
jump process would satisfy the reflecting (no flux) conditions on the manifold boundary
∂M, as required by a diffusion FP operator defined on such a manifold — i.e. for a
point x ∈ ∂M where n is a normal unit vector at x, and a function ψ :M→ R,

∂ψ(x)

∂n

∣∣∣∣
∂M

= 0.

B Embedding unweighted, undirected, grid graphs

Taking the case of a pCTMC produced by a particular class of chemical reaction net-
works, we show that the embedding produced by Laplacian eigenmaps [6] (equivalent to
diffusion maps with α = 0) for the unweighted, undirected transition matrix, is consis-
tent in some respect to the canonical (manual) embedding for the fluid limit of chemical
reaction systems. This implies that we ignore any density information of the vertices
(states) on the manifold, and any directional component. We will later return to how
this information affects our results.

Laplacian eigenmaps embedding Assume that we have symmetric similarity ma-
trix W between n points. We construct the Laplacian matrix L = D − W , with
Dii =

∑
jWji. The Laplacian eigenmaps algorithm solves the minimisation prob-

lem

argmin
Υ>DΥ=I

1

2

∑
i,j

‖y(i) − y(j)‖22 Wij (6)

= argmin
Υ>DΥ=I

Tr(Υ>LΥ), (7)

where y(i) is the ith row of Υ, and the constraint Υ>DΥ = I serves to exclude the trivial
solution of mapping everything to the same point. The solution Υ ∈ Rn×m is a matrix
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with each column vector corresponding to the m-dimensional coordinate embedding of
each datum (m < n). It is shown that the solution to the problem is the eigenvector
matrix corresponding to the m lowest eigenvalues of Ly = λDy, excluding the λ = 0
solution.

This emphasis on preserving local information allows us to appropriate the algorithm
for embedding the network of states without having to calculate global state separation
— i.e. by using only neighbouring state similarities as represented in Q. For a CTMC
described by a transition matrix Q, we transform Q to be an adjacency matrix between
the nodes (states) of the network (CTMC) by placing an undirected edge of weight 1
between states which are separated by a single transition and 0 otherwise:

Wij = 1− δ0,Qijδ0,Qji . (8)

If the network is connected and m (the dimensionality for the embedding space) is picked
appropriately, the algorithm will attempt to preserve local dimensions and therefore
global ones if the network fits in that m space. If m is chosen higher than necessary,
some states which are far apart might be placed closer together in the embedding, but
local distances will still be preserved.

The unweighted Laplacian fluid approximation The proof for Theorem B.1 is
laid out here. It involves the construction of an undirected, unweighted graph with
adjacency matrix W from the Q matrix of a specific kind of pCTMCs, as shown above.
Explicit eigenvectors of the Laplacian L of this graph give analytic coordinates for the
vertices of Q in some space Rd. A drift vector field is inferred on this space using Gaus-
sian process regression, from Q and the embedding coordinates. We show from these
how conditions for a fluid approximation are met, as stated in Section 2(b). Specifically,
we show how initial conditions converge, mean dynamics converge, and noise converges
to zero (via Taylor expansion of the relevant analytic coordinates), in the same way as in
the canonical embedding of such a pCTMC resulting from hydrodynamic scaling.

Theorem B.1. Let C be a pCTMC, whose underlying transition graph maps to a multi-
dimensional grid graph in Euclidean space using the canonical hydrodynamic scaling em-
bedding. The unweighted Laplacian fluid approximation of C coincides with the canonical
fluid approximation in the hydrodynamic scaling limit.

Proof. We examine a particular case of pCTMCs, produced by allowing reactions that
only change the count of a single species per reaction. This produces an adjacency matrix
W for the network of states describing a grid network in d dimensions. Following the
derivation for the eigenvectors of the Laplacian L of such a network presented in [8], we
find that the lowest eigenvalue λ1 (excluding λ0 = 0) is degenerate (λ1 = λ{2,...,d}), and
associated with d eigenvectors vj , j ∈ {1, . . . , d}. Their elements are

vj,[x1,...,xd] = cos

(
π

nj

(
xj −

1

2

))
(9)

where the index [x1, . . . , xd] is the mapping of the node to its integer grid coordinates.
Therefore, the embedded jth coordinate of a node is cos(π/nj(xj − 1/2)), where xj ∈
{1, . . . , nj} is the integer grid position of the node in that j dimension. We observe that
away from the boundaries (i.e. near the centre of the grid x ≈ n/2) and for large n, the
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argument of cos is near π/2, so we approach the linear part of cos. This means that
near the centre states are almost uniformly distributed, as in the canonical embedding.

We define the volume ΩU ([x1, . . . , xd]) for a state with grid coordinates [x1, . . . , xd] in
the network, to be the volume of the polygon (n-orthotope) whose vertices are that state
and the next state along each grid dimension:

ΩU ([x1, . . . , xd]) =
∏
j

(
vj,[x1,...,xj+1,...,xd] − vj,[x1,...,xj ,...,xd]

)
(10)

=
∏
j

[
cos

(
π

2nj
(2xj + 1)

)
− cos

(
π

2nj
(2xj − 1)

)]
. (11)

We then observe that limn→∞ ΩU = 0 for all states; this satisfies the convergence con-
dition of initial states for a fluid approximation.

We define dynamics by means of a drift field 〈b〉 : U → Rd. The function is inferred
using Gaussian process regression, b(·) | Q ∼ GP(m(·) | Q, k(·, ·) | Q), such that it
is a Lipschitz field. This satisfies the convergence condition of mean dynamics for a
fluid approximation. In the canonical embedding of a pCTMC, the drift vector field
is a polynomial function fp ∈ L2(U) over the concentration space. Away from the
boundaries, the Laplacian embedding approaches this canonical embedding. As n→∞,
the inferred field in this region will tend to the same polynomial function:

〈b〉 → fp ,

as the Gaussian process can approximate any function in L2(U) arbitrarily well.

Finally, the conditions for noise converging to zero are trivially met, since embedding
distances γ are at most O

(
n−1

)
:

γ = cos

(
π

2nj
(2xj + 1)

)
− cos

(
π

2nj
(2xj − 1)

)
= 1− 1

2!

(
π

2nj
(2xj + 1)

)2

+
1

4!

(
π

2nj
(2xj + 1)

)4

− . . .

− 1 +
1

2!

(
π

2nj
(2xj − 1)

)2

− 1

4!

(
π

2nj
(2xj − 1)

)4

+ . . .

= O
(
n−1
j

)
,

and n =
∑
j nj , such that γ2 = O

(
n−2

)
.

Thus the criteria for fluid approximation of this pCTMC are satisfied. Further, for
some region of the state-space and in the limit of infinite states, this construction is
consistent with the embedding and dynamics recovered by hydrodynamic scaling, the
canonical fluid approximation of a pCTMC. This concludes our proof.

C Diffusion maps for directed graphs

Our focus necessarily shifts on embedding an arbitrary CTMC with no symmetry con-
dition on Q. Following Perrault-Joncas and Meilă [9] assume that we observe a graph
G, with nodes sampled from a diffusion process on a manifoldM with density p = e−U
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and edge weights given by the (non-symmetric) kernel kε. The directional component
of the kernel is further assumed to be derived from a vector field r on M without loss
of kernel generality. As the authors saliently put it: “The question is then as follows:
can the generative process’ geometry M, distribution p = e−U , and directionality r, be
recovered from G?”

In the same manner as for the original formulation of diffusion maps a set of backward
evolution operators are derived, the two relevant ones being:

− ∂t = H(α)
aa = ∆ + (r− 2(1− α)∇U) · ∇, and (12)

− ∂t = H(α)
ss = ∆− 2(1− α)∇U · ∇. (13)

To construct this family of operators, the kernel is first decomposed into its symmetric
hε and anti-symmetric aε parts,

k(α)
ε (x,y) =

kε(x,y)

pαε (x)pαε (y)
=

1

pαε (x)pαε (y)
[hε(x,y) + aε(x,y)] ,

and further normalised according to either the asymmetric d
(α)
ε (x) =

∫
M k

(α)
ε (x,y)p(y)dy,

or symmetric outdegree distribution d̃
(α)
ε (x) =

∫
M h

(α)
ε (x,y)p(y)dy. The subscript in-

dices denote the type of kernel used to construct the operator and the outdegree distri-

bution used to normalise it (such that Haa associates to the full asymmetric kernel k
(α)
ε

normalised with asymmetric degree distribution pε, and so on).

Discrete approximations for these operators can be constructed for an asymmetric kernel
matrix of distances between N high-dimensional points, W ∈ RN×N . The symmetric

matrix H
(1)
ss ∈ RN×N can be extracted and the necessary eigen-decomposition carried

out to yield an embedding, where limN→∞H
(1)
ss = H(1)

ss = ∆. However, given the
infinitesimal generator of a CTMC Q, we do not have access to W, but rather to the

discrete approximation of the final evolution operator, limN→∞Q = H(α)
aa . In order

to recover the initial kernel matrix W that gave rise to Q, we take α = 0, a uniform
measure on the manifold U(x) = 0 =⇒ p(x) = 1, and a small value for ε. This makes
the transformations from Wε to Q reversible, since

Q = lim
ε→0

[
T

(α=0)
ε − I

ε

]
, and (14)

T (α=0)
ε = D−1Wε, such that (15)

Wε = D(I + εQ.) (16)

In the above, D is a diagonal matrix which forces the diagonal of Wε to be 1, as ex-
pected from a distance-based kernel matrix. The final step is the familiar uniformisation
procedure which approximates a CTMC with a DTMC. The choice of ε < (maxi |Qii|)−1

determines the quality of approximation (the smaller the better).

Once the kernel matrix Wε is recovered we can proceed to construct the operators

∆ = H(1)
ss and

(
H(0)
aa −H(1)

ss

)
= (r− 2∇U) ·∇, which are used to embed the state-space

on a manifold M ∈ Rd, and endow it with the advective field µ = (2∇U + r) in the
Kolmogorov backward equation, respectively. See Algorithm 1 for procedural details of
the geometric fluid approximation.
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