
Supplementary Material for:
Geometric coupling of helicoidal ramps and curvature-inducing
proteins in organelle membranes
Morgan Chabanon1 & Padmini Rangamani1∗
1 Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA.
∗ Corresponding author. E-mail: prangamani@eng.ucsd.edu

Contents

S1 Local force balance of elastic surfaces at mechanical equilibrium 1
S2 Helicoid to catenoid transformation 2
S3 Method for computing the distribution of spontaneous curvature on TPMS 3
S4 Supplementary Figures 5

S1 Local force balance of elastic surfaces at mechanical equilibrium

The equation of mechanical equilibrium of an elastic surface ω subject to a lateral pressure p can be written in the
compact form

Σα
;α + pn = 0 , (S1)

where Σα are the stress vectors and n is the unit normal to the local surface. Greek indices range over 1, 2, and
if repeated, are summed over this range. Semicolon identifies covariant differentiation with respect to the surface
metric aαβ = aα · aβ where aα = r,α are the tangent vectors and r(θα) is the parametrization of the position
field. The commas refer to partial derivatives with respect to the surface coordinates θα. With these definitions, the
normal vector is given by n = (a1 × a2)/ | a1 × a2 |. In Eq. S1, the differential operation represents the surface
divergence defined as Σα

;α = (
√
a)−1(

√
aΣα),α where a = det(aαβ). In surface theory, a manifold is described

by the metric aαβ defined above, and the curvature tensor given by bαβ = n · r,αβ .

For an elastic membrane whose energy surface density per unit mass depends on the metric and curvature only
F (aαβ, bαβ; θα), the stress vectors involved in the local force balance (Eq. S1) can be written as [1]

Σα = Tα + Sαn . (S2)

Here the tangential stress vectors are

Tα = T βαaβ with T βα = Σβα + bβµM
µα , (S3)

and the components of the normal stress vectors are

Sα = −Mαβ
;β , (S4)

where bβα = aβλbλα. The components of the stress vectors depends on the energy density as [1]

Σαβ = ρ

(
∂F

∂aαβ
+

∂F

∂aβα

)
and Mαβ =

ρ

2

(
∂F

∂bαβ
+

∂F

∂bβα

)
, (S5)

where ρ is the surface mass density of the membrane. The tangential and normal local force balances can now be
obtained by introducing Eqs. S2, S3, and S4 into Eq. S1, resulting in

T βα;α − Sαbβα = 0 and Sα;α + T βαbβα + p = 0 , (S6)
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where we made use of the Gauss and Weingarten equations [2] aα;β = bαβn and n,α = −bβαaβ respectively.

The free energy density can be written as a function of the mean curvature H and Gaussian curvature K. These are
related to the metric and curvature by

H =
1

2
aαβbαβ and K =

1

2
εαβελµbαλbβµ , (S7)

where aαβ = (aαβ)−1 is the dual metric, and εαβ is the permutation tensor defined by ε12 = −ε21 = 1/
√
a,

ε11 = ε22 = 0. According to this definition (Eq. S7), the free energy density per unit mass can be re-written in terms
of the mean and Gaussian curvatures F (H,K; θα). Furthermore, lipid membranes are essentially incompressible
(see assumption (d) in the Model Development Section of the main text). This is imposed using a Lagrange
multiplier γ(θα) to ensure that the local area dilatation J = 1, or equivalently, to constraint the constant surface
density ρ of the membrane. Consequently we can define the surface energy density of the membrane as follows

F (ρ,H,K; θα) = F̄ (H,K; θα)− γ(θα)

ρ
, (S8)

and when introducing the surface energy per unit area W (ρ,H,K; θα) = ρF̄ (H,K; θα), the components of the
stress vectors (Eqs. S5) can be written as [1]

Σαβ = (λ+W )aαβ − (2HWH + 2KWK) aαβ +WH b̃
αβ (S9)

Mαβ =
1

2
WHa

αβ +WK b̃
αβ (S10)

where λ(θα) = − [γ(θα) +W (H,K; θα)], and b̃αβ = 2Haαβ − bαβ is the cofactor of the curvature. The sub-
scripts H and K refer to the partial derivative of the energy with respect to the indicated variable. Note that the
Lagrange multiplier γ can be interpreted as a surface pressure, and is not a material property of the surface [3, 4].
Consequently, λ can be interpreted as the surface tension based on comparisons with edge conditions on a flat
surface [4].

Finally, introducing Eqs. S9 and S10 into Eqs. S3 and S4, we can rewrite the normal and tangential force balances
(Eqs. S6) as

∆

(
1

2
WH

)
+ (WK);αβ b̃

αβ +WH(2H2 −K) + 2H(KWK −W ) = p+ 2λH , (S11)

and

− (γ,α +WKK,α +WHH,α) aβα =

(
∂W

∂θα

∣∣∣∣
exp

+ λ,α

)
aβα = 0 , (S12)

where ∆(·) = (·);αβaαβ is the surface Laplacian (or Beltrami operator), and ∂(·)/∂θα |exp is the explicit derivative
with respect to θα.

Eqs. S11 and S12 are the general shape equation and incompressibility condition for an elastic surface with free
energy per unit area W (ρ,H,K; θα).

S2 Helicoid to catenoid transformation

According to the Gauss’ Theorema Egregium, the distribution of Gaussian curvature on a minimal surface follows
any isometric mapping of such surface [5]. As illustrated in Fig. 2b, such transformation exists between helicoids
and catenoids.
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Elementary surface Surface evolution sequence
P-Schwartz g 5; r; g 5; r; g 5; r; g 10; u; r; g 10; u; r; g 10; u; u; refine edge where

on constraint 2; refine edge where on constraint 4; hessian; hessian; u ;
D-Schwartz g 5; r; g 5; r; g 5; r; g 10; u; r; g 10; u; r; g 10; u; u; hessian; hessian; r ;

g 100; hessian; hessian ; g 100; u; g 500 ; hessian; g 100;

Table S1: Command sequence to refine the surface meshes of the elementary P- and D-Schwartz elementary
surfaces. Description of the commands can be found in the Surface Evolver documentation.

Helicoids and catenoids belong to the same associated family of surfaces. The (continuous) isometric transforma-
tion from one surface to the other can be written as

x = sin(α)rn cosh(u/rn) sin(φ)− cos(α)rn sinh(u/rn) cos(φ)
y = − sin(α)rn cosh(u/rn) cos(φ)− cos(α)rn sinh(u/rn) sin(φ)
z = sin(α)u+ cos(α)rnφ

with


φ ∈ [−π;π[
u ∈ [−Hc/2;Hc/2]
α ∈ [0;π/2]

,

(S13)
where P is the helicoid pitch, related to the catenoid neck radius by rn = P/(2π), and L is the helicoid diameter,
related to the catenoid heigh by Hc = 2rn sinh−1(L/(2rn)).

For α = π/2, this system describes a catenoid such as the one shown in Fig. 2c, while for α = 0 it describes
a helicoid as in Fig. 2a. The equivalence between Eqs. S13 and 7 when α = 0 can be verified with the change
of variable r = rn sinh(u/rn). Any intermediate values of α gives rise to a minimal surfaces belonging to the
associated family of helicoids and catenoids, as illustrated in Fig. 2b.

The Gaussian curvature of these surfaces is given by

K = −
(

P/(2π)

[P/(2π)]2 + r2

)2

= −
(

rn
r2n + [rn sinh(u/rn)]2

)2

. (S14)

S3 Method for computing the distribution of spontaneous curvature on TPMS

Elementary surfaces P-Schwartz or D-Schwartz were downloaded from 1 and imported in Surface Evolver [6].
The surface energy was minimized through a succession of minimization and mesh refinement operations (see
Table S1). The refined elementary surfaces were then duplicated and flipped to produce the periodic cubic unit
cells, before to be exported in .stl format 2.

The cubic unit cell meshes were imported in Comosol Multiphysics, and Eq. 9 was solved using the “Surface
reaction” module. Because of the periodic nature of the TPMS, instead of imposing Dirichlet boundary conditions
at the boundaries, we chose periodic flux boundary conditions at the opposite edges, and imposed a surface average
of C0 on the unit cells. This choice is inspired from approaches to solve closure problems in transport in porous
media, where the elementary unit volume is assumed to be periodic [7, 8].
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S4 Supplementary Figures
Figure S: Effect of catenoid height on C at the inner boundary
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Figure S1: Helicoid pitch controls the position of the energy the spontaneous curvature switch in sign at the inner
boundary.
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Figure S: Effect of catenoid height on the distribution of C along the radius for 
imposed inner BC

Figure S2: Distribution of spontaneous cutvature along the helicoid radius for C0 imposed at the inner boundary of
the catenoid for various pitch and inner radii. No switch is observed.
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Figure 6 or SOM : Effect of catenoid height on C 
and energy for inner BC

Figure 5: Effect of catenoid height on C and energy
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Figure S3: Normalized bending energy of helicoids with boundary conditions imposed on the inner bondary. No
energy barrier is observed.
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Fig S: Variation of W as a function of C1 H/(2πL)=0.05
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Figure S4: Effect of the imposed gradient in C at the external boundary on the bending energy of the helicoid.
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Figure S5: Effect of the pitch on the switch and energy barrier of helicoids with imposed gradient of boundary
conditions at the exterior boundary.
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